JPS5839080A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS5839080A
JPS5839080A JP56138968A JP13896881A JPS5839080A JP S5839080 A JPS5839080 A JP S5839080A JP 56138968 A JP56138968 A JP 56138968A JP 13896881 A JP13896881 A JP 13896881A JP S5839080 A JPS5839080 A JP S5839080A
Authority
JP
Japan
Prior art keywords
light emitting
light
diameter
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56138968A
Other languages
Japanese (ja)
Inventor
Shigeki Horiuchi
堀内 茂樹
Kaname Otaki
大滝 要
Kenichi Yamanaka
憲一 山中
Saburo Takamiya
高宮 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56138968A priority Critical patent/JPS5839080A/en
Priority to DE19823232526 priority patent/DE3232526A1/en
Priority to NLAANVRAGE8203436,A priority patent/NL186417C/en
Publication of JPS5839080A publication Critical patent/JPS5839080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To obtain a light emitting diode which is largely increased in the light coupling amount to an optical fiber with high light power and emitting intensity by disposing a plurality of light emitting units which are not electrically independent on the same chip in high density at an interval longer than the relation that spherical lenses mounted thereon are contacted each other. CONSTITUTION:An N type AlGaAs layer 2, a P type GaAs light emitting layer 3, a P type AlGaAs layer 4 and an N type AlGaAs layer 5 are sequentially grown on an N type GaAs substrate. A P type region 7 is diffused with Zn from the surface after forming circular recesses 61-67. Spherical lenses 81-87 engaged with the recesses 61-67 are bonded fixedly via transparent epoxy resin 9. When a voltage is applied between a P-side electrode 10 and an N-side electrode 11 with the P side as positive, a current is concentrated under the recesses 61-67, thereby simultaneously emitting lights from the circular parts isolated in seven from the layer 3. The emitted lights are produced from the seven circular windows, and are emitted as luminous flux having good directivity via the spherical lenses.

Description

【発明の詳細な説明】 本発明は、高出力、高放射輝度を有し、元ファイバと高
効率の結合が可能な発光ダイオードの構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a light emitting diode that has high output power, high radiance, and can be coupled with a source fiber with high efficiency.

高放射輝度の発光ダイオードとしては従来より種々の構
造のものが、工夫されてきているが、その中でも球レン
ズを発光部に取付けた発光ダイオード(以下LEDと略
す)は工K E E 、 Transa、ctione
 on Electron Devices 、 vo
llE−24、A’7 、 P 、P 、 986〜9
90.1977に詳述されているように、光ファイバと
理論限界に近い高効率の結合が得られる優れた特性を備
えている。
Various structures have been devised as high-radiance light-emitting diodes, but among them, a light-emitting diode (hereinafter abbreviated as LED) with a ball lens attached to the light-emitting part was developed by KEE, Transa. ctionone
on Electron Devices, vo
llE-24, A'7, P, P, 986-9
As detailed in 90.1977, it has excellent characteristics that enable highly efficient coupling with optical fibers close to the theoretical limit.

第1図は、本発明の基礎となった、従来の球レンズ付:
L]!tDの基本的な構造を示す断面図で、図中、(1
)はN形GaAs 基板、(2)、(3)、(4)およ
び(5)I/′iそれぞれN形eaas基板(1)の主
面上に液相成長法に依って順次成長されたN形A1Ga
As層、P形GILAa発光層、P形AIGaAe層お
よびN形AlGaAs層である。(6)は選択エツチン
グにより形成された円形の凹部である。図中点を打った
領域(7)は、円形凹部(6)形成後表面よりinを拡
散して形成したP影領域で、凹部(6)の下ではP形A
lGaAs層(4)に達している。(8)は円形凹部(
6)に嵌合された球レンズで、発光波長に対して透明な
物質で構成されている。この球レンズ(8)は、発光波
長に対して透明な接着媒質、例えばエポキシ樹脂(9)
により接着固定されている。(10)、(11)はそれ
ぞれP影領域(7)、N形GaAs基板(1)に設けら
れたP側ならびにN側電極で、P側電極(10)は光を
取り出すために円形凹部(6)の上の部分が円形に取り
除かれている。この構造において、P 4wJ電極(1
0)とN側電極(11)の間にP側をプラス側として電
圧を印加すると、流れる電流は、円形凹部(6)の下の
P影領域(7)がP形AlGaAs層(4)K達してい
る円形の部分に集中し、その下に当たるP形GaAs発
光層(3)の円形の部分で発光する。この発光層(3)
からの光は、AlGaAsがGaAsより禁制帯幅が広
いため、吸収を受けずに”Nt極(xO)の取除かれて
いる円形部分から出射され、接着固定されている球レン
ズ(8)により狭い半値角を持つ指向特性の良い光束に
変換される。
Figure 1 shows a conventional ball lens with which the present invention is based:
L]! This is a cross-sectional view showing the basic structure of tD.
) are N-type GaAs substrates, (2), (3), (4) and (5) I/'i were each grown sequentially on the main surface of the N-type EAAS substrate (1) by liquid phase growth. N type A1Ga
They are an As layer, a P-type GILAa light-emitting layer, a P-type AIGaAe layer, and an N-type AlGaAs layer. (6) is a circular recess formed by selective etching. The dotted area (7) in the figure is a P-shape area formed by diffusing in from the surface after forming the circular recess (6), and below the recess (6), the P-shape A
It has reached the lGaAs layer (4). (8) is a circular recess (
6) is a spherical lens fitted with a lens made of a material that is transparent to the emission wavelength. This ball lens (8) is made of an adhesive medium that is transparent to the emission wavelength, such as an epoxy resin (9).
It is fixed with adhesive. (10) and (11) are the P-side and N-side electrodes provided on the P shadow area (7) and the N-type GaAs substrate (1), respectively, and the P-side electrode (10) has a circular recess ( The upper part of 6) is removed in a circular shape. In this structure, P 4wJ electrode (1
0) and the N-side electrode (11), when a voltage is applied with the P side as the positive side, the flowing current is caused by the P-type AlGaAs layer (4) K The light is concentrated in the circular part that it reaches, and emits light in the circular part of the P-type GaAs light emitting layer (3) below it. This light emitting layer (3)
Because AlGaAs has a wider forbidden band width than GaAs, the light from AlGaAs is not absorbed and is emitted from the circular part where the Nt pole (xO) has been removed, and is emitted by the ball lens (8) fixed with adhesive. It is converted into a luminous flux with a narrow half-value angle and good directional characteristics.

出射光束の指向性が良くなるために、光ファイ/(と理
論限界に近い高効率の結合が可能となる。この従来の構
造で、高効率の結合を実現するには、球レンズ(8)の
直径DLは、結合すべき光ファイバのコア径Drと同程
度に選ぶ必要があり、又、円形凹部(6)の直径で決め
られる発光径DEは、球レンズを用いることによる結合
効率の増加率がDF/DEに原理的には比例することか
ら小さい方が有利であるが、余り小さいと動作電流密度
が高くなるため、充分な出射光量を得る前に出力飽和を
示すようになる。そのため、通常は球レンズ径Dt、の
1/2〜1/4程度の値に設計される。光フアイバ通信
に用いられる光ファイバは通常コア径DFが150μm
以下であり、この種の光7アイパに対して発光径DEは
30〜40μm程度が妥当となる。しかしながら、近製 年光ファイバ麿作技術の進歩により、コア径DFが20
07Im以上の大口径で、低損失の光ファイバが得られ
るようになり、このような大口径光7アイパを用いて大
光量を伝送する光伝送システムの応用が検討されるよう
になってきた。しかし、従来構造のI、IFiDは、こ
のような大口径光ファイバ用としては光フ゛アイパのコ
ア面積の増加率に対応した結合光量を得ることができな
い欠点がある。すなわち、単に発光径DEと球レンズ径
Dt、を光フアイバコア径に合わせて増加させても、従
来構造では、発光部の周辺長が発光径の1乗に比例して
しか増ぼ1乗に比例してしか減少しない。その“ためパ
、光出力の飽和する電流値も発光径の1乗に比例し、光
ファイバのコア面積がn2倍になっても、光出力の飽和
に制限されて、光ファイバへの結”谷光量はn倍程度に
抑えられてしまう。第2図は発光径部μmと発光径10
0μmの従来構造のLEDの光用カー電i特性を一比較
して示したものであり、A/は発光径が1100pの場
合、Bは35μmの場合を示す。発光部面積が約9倍に
なっているにもかかわらず、発光径100μmのLID
の光出力の飽和する電流値は、発光径35μmのLl!
iDの3倍程度にしか増加していないことがわかる。
Because the directivity of the emitted light beam improves, it becomes possible to couple with an optical fiber with high efficiency close to the theoretical limit.With this conventional structure, in order to achieve high efficiency coupling, it is necessary to use a ball lens (8). The diameter DL of the optical fiber to be coupled needs to be selected to be approximately the same as the core diameter Dr of the optical fiber to be coupled, and the emission diameter DE determined by the diameter of the circular recess (6) is determined by the increase in coupling efficiency by using a spherical lens. Since the ratio is proportional to DF/DE in principle, it is advantageous to make it smaller, but if it is too small, the operating current density will become high and the output will reach saturation before obtaining a sufficient amount of output light. , is usually designed to have a value of about 1/2 to 1/4 of the spherical lens diameter Dt.An optical fiber used for optical fiber communication usually has a core diameter DF of 150 μm.
For this type of optical 7-eyeper, the emission diameter DE is approximately 30 to 40 μm. However, due to recent advances in optical fiber manufacturing technology, the core diameter DF has increased to 20
It has become possible to obtain optical fibers with a large diameter of 0.07Im or more and low loss, and the application of an optical transmission system that transmits a large amount of light using such a large diameter optical 7-eyeper is now being considered. However, the IFiD of the conventional structure has the drawback that it cannot obtain a coupled light amount corresponding to the rate of increase in the core area of the optical fiber when used for such a large diameter optical fiber. In other words, even if the emission diameter DE and the spherical lens diameter Dt are simply increased in accordance with the optical fiber core diameter, in the conventional structure, the peripheral length of the light emission part increases only in proportion to the first power of the emission diameter. It will only decrease if Therefore, the current value at which the optical output saturates is also proportional to the first power of the emission diameter, and even if the core area of the optical fiber increases n2 times, the optical output is limited to saturation, and the connection to the optical fiber is limited to the saturation of the optical output. The amount of valley light is suppressed to about n times. Figure 2 shows the luminous diameter part μm and the luminous diameter 10
The graph shows a comparison of the optical characteristics of LEDs with a conventional structure of 0 μm, where A/ indicates the case where the emission diameter is 1100p, and B indicates the case where the emission diameter is 35 μm. Even though the area of the light emitting part is approximately 9 times larger, the LID has a light emitting diameter of 100 μm.
The current value at which the optical output of is saturated is Ll! with a luminous diameter of 35 μm.
It can be seen that the increase is only about three times that of iD.

本発明は、同一チップ上に電気的に独立でない複数個の
発光部を、その上−に取り付ける球レンズが互いに接す
る以上の間隔で高密度に配置することにより、上記従来
のものの欠点を除去しようとするものである。以下、図
面を用いて本発明によるLEDを詳細に説明する。
The present invention attempts to eliminate the above-mentioned drawbacks of the conventional method by arranging a plurality of electrically non-independent light emitting parts on the same chip at a high density at a distance that is longer than the distance between the ball lenses attached thereon. That is. Hereinafter, the LED according to the present invention will be explained in detail using the drawings.

第3図は、本発明によるIFiDの一実施例を示し、4
1図と同一部分は同一記号を用いてその詳細説明を省略
しである。同図において、N形GaA3基板(1)の上
にN形AlGaAs層(2)、P′形”GaAs発光層
(3)、P形AlGaAs層(4)、N形AlGaAs
層(5)が順次成長されていることは第1図と同様であ
る。
FIG. 3 shows an embodiment of an IFiD according to the present invention;
The same parts as in FIG. 1 are designated by the same symbols, and detailed explanation thereof will be omitted. In the figure, on an N-type GaA3 substrate (1), an N-type AlGaAs layer (2), a P'-type GaAs light emitting layer (3), a P-type AlGaAs layer (4), an N-type AlGaAs
As in FIG. 1, the layers (5) are grown sequentially.

ついで、図に示すように、取付ける球レンズが互いに接
する以上の間隔で、かつ球レンズを最も高密度に配列す
るように1選択エツチングにより七つの円形凹部(61
)〜(67)が形成されている。断面図中で点を打った
領域(ηは、円形凹部(61)〜(67)形成後表面よ
りZnを拡散して形成したP影領域で、各凹部(61)
〜(67)の下ではP形AlGaAs層(4)に達して
いる。(81)〜(87)は各円形凹部(61)〜(6
7)にそれぞれ嵌合された球レンズで、それぞれ透明な
エポキシ樹脂(9)により接着固定されている。
Next, as shown in the figure, seven circular recesses (61
) to (67) are formed. The dotted area in the cross-sectional view (η is the P shadow area formed by diffusing Zn from the surface after forming the circular recesses (61) to (67); each recess (61)
~(67) reaches the P-type AlGaAs layer (4). (81) to (87) are the circular recesses (61) to (6
7), which are each fitted with a spherical lens, each of which is adhesively fixed with a transparent epoxy resin (9).

(10)および(11)は第1図と同様それぞれP側お
よびN側電極で、P側電極(10)は、各円形凹部(6
1)〜(67)に対応して光を取り出す七つの円形の部
分が取り除かれている。この構造においても、P側電極
(10)とN側電極(11)の間にP側をプラス側゛と
して電圧を印加すると、電流は各円形凹部(61)〜(
67)の下に集中し、対応するP形GaAs発光層(3
)の七つの分離した円形部分にて同時に発光する。
(10) and (11) are the P-side and N-side electrodes, respectively, as in FIG.
Seven circular parts for extracting light have been removed corresponding to 1) to (67). Also in this structure, when a voltage is applied between the P-side electrode (10) and the N-side electrode (11) with the P side being the positive side, the current flows through each of the circular recesses (61) to (
67) and the corresponding P-type GaAs light-emitting layer (3
) emits light simultaneously in seven separate circular parts.

発光はP側電極(10)の七つの円形の窓から取り出さ
れ、従来構造と同様にその上の球レンズにより指向性の
良い光束として出射される。この実施例においては、七
つの発光部と同じ直径の一つの発光部を有する従来構造
の111!!Dと比べて、実効的な発光部面積は7倍に
なるにもかかわらず、発光部の周辺長も7倍となる上に
各発光部が離れているために、直列抵抗、熱抵抗が約1
/7に低下する。
Emitted light is extracted from the seven circular windows of the P-side electrode (10), and is emitted as a highly directional light beam by the ball lens above, as in the conventional structure. In this embodiment, the conventional structure 111! has seven light emitting parts and one light emitting part of the same diameter. ! Compared to D, although the effective area of the light emitting part is seven times larger, the peripheral length of the light emitting part is also seven times larger, and each light emitting part is spaced apart, so the series resistance and thermal resistance are approximately 1
/7.

そのため、光出力の飽和を起こす電流値も7倍程度増加
することになり、従来構造で発光径を3倍−1、にした
時よりも2倍程度高い出力を得ることかで一゛−1きる
。第4図はこの効果を示すなめ忙、発光径100μmで
300μmの直径の球レンズを有する従来構造のLfi
D(A)と各発光径が35μmで七つの100μmの直
径の球レンズを有する本実施例の構造のLED(B)の
光出力−電流特性を比較したものである。図から明らか
なように、本実施例の構造の方が実効発光部面積が従来
構造のLFiDに比べて10%以上小さいにもかかわら
ず、光出力の飽和する電流値が2倍以上高くなった。−
万、出射光の指向性は球レンズ径と発光径の比がほとん
ど同じであるため両者に差はなく、円形光源としての有
効直径も両者とも300μmと同じであり、コア径30
01a  の光ファイバへの結合光量の光出力飽和によ
る上限値も、本実施例の構造のIFiDにおいて従来構
造の2倍以上の値が得られた。
Therefore, the current value that causes optical output saturation increases by about 7 times, and it is possible to obtain an output that is about 2 times higher than when the light emitting diameter is 3 times -1 with the conventional structure. Wear. Figure 4 shows this effect, and shows a conventional Lfi structure with a spherical lens of 300 μm in diameter and a light emission diameter of 100 μm.
The light output-current characteristics of D (A) and the LED (B) having the structure of this example having seven 100 μm diameter spherical lenses with each light emitting diameter of 35 μm are compared. As is clear from the figure, although the effective light emitting area of the structure of this example is more than 10% smaller than that of the conventional LFiD structure, the current value at which the optical output is saturated is more than twice as high. . −
There is no difference in the directivity of the emitted light because the ratio of the spherical lens diameter to the emission diameter is almost the same, and the effective diameter as a circular light source is the same for both, 300 μm, and the core diameter is 30 μm.
The upper limit value of the amount of light coupled to the optical fiber 01a due to optical output saturation was also more than twice that of the conventional structure in the IFiD with the structure of this example.

以上、本発明の効果を七つの発光部を最も高密度に配置
した例につき説明したが、本発明の効果は発光部を高密
度配置することに依っており、先の実施例でも発光部の
間隔をその上に接着固定される球レンズの直径の2倍以
上に離してしまうと、光ファイバへの結合光量に関して
は、従来構造のLEDと比べて有意な差はなくなる。
Above, the effects of the present invention have been explained with reference to an example in which seven light emitting sections are arranged in the highest density. However, the effects of the present invention depend on arranging the light emitting sections in a high density, and in the previous embodiment, the effect of the present invention is also If the spacing is greater than twice the diameter of the ball lens adhesively fixed thereon, there will be no significant difference in the amount of light coupled into the optical fiber compared to conventionally structured LEDs.

この発明の他の実施例を第5図に示す。図中。Another embodiment of the invention is shown in FIG. In the figure.

(6)および(8)は円形凹部(発光部)と球レンズを
示している。(a)と(Q)は同一径の球レンズと発光
部を組合わせた例であるが、lb)と(d)は直径の異
なる球レンズと発光部を組合わせ゛た例である。この様
な実施例は、発光部の数、配列の組合わせで無数に考え
られる。又、第3図、第5図の実施例では最も高密度な
配列を取っているが、球レンズ間に多少の間隔が有る場
合でも、発明の効果は多少減じるが従来構造と比べて大
ざな元ファイバへの結合光量が得られることは今ま1の
説明から明らかである。
(6) and (8) show a circular concave portion (light emitting portion) and a ball lens. (a) and (Q) are examples in which a ball lens with the same diameter and a light emitting section are combined, while lb) and (d) are examples in which a ball lens with a different diameter and a light emitting section are combined. An infinite number of such embodiments can be considered depending on the number and arrangement of light emitting parts. In addition, although the embodiments shown in FIGS. 3 and 5 have the highest density arrangement, even if there is some spacing between the ball lenses, the effect of the invention will be somewhat reduced, but it will still be roughly the same as the conventional structure. It is clear from the above description that the amount of light coupled to the original fiber can be obtained.

本発明によるLEDは、高出力と高放射輝度を合わせ持
っているため、大口径光7アイパ用の光源としてだけで
はなく、空間伝送光通信、光波測距装置等の用塗の光源
としても有用である。
Since the LED according to the present invention has both high output and high radiance, it is useful not only as a light source for large-diameter optical 7-eye cameras, but also as a light source for space transmission optical communications, light wave ranging devices, etc. It is.

以上、本発明によるLFiDは、実効的な光源としての
直径が同じ9g1図に示した従来構造のT、I]lCD
と比べて、直列抵抗、熱抵抗が低くなり、光出力の飽和
する電流値が上昇するため、より高い光出力、放射輝度
を得ることができ、光7アイノ(への結合光量を大巾に
増加させることができる。又、同じ動作電流レベルで動
作させても、熱抵抗が低いために接合温度上昇が低く、
従来構造に比べて長寿命が得られるうえに、光出力−電
流特性の直線性も広い範囲で良好になる効果を有する。
As described above, the LFiD according to the present invention has the same diameter as the effective light source, and has the conventional structure T, I]lCD shown in Figure 9g1.
Compared to the Hikari 7 AINO, the series resistance and thermal resistance are lower, and the current value at which the optical output saturates is increased, so higher optical output and radiance can be obtained, and the amount of light coupled to the optical In addition, even when operated at the same operating current level, the junction temperature rise is low due to low thermal resistance.
In addition to providing a longer life than the conventional structure, this structure also has the effect of improving the linearity of the optical output-current characteristics over a wide range.

なお、第3図の実施例においては、GaAs −AIG
aA8系材料を用いたダブルヘテロ接合形の場合につい
て説明したが、本発明はこれに限定されるものではなく
、例えば工nGaAs P−工nP系等の他の材料を用
いた場合、ならびにシングルヘテ9口接合形の場合に適
用しても同様の効果が得られることは明らかである。
In the embodiment shown in FIG. 3, GaAs-AIG
Although the case of a double heterojunction type using aA8-based material has been described, the present invention is not limited to this, and may also be applied to the case of using other materials such as the nGaAs P-nP type, as well as the case of a single heterojunction type. It is clear that the same effect can be obtained even if it is applied to a nine-mouth joint type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基礎となった従来構造のLZDの断面
図、−2図は従来構造で発光径の異なるLKDの光用カ
ー電流=性を示す図、第3図は本発明によるLl!!D
の一実施例を示し、(&)は上面図、(b) a断面図
である。第4図は光源として同一の実効直径ならびに指
向特性を持つ従来構造のLIDと本発明の一実施例のL
lnDの光出力−電流特性を示す図、第5図はこの発明
の他の実施例を示す上面図である。 (1)−N形GaA13基板、(2)−N形AlGaA
s層、(3)、、、P形GaAs発光層、(4)−P形
AlGaAs層、(5) −・・N形AlGaAs層、
(6)−・・円形凹部(発光部’) 、(7) −・・
P影領域、(8)・・・球レンズ、(9)・・・透明樹
脂、(1o)・・・P側電極、(11)・・・N側電極
、(6])〜(67)・・・円形凹部、(81)〜(8
7)・・・球レンズ代 理 人  葛  野    信
  −第1図 第2図  ・ 屯 フ充 (mA ) 第3図 第4図 吃−/L(A) 第5図
Fig. 1 is a cross-sectional view of an LZD with a conventional structure, which is the basis of the present invention, Fig. -2 is a diagram showing the optical Kerr current of LKDs with a conventional structure and different emission diameters, and Fig. 3 is a cross-sectional view of an LZD according to the present invention. ! ! D
An example is shown in which (&) is a top view and (b) is a cross-sectional view. Figure 4 shows an LID of a conventional structure and an LID of an embodiment of the present invention having the same effective diameter and directional characteristics as a light source.
FIG. 5, which is a diagram showing the optical output-current characteristics of the lnD, is a top view showing another embodiment of the present invention. (1)-N-type GaA13 substrate, (2)-N-type AlGaA
s layer, (3), P-type GaAs light emitting layer, (4)-P-type AlGaAs layer, (5)--N-type AlGaAs layer,
(6) ---Circular recess (light emitting part'), (7) ---
P shadow area, (8)... Ball lens, (9)... Transparent resin, (1o)... P side electrode, (11)... N side electrode, (6]) to (67) ...Circular recess, (81) to (8
7)...Spherical lens agent Makoto Kuzuno - Fig. 1 Fig. 2 ・ Fuchu Tsun (mA) Fig. 3 Fig. 4 -/L (A) Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)同一チップ上に電気的に独立でない複数個の発光
部を有し、上記各発光部上に、発光波長に対して透明な
物質からなる球状形成体を、発光波長に対して透明な接
着媒質にてそれぞれ接着固定したことを特徴とする発光
ダイオード。
(1) A plurality of electrically non-independent light emitting parts are provided on the same chip, and a spherical body made of a substance transparent to the emission wavelength is placed on each of the light emitting parts. A light emitting diode characterized by being adhesively fixed using an adhesive medium.
(2)各発光部は、隣合う他の発光部との間隔が、その
上に接着固定された球状形成体の直径の2倍以下で、互
いの球状形成体が接する以上の間隔で配置されているこ
とを特徴とする特許請求の範囲第1項記載の発光ダイオ
ード。
(2) Each light-emitting part is arranged at a distance between adjacent other light-emitting parts that is not more than twice the diameter of the spherical forming body adhesively fixed thereon, and at least at a distance that the spherical forming bodies are in contact with each other. A light emitting diode according to claim 1, characterized in that:
(3)複数個の発光部がそれぞれ凹部を有し、この凹部
に内接する球の直径以上の直径を持つ球状形成体が嵌合
、接着固定されていることを特徴とする特許請求範囲第
1項または第2項記載の発光ダイオード。
(3) Each of the plurality of light emitting parts has a recessed part, and a spherical forming body having a diameter larger than the diameter of the sphere inscribed in the recessed part is fitted and fixed with adhesive. The light emitting diode according to item 1 or 2.
JP56138968A 1981-09-02 1981-09-02 Light emitting diode Pending JPS5839080A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56138968A JPS5839080A (en) 1981-09-02 1981-09-02 Light emitting diode
DE19823232526 DE3232526A1 (en) 1981-09-02 1982-09-01 Light-emitting diode
NLAANVRAGE8203436,A NL186417C (en) 1981-09-02 1982-09-02 LIGHT-EMITTING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138968A JPS5839080A (en) 1981-09-02 1981-09-02 Light emitting diode

Publications (1)

Publication Number Publication Date
JPS5839080A true JPS5839080A (en) 1983-03-07

Family

ID=15234380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138968A Pending JPS5839080A (en) 1981-09-02 1981-09-02 Light emitting diode

Country Status (3)

Country Link
JP (1) JPS5839080A (en)
DE (1) DE3232526A1 (en)
NL (1) NL186417C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119826B2 (en) * 2002-12-16 2006-10-10 Seiko Epson Corporation Oranic EL array exposure head, imaging system incorporating the same, and array-form exposure head fabrication process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612620U (en) * 1984-06-11 1986-01-09 東芝ライテック株式会社 light emitting diode array
DE3532821A1 (en) * 1985-09-13 1987-03-26 Siemens Ag LIGHT-EMITTING DIODE (LED) WITH SPHERICAL LENS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830715A (en) * 1971-08-23 1973-04-23

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2421590A1 (en) * 1974-05-03 1975-11-13 Siemens Ag Optical semiconductor radiation source - has hilly geometric shaped outer surface with PN junction in or near hill
US3981023A (en) * 1974-09-16 1976-09-14 Northern Electric Company Limited Integral lens light emitting diode
GB2026235B (en) * 1978-06-06 1982-07-21 Nippon Electric Co Light emitting diode mounting structure for optical fibre communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830715A (en) * 1971-08-23 1973-04-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119826B2 (en) * 2002-12-16 2006-10-10 Seiko Epson Corporation Oranic EL array exposure head, imaging system incorporating the same, and array-form exposure head fabrication process

Also Published As

Publication number Publication date
NL186417C (en) 1990-11-16
DE3232526A1 (en) 1983-03-24
NL186417B (en) 1990-06-18
DE3232526C2 (en) 1987-07-16
NL8203436A (en) 1983-04-05

Similar Documents

Publication Publication Date Title
US4605942A (en) Multiple wavelength light emitting devices
KR102153649B1 (en) A light emitting diode component
JP2006135360A (en) Semiconductor light-emitting device and method of manufacturing the same
US4884112A (en) Silicon light-emitting diode with integral optical waveguide
JPH0555703A (en) Plane emission laser device
EP0204725A1 (en) ASYMMETRIC CHIP DESIGN FOR LEDs.
US4249967A (en) Method of manufacturing a light-emitting diode by liquid phase epitaxy
US4220960A (en) Light emitting diode structure
JPH01179374A (en) Junction semiconductor light emitting element
JPS6120156B2 (en)
JPS62188385A (en) Semiconductor light-emitting element
JPS5839080A (en) Light emitting diode
US4912533A (en) End face light emitting element
JPS6386580A (en) Light emitting diode
JPS61125092A (en) Semiconductor light emitting diode
JP2940138B2 (en) Light emitting diode
JPH0512872B2 (en)
JPS58131781A (en) Surface luminous type light-emitting diode
JPS61267378A (en) Light emission and detection element
JPS60193393A (en) Optical integrated circuit device
JPH02271682A (en) Surface light emitting diode array
CN115603176A (en) Light-emitting module
JP2002299690A (en) Optical semiconductor device
JPS6298680A (en) Surface light emitting diode
JPH01185979A (en) Semiconductor light emitting diode