JPS60193393A - Optical integrated circuit device - Google Patents

Optical integrated circuit device

Info

Publication number
JPS60193393A
JPS60193393A JP4961884A JP4961884A JPS60193393A JP S60193393 A JPS60193393 A JP S60193393A JP 4961884 A JP4961884 A JP 4961884A JP 4961884 A JP4961884 A JP 4961884A JP S60193393 A JPS60193393 A JP S60193393A
Authority
JP
Japan
Prior art keywords
layer
light
transistor
laser
light emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4961884A
Other languages
Japanese (ja)
Inventor
Soichi Kimura
木村 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4961884A priority Critical patent/JPS60193393A/en
Publication of JPS60193393A publication Critical patent/JPS60193393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To enable to perform a modulating operation in a highly accurate manner by a method wherein a layer, with which the light emitted by an active layer will be diffused, is provided between a substrate and the band gap layer of the size same as or smaller than that of the band gap of a laser part, and the laser part and a transistor part are separated to each other. CONSTITUTION:An n type InGaAsP layer 30 is formed between the n type InGa AsP substrate 1 of an optical integrated circuit device and an n type InP buffer layer 2, and resin 16 is buried until it reaches a layer 30. Using said layer 30, a prescribed band gas is formed in the direction as shown by an arrow 21 in the diagram, the light emitted from an active layer 3 is absorbed by the layer 30, and the light is prevented from reaching a transistor TR part. Also, the light making progress in horizontal direction is absorbed by the resin 16 shown by the arrow 22 in the diagram, and the light is prevented from reaching the TR part. Then, the laser part and the TR part are completely separated, and the adverse effect which will be given to the TR part by the light emitted from the laser part is eliminated, thereby enabling to perform a modulating operation in a highly accurate manner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバー通信等に用いる発光装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light emitting device used in optical fiber communications and the like.

従来例の構成とその問題点 光フアイバー通信の目ざましい発達に伴い、その光源に
用いる発光装置の高性能化が期待されている。発光装置
としては主に半導体レーザが用いられているが、最近で
は半導体レーザとその駆動回路を同一基板上に一体化し
た発光装置が報告さ駆動回路が一チツプに集積されてい
るため高速変調、低雑音高信頼性という点で優れている
Conventional configurations and their problems With the remarkable development of optical fiber communications, it is expected that the light emitting devices used as light sources will have higher performance. Semiconductor lasers are mainly used as light-emitting devices, but recently, light-emitting devices that integrate a semiconductor laser and its driving circuit on the same substrate have been reported. It is superior in terms of low noise and high reliability.

第1図は、従来報告されている埋込み構造半導体レーザ
の埋込み層にヘテロバイポーラトランジスタを形成した
一体化装置の断面図である。n型InPバッファ層2.
n型InGaAsP 活性層3.p型InPクラッド層
4.1)型InGaAsP :17タクト層6で構成さ
れた領域がレーザ部であり、p型InP分離層6.n型
InP=+レクタ層7.p型InGaASP ベース層
8.n型InPエミッタ層9で構成された埋込み層がト
ランジスタ7S15となっている。レーザ部とトランジ
スタ部を電気的かつ光学的に分離するために樹脂16を
レーザ部とトランジスタ部の間に埋込んだ構成となって
いる。
FIG. 1 is a sectional view of an integrated device in which a hetero bipolar transistor is formed in the buried layer of a conventionally reported buried structure semiconductor laser. n-type InP buffer layer 2.
n-type InGaAsP active layer 3. The region formed by the p-type InP cladding layer 4.1) type InGaAsP:17 tact layer 6 is the laser section, and the p-type InP separation layer 6. n-type InP=+rector layer7. p-type InGaASP base layer 8. The buried layer made of the n-type InP emitter layer 9 serves as the transistor 7S15. In order to electrically and optically separate the laser section and the transistor section, a resin 16 is embedded between the laser section and the transistor section.

このような従来の一体化装置は、レーザ部が埋込み構造
となっているめで駆動電流が小さく(Ith<3omA
) 単一で安定した横モードであり、またトランジスタ
部はへテロバイポーラ構造であるので低電圧・、大電流
駆動(III≧somA)という縣S冬ようで層六H面
一 レーぜ柑くめ益弄充トランジスタ特性に影響を与え
るという欠点があった。
In such a conventional integrated device, the laser part has a buried structure, so the drive current is small (Ith<3omA).
) It has a single and stable transverse mode, and the transistor part has a hetero-bipolar structure, so it can be driven at low voltage and high current (III≧somA). This has the disadvantage that it affects the characteristics of the transistor.

このことを詳しく説明すると、レーザ部の活性層3で発
光した光はλ−1,3μmの波長をもった光であるため
、λg=o、9μmであるInP層に対、しては透明で
ある。従って、活性層3で発光した光はInP層では吸
収されずに基板側のムu/Sn電極18で反射し、矢印
2oのようにトランジスタ部へ入射する。トランジスタ
部のベース層8は、バンドギャップλg = 1+3 
μm +7) InGaAsP テ形成されているため
、入射したλ=163μmの光を吸、収し、電子と正孔
を発生させる。この電子、正孔はそれぞれコレクタ層7
.エミツタ層9へ流れ込むので、トランジスタのコレク
タ電流を増加させる。即ちレーザ部の発光強度に比例し
てコレクタ電流が変化することになる。このことは、レ
ーザ部をトランジスタで駆動し、レーザ光を変調する変
調動作において非常に不都合なことである。
To explain this in detail, the light emitted by the active layer 3 of the laser section has a wavelength of λ-1.3 μm, so it is transparent to the InP layer where λg = o and 9 μm. be. Therefore, the light emitted from the active layer 3 is not absorbed by the InP layer, but is reflected by the mu/Sn electrode 18 on the substrate side, and enters the transistor section as indicated by the arrow 2o. The base layer 8 of the transistor section has a band gap λg = 1+3
μm +7) Since it is formed of InGaAsP, it absorbs the incident light of λ=163 μm and generates electrons and holes. These electrons and holes are transferred to the collector layer 7.
.. Since it flows into the emitter layer 9, the collector current of the transistor increases. That is, the collector current changes in proportion to the emission intensity of the laser section. This is very inconvenient in a modulation operation in which the laser section is driven by a transistor and the laser beam is modulated.

このように、従来の構造ではレーザ部で発光した光がト
ランジスタ特性に影響を与え、動作上不都合が生じると
いう欠点があった。
As described above, the conventional structure has the drawback that the light emitted from the laser section affects the transistor characteristics, causing operational problems.

発明の目的 本発明は以上述べたような従来の欠点に鑑みてレーザ部
とトランジスタ部を光学的に完全に分1’jllした構
造の一体化装置を提供するものである。
OBJECTS OF THE INVENTION In view of the conventional drawbacks as described above, the present invention provides an integrated device having a structure in which the laser section and the transistor section are optically completely separated.

発明の構成 本発明は、レーザ部の活性層のバンドギャップと同一あ
るいはそれより小さいバンドギャップの層を活性層と基
板との間に形成し活性層で発光した光がその層で吸収さ
れるようにしたことを特徴とする一体化装置である。
Structure of the Invention The present invention forms a layer between the active layer and the substrate with a band gap that is the same as or smaller than the band gap of the active layer of the laser section, so that the light emitted by the active layer is absorbed by that layer. This is an integrated device characterized by the following.

実施例の説明 第2図は、本発明による実施例の断面図である。Description of examples FIG. 2 is a cross-sectional view of an embodiment according to the invention.

n型InP基板1とn型InPバッファ層2の間に、n
型1nGaAsP 層30を形成した構造となっている
。また、樹脂16はn型InGaAsP 層30にまで
達すまで埋込んでいる。このような構造では、活性層3
で発光したλ−1,3μmの光は、矢印21のようにλ
g=1.3μmのバンドギャップを有するInGILA
SP 層30で吸収されるため、トラ・1゛( S′j≠ジスタ部へは達しない。また、横方向に進む光
も矢印22のように樹脂16で吸収されるためトランジ
スタ部へは達しない。実験によれば、InGaム8P 
J曽30の厚みを1μm以上とれば、十分光を吸収し、
トランジスタ部への影響が皆無となることがわかった。
Between the n-type InP substrate 1 and the n-type InP buffer layer 2,
It has a structure in which a type 1nGaAsP layer 30 is formed. Further, the resin 16 is embedded until it reaches the n-type InGaAsP layer 30. In such a structure, the active layer 3
The light of λ-1.3μm emitted at λ
InGILA with a bandgap of g = 1.3 μm
Since it is absorbed by the SP layer 30, it does not reach the transistor part. Also, the light traveling in the horizontal direction is absorbed by the resin 16 as shown by the arrow 22, so it does not reach the transistor part. No. According to experiments, InGaM 8P
If the thickness of Jso 30 is 1 μm or more, it will absorb enough light,
It was found that there was no effect on the transistor section.

従って、この構造によればレーザ部とトランジスタ部は
完全に光学的に分離できるので、レーザ部の発光がトラ
ンジスタ部に影響を与えることがなく、安定したトラン
ジスタ動作を行なわしめるものである。即ち、トランジ
スタで1−ザ部を駆動し変調動作を行なう場合、安定な
トランジスタ動作を行なえるので不都合が発生せず、精
度の良い変調動作がrj工能となるものである。
Therefore, according to this structure, the laser section and the transistor section can be completely optically separated, so that the light emitted from the laser section does not affect the transistor section, and stable transistor operation can be performed. That is, when a transistor is used to drive the 1-the part to perform a modulation operation, stable transistor operation can be performed, so no problems occur, and a highly accurate modulation operation becomes an rj function.

また、この構造によれば、単にエピタキシャル層を一層
増やすだけでよく、他のプロセスは全〈従来の方法と向
等に作製できるという利点もある。
Furthermore, this structure has the advantage that it is only necessary to increase the number of epitaxial layers, and that all other processes can be performed in the same way as conventional methods.

発明の効果 以上述べたように、本発明による一′体化構造において
は、活性層で発光した光は、全くトランジスタを行なう
ことができ、鞘展の良い変調動作が可能となるものであ
る。また、プロセス的には、エピタキシャル層を一層増
やすだけでよく、ハとんど従来と同等のプロセスで作製
できるという利点がある。
Effects of the Invention As described above, in the integrated structure according to the present invention, the light emitted from the active layer can be used to perform a transistor operation, and a modulation operation with good sheath expansion is possible. In addition, in terms of process, it is only necessary to increase the number of epitaxial layers, and there is an advantage that it can be manufactured using almost the same process as the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の埋込み構造半導体レーザとヘテロバイポ
ーラトランジスタ一体化装置の構造断面図、第2図は本
発明の一実施例による一体化装置の構造断面図である。 11・・・・・・n BlInPg板、2・・・・・・
n W InP バッファ層、3・・・・・・n型In
GaAsP 活性層、4・・・・・、・p型InPクラ
ッド層、6・・・・・・p型InGaAsP コンタク
ト層、6・・・・・・p型1nP分離層、7・・・・・
・n型InPコレクタ層、8・・・・・・p型!nGa
A+sP ベース層、9・・・・・・n型InPエミッ
タ層、10・・・・・・p型InP拡散層、11・・・
・・・SiO2絶縁膜、12・・・・・・ムu/Zn電
極、13・・・・・・Ti/Pd/ムU%極、16・・
・・・・樹脂、18、・・・・・・ムu/an電極、2
0,21.22・・・・・・光の方′1)
FIG. 1 is a structural sectional view of a conventional buried structure semiconductor laser and hetero bipolar transistor integrated device, and FIG. 2 is a structural sectional view of an integrated device according to an embodiment of the present invention. 11...n BlInPg board, 2...
n W InP buffer layer, 3... n-type In
GaAsP active layer, 4..., p-type InP cladding layer, 6...p-type InGaAsP contact layer, 6...p-type 1nP isolation layer, 7...
・N-type InP collector layer, 8...p-type! nGa
A+sP base layer, 9...n-type InP emitter layer, 10...p-type InP diffusion layer, 11...
...SiO2 insulating film, 12...Muu/Zn electrode, 13...Ti/Pd/MuU% electrode, 16...
...Resin, 18, ...Muu/an electrode, 2
0,21.22...The direction of light'1)

Claims (1)

【特許請求の範囲】[Claims] 発光素子と他の素子を同一基板上に形成し、前記発光素
子の活性層のバンドギャップと同一あるいはそれより小
さいバンドギャップを有する層を前記活性層と前記基板
との間に形成したことを特徴とする光集積回路装置。
A light emitting element and another element are formed on the same substrate, and a layer having a band gap that is the same as or smaller than that of the active layer of the light emitting element is formed between the active layer and the substrate. Optical integrated circuit device.
JP4961884A 1984-03-15 1984-03-15 Optical integrated circuit device Pending JPS60193393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4961884A JPS60193393A (en) 1984-03-15 1984-03-15 Optical integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4961884A JPS60193393A (en) 1984-03-15 1984-03-15 Optical integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60193393A true JPS60193393A (en) 1985-10-01

Family

ID=12836218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4961884A Pending JPS60193393A (en) 1984-03-15 1984-03-15 Optical integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60193393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940672A (en) * 1989-03-17 1990-07-10 Kopin Corporation Method of making monolithic integrated III-V type laser devices and silicon devices on silicon
US4996163A (en) * 1988-02-29 1991-02-26 Sumitomo Electric Industries, Ltd. Method for producing an opto-electronic integrated circuit
US5703895A (en) * 1994-05-02 1997-12-30 France Telecom Opto-electronic semiconductor device including an integrated mode transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996163A (en) * 1988-02-29 1991-02-26 Sumitomo Electric Industries, Ltd. Method for producing an opto-electronic integrated circuit
US4940672A (en) * 1989-03-17 1990-07-10 Kopin Corporation Method of making monolithic integrated III-V type laser devices and silicon devices on silicon
US5703895A (en) * 1994-05-02 1997-12-30 France Telecom Opto-electronic semiconductor device including an integrated mode transformer

Similar Documents

Publication Publication Date Title
JPH0555703A (en) Plane emission laser device
US5281829A (en) Optical semiconductor device having semiconductor laser and photodetector
JPH02502053A (en) Dual-mode laser/detector diode for fiber optic transmission lines
US4280108A (en) Transverse junction array laser
US4581744A (en) Surface emitting injection type laser device
JPH0194689A (en) Optoelectronic semiconductor element
JPS60193393A (en) Optical integrated circuit device
JPS6140159B2 (en)
JPS6027197B2 (en) integrated light source
US4571729A (en) Semiconductor laser having an inverted layer in a plurality of stepped offset portions
JPH0426233B2 (en)
US4937638A (en) Edge emitting light emissive diode
JPS5880887A (en) Semiconductor laser photodiode photointegrated element
JPS61242091A (en) Semiconductor light-emitting element
JP2751802B2 (en) Semiconductor light modulator
JPS5886788A (en) Semiconductor laser and photodiode photointegrated element
JPS6342874B2 (en)
JPS5839080A (en) Light emitting diode
JPS627186A (en) Semiconductor laser device
JPH11112013A (en) Semiconductor photodetector
JPS594870B2 (en) semiconductor light emitting device
JPS60154694A (en) Semiconductor laser
JPS5855673B2 (en) semiconductor laser
JPS63177485A (en) Semiconductor laser
JPH0283990A (en) Manufacture of semiconductor light emitting device