JPH0614564B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0614564B2
JPH0614564B2 JP17289387A JP17289387A JPH0614564B2 JP H0614564 B2 JPH0614564 B2 JP H0614564B2 JP 17289387 A JP17289387 A JP 17289387A JP 17289387 A JP17289387 A JP 17289387A JP H0614564 B2 JPH0614564 B2 JP H0614564B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting layer
current injection
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17289387A
Other languages
Japanese (ja)
Other versions
JPS6417484A (en
Inventor
秀尚 田中
隆志 松岡
邦重 尾江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17289387A priority Critical patent/JPH0614564B2/en
Publication of JPS6417484A publication Critical patent/JPS6417484A/en
Publication of JPH0614564B2 publication Critical patent/JPH0614564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化合物半導体発光素子に関するものであり、
更に詳述するならば、可視光短波長(青色)から紫外で
発光する半導体発光素子に関するものである。
TECHNICAL FIELD The present invention relates to a compound semiconductor light emitting device,
More specifically, the present invention relates to a semiconductor light emitting element that emits ultraviolet light from a short wavelength of visible light (blue).

(従来技術及び発明が解決しようとする問題点) 可視光短波長の半導体発光素子として、発光効率の高い
ものは従来GaNを用いて形成されている。第3図にその
基本構造を示す。1はAl2O3基板でn型GaN層(電流注入
層)2と、Znドープ高抵抗GaN層3を有し、電極4,5
からキャリアを注入して、高抵抗層内で再結合,発光さ
せる。本素子で発光強度を上げるには素子抵抗を下げ、
注入電流量を上げねばならない。しかしこの構造で素子
抵抗を下げるには高抵抗層を薄くする必要がある。しか
るに、高抵抗層を薄くすると、発光に寄与せずn型GaN
層へ流れる無効電流が増加し、発光効率(外部量子効
率)が下がってしまう。またn型GaNとZnドープ高抵抗G
aNとは屈折率の差が殆んど無いので、後述する本発明の
ごとくクラッド層として導波構造をなすことができなか
った。
(Problems to be Solved by Prior Art and Invention) As a semiconductor light-emitting device having a short wavelength of visible light, one having a high luminous efficiency is conventionally formed using GaN. The basic structure is shown in FIG. Reference numeral 1 is an Al 2 O 3 substrate, which has an n-type GaN layer (current injection layer) 2 and a Zn-doped high-resistance GaN layer 3, and has electrodes 4, 5
Carriers are injected from here to recombine and emit light in the high resistance layer. To increase the emission intensity with this element, lower the element resistance,
The injection current amount must be increased. However, in order to reduce the element resistance with this structure, it is necessary to thin the high resistance layer. However, if the high-resistance layer is made thin, it will not contribute to light emission and the n-type GaN
The reactive current flowing to the layer increases, and the luminous efficiency (external quantum efficiency) decreases. In addition, n-type GaN and Zn-doped high resistance G
Since there is almost no difference in refractive index from aN, a waveguide structure could not be formed as a cladding layer as in the present invention described later.

このためこの構造の素子では、オオキらは1981年の「Ga
As及び関連化合物国際会議で述べているように(Y. Ohk
i,Y. Toyoda,H. Kobayasi and I.Akasaki. Int. Symp.
GaAs and Related Compounds. Japan(1981) pp.479)、
外部量子効率が0.12%までのものしか得られていず、発
光強度を十分上げることができない欠点を持っている。
Therefore, in the device with this structure, Oki et al.
As mentioned in the International Conference on As and Related Compounds (Y. Ohk
i, Y. Toyoda, H. Kobayasi and I.Akasaki. Int. Symp.
GaAs and Related Compounds. Japan (1981) pp.479),
Only external quantum efficiencies up to 0.12% have been obtained, which has the drawback that the emission intensity cannot be increased sufficiently.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、その目的は、電流注入量が多くとれ、かつ発光効率
の高い、可視光短波長を発光する半導体発光素子を提供
することにある。
(Object of the Invention) The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object of the present invention is to provide a semiconductor light emitting device that emits a short wavelength visible light, which has a large current injection amount and a high luminous efficiency. To provide.

(問題点を解決するための手段) 上記の目的を達成するため本発明はAlxGayInzN(x+y
+z=1,x>0)からなる発光層と、該発光層と同じ
格子定数を持ち、且つ発光層よりもバンドギャップの大
きいAlx′Gay′Inz′N(x′+y′+z′=1,x′>
x>0,z′>0)からなる電流注入層とを有し、前記
発光層と電流注入層は界面において格子整合条件で接す
ることを特徴とする半導体発光素子を発明の要旨とする
ものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides Al x Ga y In z N (x + y
+ Z = 1, x> 0) and an Al x ′ Ga y ′ In z ′ N (x ′ + y ′ + z ′) having the same lattice constant as the light emitting layer and a larger band gap than the light emitting layer. = 1, x '>
x> 0, z ′> 0), and the present invention provides a semiconductor light emitting device characterized in that the light emitting layer and the current injection layer are in contact with each other at a lattice matching condition at an interface. is there.

しかして本発明の特徴とする点は、半導体レーザにおい
て、発光部は発光層と電流注入層より構成され、両者は
いずれもIII族窒化物より形成され、互いに格子整合が
良好であり、かつバンドギャップが不連続であり、すな
わち発光層のバンドギャップが、電流注入層のバンドギ
ャップより小であることにある。このバンドギャップの
不連続により注入されたキャリアの発光層からの外への
流れが妨げられ、かつ発光層と電流注入層との屈折率の
差により、発生した光が発光層内に閉じ込められるもの
である。
However, the feature of the present invention is that, in the semiconductor laser, the light emitting portion is composed of the light emitting layer and the current injection layer, both of which are formed of group III nitrides, have good lattice matching with each other, and have a band structure. The gap is discontinuous, that is, the band gap of the light emitting layer is smaller than the band gap of the current injection layer. The discontinuity of the band gap prevents the injected carriers from flowing out of the light emitting layer, and the generated light is confined in the light emitting layer due to the difference in refractive index between the light emitting layer and the current injection layer. Is.

III族元素(Ga,Al,In)窒化物は、すべてウルツ鉱型
結晶構造をしており、かつ直接遷移型のバンド構造を持
っている。
All group III element (Ga, Al, In) nitrides have a wurtzite crystal structure and a direct transition band structure.

第4図に(001)面上の格子定数とバンドギャップの
関係を示す。この図からわかるように、InとGa又はAlを
含む三元混晶および四元混晶等を用いることで格子整合
条件でバンドギャップの異なる材料の層構造を形成で
き、良質なヘテロ接合構造を得ることが可能である。
FIG. 4 shows the relationship between the lattice constant on the (001) plane and the band gap. As can be seen from this figure, by using a ternary mixed crystal and a quaternary mixed crystal containing In and Ga or Al, it is possible to form a layered structure of materials with different band gaps under the lattice matching condition, and to obtain a good heterojunction structure. It is possible to obtain.

基板としては、従来のGaNの発光素子と同様にAl2O3(サ
ファイヤ)を用いることができるが、ウルツ鉱型の結晶
構造を持つZnO基板を用いると、第4図の破線で示した
ようなAlGaInNを基板と含めて格子整合条件で形成する
ことができ、特に良質のヘテロ整合構造が得られる。ま
た、食塩型GaO,MnO,CdO単結晶の(111)面や六方
最密充填型Zr,Hf金属単結晶の上にも格子整合条件でAl
GaInNを形成することができる。
As the substrate, Al 2 O 3 (sapphire) can be used as in the case of the conventional GaN light emitting device, but when a ZnO substrate having a wurtzite crystal structure is used, it is as shown by the broken line in FIG. AlGaInN can be formed together with the substrate under the lattice matching condition, and a particularly good hetero-matching structure can be obtained. In addition, Al on the (111) plane of the salt type GaO, MnO, and CdO single crystals and on the hexagonal close-packed Zr and Hf metal single crystals under the lattice matching condition.
GaInN can be formed.

このような半導体ヘテロ接合では、エネルギーギャップ
の違いにより必然的にバドギャップ不連続を生じてい
る。このバンドギャップ不連続は、バンドギャップの小
さい半導体からのキャリアの流れに対してバリヤの働き
をする。
In such a semiconductor heterojunction, a bad gap discontinuity is inevitably generated due to the difference in energy gap. This bandgap discontinuity acts as a barrier against carrier flow from semiconductors with a small bandgap.

本発明は、上述のIII族窒化物の良好なヘテロ接合を発
光部すなわち発光層と電流注入層に用いることを特徴と
しており、従来の発光層と電流注入層が単一材料の発光
素子と異なり、バンドギャップ不連続により、注入され
たキャリアの発光層から外への流れが妨げられることに
より、発光層内で発光再結合するキャリアが増加するこ
とを物理的根拠としている。
The present invention is characterized by using the good heterojunction of the above-mentioned group III nitride in the light emitting portion, that is, the light emitting layer and the current injection layer, and unlike the conventional light emitting device in which the light emitting layer and the current injection layer are single materials The physical basis is that the band gap discontinuity impedes the flow of injected carriers from the light emitting layer to the outside, so that the number of carriers that recombine radiatively in the light emitting layer increases.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。
Next, examples of the present invention will be described. Needless to say, the embodiment is merely an example, and various modifications and improvements can be made without departing from the spirit of the present invention.

(実施例1) 第1図は本発明の半導体発光素子の第1の実施例を説明
する図であり、発光素子の断面を示したものである。サ
ファイア基板1の上に5μmAl0.20Ga0.21In0.59N電流
注入層(クラッド層)2と、0.5μmのGa0.43In0.57
N発光層3と、電流注入層および発光層に対するAu電極
4,5とを有している。電流注入層はn型で低抵抗であ
り、発光層はZnをドープし高抵抗にしてある。電極5を
正の側として電圧を加えると、GaInN発光層にキャリア
が注入され約4800nmの青色で発光する。キャリアはAl
GaInN電流注入層2へも流れるが、バンドギャップ差が
約0.4eVあり、バンド不連続の効果により無効電流が
少なくなり、0.5μmと薄く、従来に比べ低抵抗の発
光層でも外部量子効率1%と高効率で発光した。
(Embodiment 1) FIG. 1 is a view for explaining a first embodiment of a semiconductor light emitting device of the present invention, showing a cross section of the light emitting device. 5 μm Al 0.20 Ga 0.21 In 0.59 N current injection layer (cladding layer) 2 and 0.5 μm Ga 0.43 In 0.57 on the sapphire substrate 1.
It has an N light emitting layer 3 and Au electrodes 4 and 5 for the current injection layer and the light emitting layer. The current injection layer is n-type and has low resistance, and the light emitting layer is doped with Zn to have high resistance. When voltage is applied with the electrode 5 on the positive side, carriers are injected into the GaInN light emitting layer to emit blue light of about 4800 nm. Carrier is Al
Although it also flows into the GaInN current injection layer 2, the band gap difference is about 0.4 eV, the reactive current is reduced due to the effect of band discontinuity, and it is as thin as 0.5 μm. It emitted light with a high efficiency of 1%.

なお、発光層と電流注入層に本発明で開示した異種材質
の組合せを用いると、電流注入層の屈折率が発光層の屈
折率に比べて低くなり、いわゆるクラッド層として作用
し、光を閉じ込める導波構造を実現できるので、発光効
率を高めることができる。
When the combination of different materials disclosed in the present invention is used for the light emitting layer and the current injection layer, the refractive index of the current injection layer becomes lower than the refractive index of the light emitting layer and acts as a so-called clad layer to confine light. Since the waveguide structure can be realized, the luminous efficiency can be improved.

(実施例2) 第2図は本発明の第2の実施例を説明する図である。図
において、ZnO基板1の上に2μmAl0.33Ga0.39In0.28N
第1の電流注入層(第1のクラッド層)2と、0.3μ
mのGa0.76In0.24N発光層3、さらに0.1μmのAl
0.33Ga0.39In0.28N第2の電流注入層(第2のクラッド
層)2aと両電流注入層2および2aに対する電極4,5を
有している。電極5を正の側として電圧を加えると、薄
い電流注入層2aを通してキャリアが発光層3に注入され
る。この実施例の構造では、発光層の両側にバンド不連
続があり、キャリアのもどりも少なくすることができて
いる。素子の抵抗はほとんど高抵抗の電流注入層2aで決
まっているが、0.1μmと薄いため、従来の1/10近く
なっている。本素子では発光した光は、クラッド層とし
て作用する電流注入層にはさまれて導波され、主に層に
平行な方向へ放出される。発光波長は4000Åの紫色であ
り、外部量子効率は3%が得られた。
(Embodiment 2) FIG. 2 is a diagram for explaining a second embodiment of the present invention. In the figure, 2 μm Al 0.33 Ga 0.39 In 0.28 N on the ZnO substrate 1
First current injection layer (first clad layer) 2 and 0.3 μ
Ga 0.76 In 0.24 N light emitting layer 3 and 0.1 μm Al
0.33 Ga 0.39 In 0.28 N It has the 2nd electric current injection layer (2nd clad layer) 2a and the electrodes 4 and 5 with respect to both electric current injection layers 2 and 2a. When a voltage is applied with the electrode 5 on the positive side, carriers are injected into the light emitting layer 3 through the thin current injection layer 2a. In the structure of this embodiment, there is band discontinuity on both sides of the light emitting layer, and the number of carriers returning can be reduced. The resistance of the element is determined by the current injection layer 2a having a high resistance, but since it is as thin as 0.1 μm, it is close to 1/10 of the conventional one. In this device, the emitted light is guided by being sandwiched by the current injection layer that functions as a cladding layer, and emitted mainly in the direction parallel to the layer. The emission wavelength was 4000Å purple, and the external quantum efficiency was 3%.

これらの結果から明らかなように、従来の発光素子に比
べ発光効率の著しい改善が得られた。
As is clear from these results, the luminous efficiency was remarkably improved as compared with the conventional light emitting device.

(発明の効果) 叙上のように本発明によれば、半導体発光素子におい
て、AlxGayInzN(x+y+z=1,x>0)からなる発
光層と、該発光層と同じ格子定数を持ち、且つ発光層よ
りもバンドギャップの大きいAlx′Gay′Inz′N(x′+
y′+z′=1,x′>x>0,z′>0)からなる電
流注入層とを有し、前記発光層と電流注入層は界面にお
いて格子整合条件で接することにより、 発光層のAlxGayInzNはバンドギャップと格子定数を独
立に制御可能であるので、格子整合条件を保ちつつ、バ
ンドギャップの異なる発光層と電流注入層を積層する事
が出来、良質なヘテロ接合構造が得られる。
(Effect of the Invention) As described above, according to the present invention, in the semiconductor light emitting device, the light emitting layer made of Al x Ga y In z N (x + y + z = 1, x> 0) and the same lattice constant as the light emitting layer. And having a larger bandgap than the light emitting layer, Al x ′ Ga y ′ In z ′ N (x ′ +
y ′ + z ′ = 1, x ′>x> 0, z ′> 0), and the light emitting layer and the current injection layer are in contact with each other at a lattice matching condition at the interface, since al x Ga y in z N can control the band gap and lattice constant independently while maintaining the lattice matching condition, it is possible to laminate a different luminescent layer and the current injection layer band gap, high quality heterojunction The structure is obtained.

AlxGayInzNを用いることによりGa1-xInxNよりも短波
長(バンドギャップの大きな)の発光素子が実現でき
る。
By using Al x Ga y In z N, a light emitting device having a shorter wavelength (larger band gap) than Ga 1-x In x N can be realized.

発光層と電流注入層との界面における格子整合条件を
満たす発光層とを電流注入層を用いることにより良質な
ヘテロ接合が得られる。即ち、格子不整合によるミスフ
ィット転位の発生が防止され、非発光再結合センタによ
る発光効率の低下やキャリア閉じ込め効果の低下を防止
できる。
A good quality heterojunction can be obtained by using the current injection layer as the light emission layer that satisfies the lattice matching condition at the interface between the light emission layer and the current injection layer. That is, the occurrence of misfit dislocations due to lattice mismatch can be prevented, and the emission efficiency and the carrier confinement effect due to the non-radiative recombination centers can be prevented.

等の効果を有するものである。And so on.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体発光素子の第1の実施例の構造
の概略を示し、第2図は本発明の第2の実施例の構造、
第3図は従来技術の発光素子の構造、第4図はIII族元
素(Al,Ga,In)窒化物の(001)面上の格子定数と
バンドギャップエネルギーの関係を示したものである。 1……基板 2,2a……電流注入層 3……発光層 4,5……電極層
FIG. 1 shows the outline of the structure of the first embodiment of the semiconductor light emitting device of the present invention, and FIG. 2 shows the structure of the second embodiment of the present invention.
FIG. 3 shows the structure of a conventional light emitting device, and FIG. 4 shows the relationship between the lattice constant on the (001) plane of the group III element (Al, Ga, In) nitride and the band gap energy. 1 ... Substrate 2, 2a ... Current injection layer 3 ... Light emitting layer 4, 5 ... Electrode layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】AlxGayInzN(x+y+z=1,x>0)か
らなる発光層と、 該発光層と同じ格子定数を持ち、且つ発光層よりもバン
ドギャップの大きいAlx′Gay′Inz′N(x′+y′+
z′=1,x′>x>0,z′>0)からなる電流注入
層とを有し、 前記発光層と電流注入層は界面において格子整合条件で
接することを特徴とする半導体発光素子。
1. A light emitting layer made of Al x Ga y In z N (x + y + z = 1, x> 0), and Al x ′ Ga having the same lattice constant as the light emitting layer and a bandgap larger than that of the light emitting layer. y ′ In z ′ N (x ′ + y ′ +
z ′ = 1, x ′>x> 0, z ′> 0), and the light emitting layer and the current injection layer are in contact with each other at a lattice matching condition at the interface. .
【請求項2】AlxGayInzNおよびAlx′Gay′Inz′N層とし
て、ウルツ鉱型ZnO単結晶基板に格子整合した構造を有
することを特徴とする特許請求の範囲第1項記載の半導
体発光素子。
As wherein Al x Ga y In z N and Al x 'Ga y' In z 'N layer, the claims, characterized in that it has a structure in which lattice matched to wurtzite ZnO single crystal substrate 2. The semiconductor light emitting device according to item 1.
【請求項3】AlxGayInzNおよびAlx′Gay′Inz′N層とし
て、食塩型CaO,MnO,CdO単結晶基板に格子整合した構
造を有することを特徴とする特許請求の範囲第1項記載
の半導体発光素子。
3. An Al x Ga y In z N and Al x ′ Ga y ′ In z ′ N layer having a structure lattice-matched to a salt type CaO, MnO, CdO single crystal substrate. The semiconductor light-emitting device according to item 1 above.
【請求項4】AlxGayInzNおよびAlx′Gay′Inz′N層とし
て、六方最密充填型Zr,Hfおよびその合金の金属単結晶
基板に格子整合した構造を有することを特徴とする特許
請求の範囲第1項記載の半導体発光素子。
4. An Al x Ga y In z N and Al x ′ Ga y ′ In z ′ N layer having a structure lattice-matched to a metal single crystal substrate of hexagonal close-packed type Zr, Hf and its alloy. The semiconductor light emitting device according to claim 1, wherein
JP17289387A 1987-07-13 1987-07-13 Semiconductor light emitting element Expired - Lifetime JPH0614564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17289387A JPH0614564B2 (en) 1987-07-13 1987-07-13 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17289387A JPH0614564B2 (en) 1987-07-13 1987-07-13 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS6417484A JPS6417484A (en) 1989-01-20
JPH0614564B2 true JPH0614564B2 (en) 1994-02-23

Family

ID=15950283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17289387A Expired - Lifetime JPH0614564B2 (en) 1987-07-13 1987-07-13 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0614564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704181B2 (en) * 1989-02-13 1998-01-26 日本電信電話株式会社 Method for growing compound semiconductor single crystal thin film
JPH06101587B2 (en) * 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light emitting element
US5173751A (en) * 1991-01-21 1992-12-22 Pioneer Electronic Corporation Semiconductor light emitting device
JP2791448B2 (en) * 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
US5578839A (en) * 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP3564811B2 (en) 1995-07-24 2004-09-15 豊田合成株式会社 Group III nitride semiconductor light emitting device
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
JPH11163404A (en) * 1997-11-25 1999-06-18 Toyoda Gosei Co Ltd Gan-based semiconductor
JP4365530B2 (en) * 1998-09-10 2009-11-18 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
JP3726252B2 (en) * 2000-02-23 2005-12-14 独立行政法人理化学研究所 Ultraviolet light emitting device and method for producing InAlGaN light emitting layer
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
KR20060022279A (en) 2003-06-17 2006-03-09 헨켈 코만디트게젤샤프트 아우프 악티엔 Inhibition of the asexual reproduction of fungi by eugenol and/or the derivatives thereof
JP4289203B2 (en) * 2004-04-15 2009-07-01 豊田合成株式会社 GaN-based semiconductor
JP3724498B2 (en) * 2004-09-27 2005-12-07 日亜化学工業株式会社 Light emitting diode
JP3995011B2 (en) * 2005-10-31 2007-10-24 日亜化学工業株式会社 Light emitting diode
JP2009059974A (en) * 2007-09-03 2009-03-19 Univ Meijo Semiconductor substrate, semiconductor light emitting element and manufacturing method of semiconductor substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553834A (en) * 1978-06-23 1980-01-11 Yasuko Shiomi Hand shower with water-stop valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6417484A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
JP4054631B2 (en) Semiconductor light emitting device and method for manufacturing the same, LED lamp, and LED display device
US7122446B2 (en) Semiconductor light-emitting element
JP3374737B2 (en) Nitride semiconductor device
US6057562A (en) High efficiency light emitting diode with distributed Bragg reflector
JP3698402B2 (en) Light emitting diode
US20110037049A1 (en) Nitride semiconductor light-emitting device
JPH0614564B2 (en) Semiconductor light emitting element
JP3290672B2 (en) Semiconductor light emitting diode
JPH08288544A (en) Semiconductor light-emitting element
JPH11135834A (en) Light-emitting diode device and manufacture thereof
WO2012127778A1 (en) Nitride semiconductor light-emitting element
US7112825B2 (en) Semiconductor light emitting device
JPH0832180A (en) Semiconductor light emitting element
US7528417B2 (en) Light-emitting diode device and production method thereof
JP3464853B2 (en) Semiconductor laser
GB2280061A (en) Light emitting device
JP3102647B2 (en) Semiconductor light emitting device
US7154127B2 (en) Semiconductor light emitting device
JPH04266075A (en) Semiconductor device
JP2002237617A (en) Semiconductor light-emitting diode
US20060097283A1 (en) Group III-nitride-based compound semiconductor device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
JP3633018B2 (en) Semiconductor light emitting device
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JP3005115B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 14