JPS62291158A - Ic package - Google Patents

Ic package

Info

Publication number
JPS62291158A
JPS62291158A JP61135167A JP13516786A JPS62291158A JP S62291158 A JPS62291158 A JP S62291158A JP 61135167 A JP61135167 A JP 61135167A JP 13516786 A JP13516786 A JP 13516786A JP S62291158 A JPS62291158 A JP S62291158A
Authority
JP
Japan
Prior art keywords
package
semiconductor chip
base material
package body
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61135167A
Other languages
Japanese (ja)
Inventor
Kazuo Shinozaki
和夫 篠崎
Nobuo Iwase
岩瀬 暢男
Mitsuo Kasori
加曽利 光男
Fumio Ueno
文雄 上野
Akihiro Horiguchi
堀口 昭宏
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61135167A priority Critical patent/JPS62291158A/en
Publication of JPS62291158A publication Critical patent/JPS62291158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve thermal transfer efficiency to a heat sink fin by burying a flat platelike high heat conductive ceramic substrate in a package body of alumina ceramics, and providing the fin on the substrate at the opposite side to the mounting surface of a semiconductor chip through the hole opened at the body. CONSTITUTION:A high heat conductive ceramic substrate 23 which is incorporated in a package body 21 of alumina ceramics and on which a semiconductor chip is mounted is formed in a flat plate state to eliminate or minimize. Accordingly, beryllia which contains 95wt.% or more of beryllium oxide, a silicon carbide which contains 95wt.% or more of silicon carbide, is hard to be machined in a complicated shape and hot pressed though having high heat conductivity, or an AlN which contains 90wt.% of more of aluminum nitride can be used. Further, the substrate can be reduced in thickness, and thermal transfer efficiency to a heat sink fin 25 bonded to the surface opposite to the mounting surface of the substrate from a semiconductor chip 27 mounted on the substrate is improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、ICパッケージの改良に関する。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to improvements in IC packages.

(従来の技術) 半導体チップの高出力化、^集積化に伴い、半導体チッ
プ当りの発熱量は近年大巾に増大している。かかる集積
度の高い半導体チップを実装したパッケージとしては、
ビングリッド型パッケージ(PGA)があり、従来より
第2図に示すように比較的熱伝導性が良好なアルミナ系
セラミックス製PGAが用いられている。即ち、図中の
1は図示しない多層の配線“が形成され、かつ階段状の
凹部2を有するアルミナ系セラミックスのパッケージ本
体である。このパッケージ本体1の凹部2内には、半導
体チップ3がマウントされている。
(Prior Art) With the increase in output power and integration of semiconductor chips, the amount of heat generated per semiconductor chip has increased significantly in recent years. As a package mounted with such a highly integrated semiconductor chip,
There is a bin grid type package (PGA), and as shown in FIG. 2, a PGA made of alumina-based ceramics, which has relatively good thermal conductivity, has traditionally been used. That is, 1 in the figure is an alumina ceramic package body on which multilayer wiring (not shown) is formed and has a step-like recess 2.In the recess 2 of the package body 1, a semiconductor chip 3 is mounted. has been done.

この半導体チップ3は、ワイヤ4を介して前記パッケー
ジ本体1の図示しない配線と接続されている。また、前
記凹部2が開孔されたパッケージ本体1の面には前記半
導体チップ3を気密に封止するためのキャップ5が固定
されている。このキャップ5の固定面と反対側のパッケ
ージ本体1の面には、前記半導体チップ3に対応するよ
うに金属製の放熱フィン6が高熱伝導性の樹脂又は半田
層7を介して接合されている。なお、図中の8は前記パ
ッケージ本体1に取着され、該本体1の図示しない配線
とスルホールを介して接続された端子(ビン)である。
This semiconductor chip 3 is connected to wiring (not shown) of the package body 1 via wires 4. Further, a cap 5 for hermetically sealing the semiconductor chip 3 is fixed to the surface of the package body 1 in which the recess 2 is formed. A metal radiation fin 6 is bonded to the surface of the package body 1 opposite to the fixed surface of the cap 5 via a highly thermally conductive resin or solder layer 7 so as to correspond to the semiconductor chip 3. . Note that 8 in the figure is a terminal (bin) attached to the package main body 1 and connected to wiring (not shown) of the main body 1 via a through hole.

しかしながら、上述した第2図図示のパッケージではパ
ッケージ本体1を構成するアルミナ系セラミックスの熱
伝導率が17〜20W/m・K程度であるため、より一
層の高熱伝導性が要求される高出力、高集積度の半導体
チップに充分に対応できないという問題があった。
However, in the above-mentioned package shown in FIG. 2, the thermal conductivity of the alumina ceramics constituting the package body 1 is about 17 to 20 W/m·K, so high output power, which requires even higher thermal conductivity, There was a problem in that it could not adequately accommodate highly integrated semiconductor chips.

このようなことから、パッケージ本体を高熱伝導性の窒
化アルミニウム(AβN)、炭化ケイ素(SiC)やベ
リリア(880)により構成することが試みられている
が、現状ではいずれもコスト及び成形性の点から単独で
は使用せず、第3図に示すようにアルミナ系セラミック
スと複合化して用いられている。即ち、図中の1′は図
示しない多層の配線が形成され、かつ階段状の開孔部9
を有するアルミナ系セラミックスのパッケージ本体であ
る。このパッケージ本体1′の開孔部9には、断面が凸
状をなす高熱伝導性セラミックス基材10が嵌合され、
かつこれらパッケージ本体1′と基材10とは開孔部9
周辺の本体1′面に配置したガラス系接着層11を介し
て接合されている。この高熱伝導性セラミック基材10
の外側の面には、放熱フィン6が半田層7を介して接合
されている。また、前記基材10の開孔部9側の面には
半導体チップ3がマウントされ、かつ該半導体チップ3
は、ワイヤ4を介して前記パッケージ本体1−の図示し
ない配線と接続されている。
For this reason, attempts have been made to construct the package body using highly thermally conductive materials such as aluminum nitride (AβN), silicon carbide (SiC), and beryllia (880). Therefore, it is not used alone, but is used in a composite with alumina ceramics, as shown in Figure 3. That is, 1' in the figure is a stepped opening 9 where multilayer wiring (not shown) is formed.
The package body is made of alumina ceramics. A highly thermally conductive ceramic base material 10 having a convex cross section is fitted into the opening 9 of the package body 1'.
In addition, the package body 1' and the base material 10 have an opening 9.
They are bonded via a glass adhesive layer 11 disposed on the peripheral surface of the main body 1'. This highly thermally conductive ceramic base material 10
A heat dissipating fin 6 is bonded to the outer surface of the radiator 2 with a solder layer 7 interposed therebetween. Further, a semiconductor chip 3 is mounted on the surface of the base material 10 on the side of the opening 9, and the semiconductor chip 3
is connected to wiring (not shown) of the package body 1- via a wire 4.

更に、前記基材10の嵌合部と反対側のパッケージ本体
1−の面には前記半導体チップ3を気密に封止するため
のキャップ5が固定されている。なお、図中の8は前記
パッケージ本体1′に取着され、該本体1′の図示しな
い配線とスルホールを介して接続された端子(ビン)で
ある。
Furthermore, a cap 5 for hermetically sealing the semiconductor chip 3 is fixed to the surface of the package body 1- on the side opposite to the fitting portion of the base material 10. Note that 8 in the figure is a terminal (bin) attached to the package main body 1' and connected to wiring (not shown) of the main body 1' via a through hole.

しかしながら、上述した第3図図示のPGAでは難加工
性の高熱伝導性セラミックス基材1oを断面が凸状に加
工する必要があるため、加工コストが高くなるばかりか
、加工時に割れ等を発生する恐れがある。また、該基材
10を断面凸状にするために必然的に厚くなり、マウン
トされた半導体チップ3から放熱フィン6への熱伝達効
率が低下する問題があった。
However, in the above-mentioned PGA shown in FIG. 3, it is necessary to process the highly thermally conductive ceramic base material 1o, which is difficult to process, into a convex cross section, which not only increases the processing cost but also causes cracks etc. during processing. There is a fear. Furthermore, since the base material 10 has a convex cross-section, it inevitably becomes thicker, resulting in a problem that the efficiency of heat transfer from the mounted semiconductor chip 3 to the heat dissipation fins 6 decreases.

(発明が解決しようとする問題点) 本発明は、上記従来の問題点を解決するためになされた
もので、高熱伝導性セラミックス基材への加工が不要乃
至最低限で済み、かつ半導体チップから放熱フィンへの
熱伝達効率を向上したICパッケージを提供しようとす
るものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems. The present invention aims to provide an IC package with improved heat transfer efficiency to radiation fins.

[発明の構成] (問題点を解決するための手段) 本発明は、配線及び端子を有するアルミナ系セラミック
スからなるパッケージ本体と、この本体に接合され、半
導体チップがマウントされた高熱伝導性セラミックス基
材との複合セラミックス構造を持つICパッケージにお
いて、前記高熱伝導性セラミックス基材が平板状をなし
、かっ該基材を前記アルミナ系セラミックスのパッケー
ジ本体に埋込むと共に該パッケージ本体に開孔された穴
部を通して前記半導体チップのマウント面と反対側の前
記基材の面に放熱フィンを設けたことを特徴とするIC
パッケージである。
[Structure of the Invention] (Means for Solving the Problems) The present invention comprises a package body made of alumina ceramics having wiring and terminals, and a highly thermally conductive ceramic base bonded to the body and having a semiconductor chip mounted thereon. In an IC package having a composite ceramic structure with a ceramic material, the highly thermally conductive ceramic base material has a flat plate shape, the base material is embedded in the alumina ceramic package body, and a hole is formed in the package body. An IC characterized in that a heat dissipation fin is provided on a surface of the base material opposite to a mounting surface of the semiconductor chip through the portion.
It's a package.

(作用) 本発明のICパッケージは、アルミナ系セラミックスの
パッケージ本体に組込まれ、半導体チップがマウントさ
れる高熱伝導性セラミック基材を単純な平板状とするこ
とによって、該基材の製作のための加工を不要乃至最低
限に留どめることが可能となり、コストの低減化と製作
時の割れ発生を防止できる。従って、高熱伝導性セラミ
ックスとして従来から汎用された酸化ベリリウムを95
重量%以上含有するベリリア(熱伝導率:200W/m
・K以上)や高熱伝導性を有するが複雑な形状に加工す
ることが困難なホットプレス成形された炭化ケイ素を9
5重量%以上含有する炭化ケイ素(熱伝導率: 200
W/m−k以上)或いは窒化アルミニウムを90重量%
以上含有するAflN(熱伝導率: 50W/m−k以
上)等が使用可能となる。
(Function) The IC package of the present invention is incorporated into an alumina-based ceramic package body, and the highly thermally conductive ceramic base material on which the semiconductor chip is mounted is made into a simple flat plate. Processing can be kept to a minimum or unnecessary, reducing costs and preventing cracks from occurring during manufacturing. Therefore, 95% of beryllium oxide, which has been widely used as a highly thermally conductive ceramic,
Berylium containing at least % by weight (thermal conductivity: 200W/m
・Hot press molded silicon carbide that has high thermal conductivity but is difficult to process into complex shapes.
Silicon carbide containing 5% by weight or more (thermal conductivity: 200
W/m-k or more) or 90% by weight of aluminum nitride
AflN (thermal conductivity: 50 W/m-k or more) containing the above can be used.

また、高熱伝導性セラミックス基材を平板状にすること
によって、該基材を薄くすることが可能となり、基材面
にマウントされた半導体チップから該基材のマウント面
と反対側の面に接合された放熱フィンへの熱伝達効率を
向上できる。なお、アルミナ系セラミックスのパッケー
ジ本体はアルミナ系セラミックスのグリーンシートを積
層成形することによって製作できるため、高熱伝導性セ
ラミックス基材を平板状とすることにより該パッケージ
本体の形状が多少複雑になっても製作上の困難さは伴わ
ない。
In addition, by making the highly thermally conductive ceramic base material flat, it is possible to make the base material thinner, and the semiconductor chip mounted on the base material surface is bonded to the surface opposite to the mounting surface of the base material. The efficiency of heat transfer to the heat dissipation fins can be improved. Note that the alumina-based ceramic package body can be manufactured by laminating and molding alumina-based ceramic green sheets, so even if the shape of the package body becomes somewhat complicated by making the highly thermally conductive ceramic base material into a flat plate, There are no manufacturing difficulties involved.

(発明の実施例) 以下、本発明を第1図に示すPGA型のICパッケージ
を例にして説明する。
(Embodiments of the Invention) The present invention will be described below using a PGA type IC package shown in FIG. 1 as an example.

実施例 図中の21は、図示しない多層の配線が形成され、かつ
三つの階段状とした開孔部22を有するアルミナ系セラ
ミックスのパッケージ本体である。
Reference numeral 21 in the drawings indicates an alumina-based ceramic package body on which multilayer wiring (not shown) is formed and has three step-shaped openings 22.

このパッケージ本体21は、例えば前記階段状の開孔部
に対応して大、中、小の内径穴を有する4枚(2枚は中
間の内径穴を有する)のアルミナグリーンシートを所定
のシートに配線となる導体ベーストを印刷した状態で積
層し、焼結することにより製作した。前記パッケージ本
体21の開孔部22内の2段目の平面には、例えばAf
iN焼結体からなる基材23が低膨張ガラスフリットを
主材とするガラス系接着824を介して接合されている
。この平板状の基材23は、酸素量的1%のAfiN粉
末に3重層%のY203を添加し、成形した後、窒素雰
囲気中で1800℃、2時間常圧焼結することにより得
た熱伝導率が 170W/m・KのAffiN焼結体を厚さ0.6am
に加工したものである。
This package body 21 is made of, for example, four alumina green sheets having large, medium, and small inner diameter holes corresponding to the stepped openings (two sheets have an intermediate inner diameter hole), and are arranged in a predetermined sheet. It was manufactured by laminating printed conductor bases, which will serve as wiring, and sintering them. For example, Af
A base material 23 made of an iN sintered body is bonded via a glass adhesive 824 mainly made of low expansion glass frit. This plate-shaped base material 23 is made by adding 3% Y203 to AfiN powder containing 1% oxygen, molding it, and then sintering it under normal pressure at 1800°C for 2 hours in a nitrogen atmosphere. AffiN sintered body with conductivity of 170 W/m・K with thickness of 0.6 am
It is processed into.

前記AfiN焼結体の基材23の前記パッケージ本体2
1との接合側の面には、前記開孔部22を通して挿入さ
れ、先端断面を凸状とした放熱フィン25が半田層26
を介して接合されている。また、前記放熱フィン25の
接合面と反対側の前記基材23の面には半導体チップ2
7がマウントされ、かつ該半導体チップ27は、ワイヤ
28を介して前記パッケージ本体21の図示しない配線
と接続されている。更に、前記放熱フィン25挿入部と
反対側のパッケージ本体21の面には前記半導体チップ
27を気密に封止するためのキャップ29が固定されて
いる。なお、図中の30は前記パッケージ本体21に取
着され、該本体21の図示しない配線とスルホールを介
して接続された端子(ビン)である。
The package body 2 of the base material 23 of the AfiN sintered body
1, a heat dissipating fin 25 having a convex tip cross section is inserted through the opening 22 and is connected to the solder layer 26.
are connected via. Further, a semiconductor chip 2 is provided on the surface of the base material 23 opposite to the bonding surface of the heat dissipation fin 25.
7 is mounted, and the semiconductor chip 27 is connected to wiring (not shown) of the package body 21 via wires 28. Furthermore, a cap 29 for airtightly sealing the semiconductor chip 27 is fixed to the surface of the package body 21 opposite to the insertion portion of the radiation fin 25. Note that 30 in the figure is a terminal (bin) attached to the package main body 21 and connected to wiring (not shown) of the main body 21 via a through hole.

比較例1 前述した第2図図示のICパッケージにおいて、パッケ
ージ本体1を熱伝導率が18W/m・Kのアルミナ系セ
ラミックスにより形成した。
Comparative Example 1 In the IC package shown in FIG. 2 described above, the package body 1 was formed of alumina ceramics having a thermal conductivity of 18 W/m·K.

比較例2 前述した第3図図示のICパッケージにおいて、高熱伝
導性セラミックス基材10として実施例と同様な熱伝導
率(170W/m−k)のAffN焼結体を断面が凸状
となるように研磨加工した最大厚さ部分(チップのマウ
ンド部)が1.5mのものを用いた。
Comparative Example 2 In the above-mentioned IC package shown in FIG. 3, an AffN sintered body having the same thermal conductivity (170 W/m-k) as in the example was used as the highly thermally conductive ceramic base material 10 so that the cross section was convex. A chip with a maximum thickness (mound part of the chip) of 1.5 m was used.

しかして、本実施例及び比較例1.2のICパッケージ
の熱抵抗を測定した。その結果、半導体チップをアルミ
ナ系セラミックスのパッケージ本体にマウントした比較
例1のICパッケージでは熱抵抗が2.80℃/W、半
導体チップを凸状をなすAfiN焼結体の基材にマウン
トした比較例2のICパッケージでは熱抵抗が0.40
℃/Wであった。これに対し、本実施例のICパッケー
ジでは熱抵抗が0.25℃7・/Wと比較例2に比べて
=10− 良好な結果となり、しかもAffiN焼結体を加工せず
そのまま基材として使用できることから比較例2のパッ
ケージに比べてコストを著しく低減できた。
The thermal resistance of the IC packages of this example and comparative example 1.2 was then measured. As a result, the IC package of Comparative Example 1, in which the semiconductor chip was mounted on an alumina-based ceramic package body, had a thermal resistance of 2.80°C/W, compared to the IC package in which the semiconductor chip was mounted on a convex AfiN sintered base material. The IC package of Example 2 has a thermal resistance of 0.40.
℃/W. On the other hand, the IC package of this example had a thermal resistance of 0.25°C7·/W, which was =10- better than Comparative Example 2, and the AffiN sintered body could be used as a base material without being processed. Since the package can be used, the cost can be significantly reduced compared to the package of Comparative Example 2.

[発明の効果] 以上詳述した如く、本発明によれば高熱伝導性セラミッ
クス基材への加工が不要乃至最低限で済み、かつ半導体
チップから放熱フィンへの熱伝達効率を向上した低コス
トで高性能のICパッケージを提供できる。
[Effects of the Invention] As detailed above, according to the present invention, processing on a highly thermally conductive ceramic base material is unnecessary or minimal, and the heat transfer efficiency from the semiconductor chip to the heat dissipation fins is improved at a low cost. We can provide high-performance IC packages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すPGA型のICパッケ
ージの断面図、第2図は従来のPGA型のICパッケー
ジを示す断面図、第3図は半導体チップのマウント部に
高熱伝導性セラミックス基材を用いた従来の改良された
PGA型のICパッケージを示す断面図である。 21・・・アルミナ系セラミックスのパッケージ本体、
23・・・平板状をなす高熱伝導性セラミックス基材、
25・・・放熱フィン、27・・・半導体チップ、29
・・・キャップ。
Figure 1 is a sectional view of a PGA type IC package showing an embodiment of the present invention, Figure 2 is a sectional view of a conventional PGA type IC package, and Figure 3 is a sectional view of a PGA type IC package showing an embodiment of the present invention. 1 is a cross-sectional view showing a conventional improved PGA type IC package using a ceramic base material. 21... Alumina ceramics package body,
23... Highly thermally conductive ceramic base material having a flat plate shape,
25... Heat radiation fin, 27... Semiconductor chip, 29
···cap.

Claims (4)

【特許請求の範囲】[Claims] (1)、配線及び端子を有するアルミナ系セラミックス
からなるパッケージ本体と、この本体に接合され、半導
体チップがマウントされた高熱伝導性セラミックス基材
との複合セラミックス構造を持つICパッケージにおい
て、前記高熱伝導性セラミックス基材が平板状をなし、
かつ該基材を前記アルミナ系セラミックスのパッケージ
本体に埋込むと共に該パッケージ本体に開孔された穴部
を通して前記半導体チップのマウント面と反対側の前記
基材の面に放熱フィンを設けたことを特徴とするICパ
ッケージ。
(1) In an IC package having a composite ceramic structure consisting of a package body made of alumina ceramics having wiring and terminals, and a highly thermally conductive ceramic base material bonded to this body and on which a semiconductor chip is mounted, The ceramic base material has a flat plate shape,
and that the base material is embedded in the alumina-based ceramic package body, and a heat dissipation fin is provided on the surface of the base material opposite to the mounting surface of the semiconductor chip through a hole formed in the package body. Characteristic IC package.
(2)、高熱伝導性セラミックスは、窒化アルミニウム
を90重量%以上含有する熱伝導率が 50W/m・K以上のものであることを特徴とする特許
請求の範囲第1項記載のICパッケージ。
(2) The IC package according to claim 1, wherein the highly thermally conductive ceramic contains 90% by weight or more of aluminum nitride and has a thermal conductivity of 50 W/m·K or more.
(3)、高熱伝導性セラミックスは、炭化ケイ素を95
重量%以上含有する熱伝導率が 200W/m・K以上のものであることを特徴とする特
許請求の範囲第1項記載のICパッケージ。
(3) High thermal conductivity ceramics contain 95% silicon carbide.
The IC package according to claim 1, wherein the IC package contains at least % by weight and has a thermal conductivity of 200 W/m·K or more.
(4)、高熱伝導性セラミックスは、酸化ベリリウムを
95重量%以上含有する熱伝導率が 200W/m・K以上のものであることを特徴とする特
許請求の範囲第1項記載のICパッケージ。
(4) The IC package according to claim 1, wherein the highly thermally conductive ceramic contains 95% by weight or more of beryllium oxide and has a thermal conductivity of 200 W/m·K or more.
JP61135167A 1986-06-11 1986-06-11 Ic package Pending JPS62291158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135167A JPS62291158A (en) 1986-06-11 1986-06-11 Ic package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135167A JPS62291158A (en) 1986-06-11 1986-06-11 Ic package

Publications (1)

Publication Number Publication Date
JPS62291158A true JPS62291158A (en) 1987-12-17

Family

ID=15145397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135167A Pending JPS62291158A (en) 1986-06-11 1986-06-11 Ic package

Country Status (1)

Country Link
JP (1) JPS62291158A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057903A (en) * 1989-07-17 1991-10-15 Microelectronics And Computer Technology Corporation Thermal heat sink encapsulated integrated circuit
US5057376A (en) * 1988-11-15 1991-10-15 Asahi Glass Company Ltd. Hybrid package, glass ceramic substrate for the hybrid package, and composition for the glass ceramic substrate
WO1996013056A3 (en) * 1994-10-14 1996-07-11 Nat Semiconductor Corp Hermetically sealed hybrid ceramic integrated circuit package
US5885853A (en) * 1990-06-22 1999-03-23 Digital Equipment Corporation Hollow chip package and method of manufacture
CN109479384A (en) * 2016-09-27 2019-03-15 深圳市大疆创新科技有限公司 Radiator structure, electronic device, holder and aircraft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896757A (en) * 1981-12-04 1983-06-08 Hitachi Ltd Semiconductor device
JPS6066843A (en) * 1983-09-22 1985-04-17 Hitachi Ltd Integrated circuit package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896757A (en) * 1981-12-04 1983-06-08 Hitachi Ltd Semiconductor device
JPS6066843A (en) * 1983-09-22 1985-04-17 Hitachi Ltd Integrated circuit package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057376A (en) * 1988-11-15 1991-10-15 Asahi Glass Company Ltd. Hybrid package, glass ceramic substrate for the hybrid package, and composition for the glass ceramic substrate
US5057903A (en) * 1989-07-17 1991-10-15 Microelectronics And Computer Technology Corporation Thermal heat sink encapsulated integrated circuit
US5885853A (en) * 1990-06-22 1999-03-23 Digital Equipment Corporation Hollow chip package and method of manufacture
WO1996013056A3 (en) * 1994-10-14 1996-07-11 Nat Semiconductor Corp Hermetically sealed hybrid ceramic integrated circuit package
CN109479384A (en) * 2016-09-27 2019-03-15 深圳市大疆创新科技有限公司 Radiator structure, electronic device, holder and aircraft

Similar Documents

Publication Publication Date Title
US6731002B2 (en) High frequency power device with a plastic molded package and direct bonded substrate
US4827082A (en) Ceramic package
EP1167559B1 (en) Composite material and use thereof
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JPS62291158A (en) Ic package
JPH09293802A (en) Semiconductor package
JPH08107166A (en) Heat dissipating fin
JPH0590444A (en) Ceramic circuit board
JP3934966B2 (en) Ceramic circuit board
JPS617647A (en) Circuit substrate
JP2662738B2 (en) Semiconductor device with ceramic fins
JP2517024B2 (en) Ceramic package and its manufacturing method
JP3695706B2 (en) Semiconductor package
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
CN219246663U (en) Package substrate and semiconductor package structure
JPH0547953A (en) Package for semiconductor device
JP2501279B2 (en) Semiconductor package
EP4084062A1 (en) Power semiconductor module arrangement
JP2003037204A (en) Package for accommodating semiconductor element
JPH10275879A (en) Semiconductor package
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same
JPH07114245B2 (en) Semiconductor envelope
JPS6065550A (en) Semiconductor device
JPS6311737Y2 (en)
JPS6334962A (en) Structure for package