JPS62285321A - Manufacture of electrically insulated conductor - Google Patents

Manufacture of electrically insulated conductor

Info

Publication number
JPS62285321A
JPS62285321A JP61127283A JP12728386A JPS62285321A JP S62285321 A JPS62285321 A JP S62285321A JP 61127283 A JP61127283 A JP 61127283A JP 12728386 A JP12728386 A JP 12728386A JP S62285321 A JPS62285321 A JP S62285321A
Authority
JP
Japan
Prior art keywords
electrodeposition
electrodeposited
electrically insulated
insulated conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61127283A
Other languages
Japanese (ja)
Other versions
JPH0566688B2 (en
Inventor
山下 政剛
正道 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61127283A priority Critical patent/JPS62285321A/en
Priority to KR1019860010814A priority patent/KR900003960B1/en
Priority to ES8701618A priority patent/ES2004143A6/en
Priority to AU73802/87A priority patent/AU583732B2/en
Priority to CN87104001A priority patent/CN1007763B/en
Publication of JPS62285321A publication Critical patent/JPS62285321A/en
Publication of JPH0566688B2 publication Critical patent/JPH0566688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、電気絶縁導体の製造方法に関し、特に、車
両用回転機コイルを形成する導体に、電着によりマイカ
絶縁皮膜を形成する電気絶縁導体の製造方法に関するも
のである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of manufacturing an electrically insulated conductor, and in particular, the present invention relates to a method of manufacturing an electrically insulated conductor, and in particular, the invention relates to a method of manufacturing an electrically insulated conductor, and in particular, the invention relates to a method of manufacturing an electrically insulated conductor, and in particular, the invention relates to a method of manufacturing an electrically insulated conductor. The present invention relates to a method of manufacturing an electrically insulated conductor forming an insulating film.

〔従来の技術〕[Conventional technology]

まず電着の原理について説明する。通常水中では負に帯
電するマイカ粉と、同じく負に帯電する水分散ワニスに
水を加えた電着液を電着槽に入れ、導体の被電着物を電
着液に浸漬して陽極きし、電着槽を陰極として直流電圧
を印加すると、マイカ粉を主成分とする電着析出層が被
電着物の表面に形成される。ここで、水分散ワニスはマ
イカ粉相互の接着強度を上げるために用いられる。
First, the principle of electrodeposition will be explained. Mica powder, which is normally negatively charged in water, and an electrodeposition solution made by adding water to water-dispersed varnish, which is also negatively charged, are placed in an electrodeposition tank, and the conductor to be electrodeposited is immersed in the electrodeposition solution to form an anode. When a DC voltage is applied using the electrodeposition tank as a cathode, an electrodeposited layer containing mica powder as a main component is formed on the surface of the electrodeposited object. Here, the water-dispersed varnish is used to increase the adhesive strength between the mica powders.

従来の電気絶縁導体の製造方法として、特開昭58−5
5967号会報に開示された第一の方法を、第2図を参
照して説明する。第2図において、電着槽(1)内にノ
ズル(2)が導体の被電着物(3)に向けて設けられて
おり、電着液(4)は第1、第2のポンプ(3)、(6
)で循環される。(7)は転向板である。
As a conventional method for manufacturing electrically insulated conductors, Japanese Patent Application Laid-Open No. 58-5
The first method disclosed in Bulletin No. 5967 will be explained with reference to FIG. In FIG. 2, a nozzle (2) is provided in an electrodeposition tank (1) facing a conductive electrodeposited object (3), and the electrodeposition liquid (4) is pumped through first and second pumps (3). ), (6
). (7) is a turning plate.

この方法では、電着液(4)を一定の速度で循環させる
主fi(P)と電着液(4)をかくはんするためのかく
はん流(Q)を必要としており、電着液(4)を循環さ
せる装置も2組必要である。ここで、被電着物(3)が
亀甲形導体のようなものであると、電着液(4)の流れ
に対面している面と影の部分で膜厚が不均一になるため
に、電着進行の中間時に、一時的に直流電圧の印加をや
め、被電着物(6)を鉛直線に対して1800回転させ
て再び電着を行い、電着終了後、被電着物(3)を再び
180°回転させて元の位置へ戻す。したがって、電着
に要する時間をT4とし、前半の電着時間をT2、後半
の電着時間をT3、回転時間をT5とすれば T4 = T2 +TA±2・T5 となる。
This method requires a main fi (P) for circulating the electrodeposition liquid (4) at a constant speed and a stirring flow (Q) for stirring the electrodeposition liquid (4). Two sets of devices for circulating the water are also required. Here, if the electrodeposited object (3) is a hexagonal conductor, the film thickness will be uneven between the surface facing the flow of the electrodeposition liquid (4) and the shadow part. At an intermediate point in the progress of electrodeposition, the application of DC voltage was temporarily stopped, the electrodeposited object (6) was rotated 1800 times with respect to the vertical line, and electrodeposition was performed again. After the electrodeposition was completed, the electrodeposition object (3) Rotate 180° again and return to the original position. Therefore, if the time required for electrodeposition is T4, the first half electrodeposition time T2, the second half electrodeposition time T3, and the rotation time T5, then T4 = T2 +TA±2·T5.

また、従来の電気絶縁導体の製造方法として、特開昭5
8−1513808号公報に示された第二の方法があり
、これを第3図を参照して説明する。第6図において、
底面にテーパを有する電着槽(8)内tこ吐出ノズル(
9)が設けられており、電着槽(8)には、その底に電
着液(4)の吸入孔(10) 、側部にオーバーフロー
管(11)、流入管(12)が設けられている。そうし
て、電着液(4)は、吐出ノズル(9)から電着槽(8
)の中lこ入り、低速度で循環する。次にオーバーフロ
ー管(11)および流入管(12)からなる電着液供給
系統は、電着中に消費される電着液(4)の供給と電着
液面を一定に保持する機能を持つ。この装置を用いれば
電着槽(8)の底部にマイカ粉が沈殿することなく、電
着液(4)は低速で循環し、マイカ粉も電着槽(8)内
に均一に分布するので、直流電圧印加時に被電着物を回
転することなく均一な皮膜が得られる。
In addition, as a conventional method for manufacturing electrically insulated conductors,
There is a second method disclosed in Japanese Patent No. 8-1513808, which will be explained with reference to FIG. In Figure 6,
A discharge nozzle (
9), and the electrodeposition tank (8) has a suction hole (10) for the electrodeposition liquid (4) at the bottom, an overflow pipe (11), and an inflow pipe (12) at the side. ing. Then, the electrodeposition liquid (4) is discharged from the discharge nozzle (9) to the electrodeposition tank (8).
) and circulate at low speed. Next, the electrodeposition liquid supply system consisting of an overflow pipe (11) and an inflow pipe (12) has the function of supplying the electrodeposition liquid (4) consumed during electrodeposition and keeping the electrodeposition liquid level constant. . If this device is used, the mica powder will not settle at the bottom of the electrodeposition tank (8), the electrodeposition solution (4) will circulate at a low speed, and the mica powder will be evenly distributed in the electrodeposition tank (8). , a uniform film can be obtained without rotating the electrodeposited object when DC voltage is applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の電気絶縁導体の製造方法は、第一の
方法では、電着進行の中間時に一時的に直流電圧の印加
を停止して被電着物を180°回転させ、電着終了後に
も再び被電着物を回転させるという余分な工程が必要で
あるため、量産のため生産ラインにこの方法を適用した
場合、無駄な時間が多いので生産性が悪く、また、電着
液の主流およびかくはん流の速度制御が複雑であるなど
の問題点があった。
The conventional method for producing electrically insulated conductors as described above is as follows: In the first method, the application of DC voltage is temporarily stopped during the progress of electrodeposition, the object to be electrodeposited is rotated 180 degrees, and after the electrodeposition is completed, Since this method requires an extra step of rotating the electrodeposited material again, when this method is applied to a production line for mass production, there is a lot of wasted time, resulting in poor productivity. There were problems such as complicated speed control of the agitation flow.

また、第二の方法にあっては、電着槽底部のテーパー形
状によりマイカ粉の沈殿は防止できるが、厳密には電着
槽内各部でマイカ粉の分布が均一とはいえず、特に、比
較的寸法の大きい亀甲形の導体を電着する場合は膜厚の
不均一を生じ、最も膜厚が生成しにくい部分が設定膜厚
以上になるように電着を行うと、導体の他の部分には余
分に厚い皮膜を形成するので、これら電着された導体を
組み合わせてコイルを作った場合、前記第一の方法で作
られたコイルと比較して寸法が大きくなり、回転機スロ
ット内のスペースファクターが悪くなって回転機の小形
軽量化を困難にする要因のひとつとなるという問題点が
あった。
In addition, in the second method, precipitation of mica powder can be prevented by the tapered shape of the bottom of the electrodeposition tank, but strictly speaking, the distribution of mica powder cannot be said to be uniform in each part of the electrodeposition tank. When electrodepositing a relatively large hexagonal conductor, the film thickness will be non-uniform, and if the electrodeposition is performed so that the part where it is most difficult to form a film has a thickness greater than the set thickness, other parts of the conductor may Since an extra thick film is formed in the parts, if a coil is made by combining these electrodeposited conductors, the dimensions will be larger compared to the coil made by the first method, and it will not fit inside the rotating machine slot. There was a problem in that the space factor of the rotary machine deteriorated, which became one of the factors that made it difficult to make the rotating machine smaller and lighter.

この発明はかかる問題点を解消するためになされたもの
で、電着に要する時間を短縮して生産性を向上するとと
もに、電着液の速度制御を簡便にし、さらに層状でカー
な随厘のt*寺隠不形膚大せてコンパクトなコイル製造
を可能にし、スペースファクターを改善し、回転機を小
形軽量化することができる電気絶縁導体の製造方法を得
ることを目的とする。
This invention was made to solve these problems, and it not only shortens the time required for electrodeposition and improves productivity, but also makes it easier to control the speed of the electrodeposition solution, and also eliminates the need for layered and curly coatings. The purpose of the present invention is to obtain a method for producing an electrically insulated conductor that enables the production of a more compact coil, improves the space factor, and reduces the size and weight of a rotating machine.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電気絶縁導体の製造方法は、電着槽内の
電着液を低速で液面から鉛直下方向に流すとともに、直
流電圧印加時に導体の被電着物を水平方向に往復運動さ
せて導体と電着液の相対速度を上げて、導体表面にマイ
カ粉を層状で、なおかつ均一な膜厚で析出させる。
The method for manufacturing an electrically insulated conductor according to the present invention includes flowing the electrodeposition liquid in the electrodeposition tank vertically downward from the liquid level at low speed, and reciprocating the electrodeposited material of the conductor in the horizontal direction when a DC voltage is applied. By increasing the relative speed between the conductor and the electrodeposition liquid, mica powder is deposited on the conductor surface in a layered manner and with a uniform thickness.

〔作用〕[Effect]

この発明においては、電着に要する全時間をT1(se
c、)とし、直流電圧を印加しながら導体を一方向へ移
動させる時間をT2(813C,) 、逆方向へ移動さ
せる時間をT3〔8θc、)とすれば、T+ = T2
+T3で表わされる。
In this invention, the total time required for electrodeposition is T1 (se
c, ), the time to move the conductor in one direction while applying a DC voltage is T2 (813C,), and the time to move the conductor in the opposite direction is T3 [8θc,), then T+ = T2
+T3.

一方、従来の第一の方法では、電着中間時点で導体を一
定角度回転させなければならず、回転時間をT4(se
c、) 、従来の方式における電着に要する全時間を’
rs(sea 、]とすれば、TS = T2+T!l
−1−2・T4となり、ゆえにT+ (Tsとなる。
On the other hand, in the first conventional method, the conductor must be rotated by a certain angle at the intermediate point of electrodeposition, and the rotation time is T4 (se
c.), the total time required for electrodeposition in the conventional method is '
If rs(sea,], then TS = T2+T!l
-1-2・T4, therefore T+ (Ts.

また、この発明における電着液の流速の制御については
、電着槽内の電着液を低速で液面から鉛直下方向に流し
ながら、直流電圧印加時に導体を水平方向に往復運動さ
せて、導体と電着液の相対速度を上げる方法を用いてい
るので、従来性なっていた電着液の流速の制御を導体の
往復速度で代行できるため、きめ細かい速度制御が可能
となり、最適条件が設定できる。
Furthermore, in order to control the flow rate of the electrodeposition liquid in this invention, while the electrodeposition liquid in the electrodeposition bath is flowing vertically downward from the liquid surface at a low speed, the conductor is reciprocated in the horizontal direction when a DC voltage is applied. Since the method uses a method of increasing the relative velocity of the conductor and the electrodepositing liquid, the reciprocating speed of the conductor can replace the conventional control of the flow rate of the electrodepositing liquid, allowing fine-grained speed control and setting the optimal conditions. can.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図を参照して説明する
。第1図において、底面がテーパー状の電着槽(8)の
側方に設けられた昇降装置(13)に、スライドベース
(1りが油圧シリンダ(13)を介して係合している。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, a slide base (one slide base) is engaged with a lifting device (13) provided on the side of an electrodeposition bath (8) having a tapered bottom surface via a hydraulic cylinder (13).

被電着物(3)は吊り具(16)を介して支持棒(17
)に吊り下げ支持されている。
The electrodeposited object (3) is attached to a support rod (17) via a hanging device (16).
) is suspended and supported.

その他、第3図におけると同一符号は同一部分である。In addition, the same reference numerals as in FIG. 3 indicate the same parts.

以上の装置により、まず、電着液(4)は、吐出ノズル
(9)から電着槽(8)の中に入り、吸入孔(10)か
ら電着液循環ポンプを経て再び吐出ノズル(9)へと循
環する。また、オーバーフロー管(11)および流入管
(12)からなる電着液供給系統は、電着中に消費され
る電着液(4)を補給し、かつ、電着液面を一定に保持
する。
With the above device, the electrodeposition liquid (4) first enters the electrodeposition tank (8) from the discharge nozzle (9), passes through the electrodeposition liquid circulation pump from the suction hole (10), and returns to the discharge nozzle (9). ). Further, an electrodeposition liquid supply system consisting of an overflow pipe (11) and an inflow pipe (12) replenishes the electrodeposition liquid (4) consumed during electrodeposition and maintains a constant level of the electrodeposition liquid. .

導体の被電着物(3)が支持棒(17)の定位置に吊り
具(16)とともにセットされると、矢印(B)方向に
作動する昇降装置(13)が降下して、導体の被電着物
(3)は電着液(4)の中に浸漬される。次に導体の被
電着物(3)を陽極とし、電着槽(8)を陰極として、
これらの間に直流電圧を印加すると同時に油圧シリンダ
(13)が作動してスライドベース(14)と、これと
つながった導体の被電着物(3)に電着槽(8)の中で
矢印(A)で示す水平方向に往復運動を行わせ、電着が
終了すると昇降装置(13)が上昇して電着槽(8)か
ら被電着物(3)を取り出す。
When the conductor to be electrodeposited (3) is set together with the hanging tool (16) in a fixed position on the support rod (17), the lifting device (13) operating in the direction of arrow (B) descends and removes the conductor. The electrodeposited material (3) is immersed in the electrodeposition liquid (4). Next, the conductor electrodeposited material (3) is used as an anode, the electrodeposition tank (8) is used as a cathode,
At the same time when a DC voltage is applied between these, the hydraulic cylinder (13) is actuated to apply the arrow mark ( A reciprocating motion is performed in the horizontal direction shown in A), and when the electrodeposition is completed, the lifting device (13) rises to take out the electrodeposited object (3) from the electrodeposition tank (8).

なお、以上の工程は、自動的に実行することができる。Note that the above steps can be executed automatically.

以上の製造方法においては、直流電圧印加中の被電着物
(3)の往復動の平均移動速度は、1.2WL/Tni
nないし12 ffL/minの範囲が好適である。こ
の範囲より移動速度が大きいと移動方向の流れに対して
影の部分に発生する渦の影響で膜厚が不均一となり、前
記の範囲より移動速度が小さいと導体の往復運動の効果
が少なく膜厚が不均一となるっまた、この往復運動の回
数(力は、1回以上であれば何回であっても良いが、電
着時間(T)と、被電着物(3)の寸法および電着槽(
8)の寸法から設定される往復運動のストローク(L)
と、移動速度(V)との三者の関係から次の式で決定さ
れる。
In the above manufacturing method, the average moving speed of the reciprocating movement of the electrodeposited material (3) during application of DC voltage is 1.2WL/Tni
A range of n to 12 ffL/min is preferred. If the moving speed is higher than this range, the film thickness will be uneven due to the influence of vortices generated in the shadow part against the flow in the moving direction, and if the moving speed is lower than the above range, the effect of the reciprocating motion of the conductor will be less and the film thickness will be uneven. If the thickness becomes uneven, the number of times of this reciprocating movement (the force may be any number of times as long as it is one or more times, but depending on the electrodeposition time (T), the size of the electrodeposited object (3) and Electrodeposition tank (
Stroke (L) of reciprocating motion set from the dimensions of 8)
It is determined by the following equation from the three-way relationship between

7=−r− 電着液(4)の鉛直下方向への平均流速は0.5 ”/
mx n以上が好適である。平均流速がこれより小さい
とマイカ粉の分布が不均一となり、電着後形成される皮
膜もバラツキを生ずる。また、流速の最大値については
特に規制はしないが、流速を上げても設備費用および消
費電力をいたずらに増大させるだけで、メリットは全く
ない。
7=-r- The average flow velocity of the electrodeposition liquid (4) in the vertical downward direction is 0.5"/
mx n or more is preferred. If the average flow velocity is lower than this, the distribution of mica powder will be uneven, and the film formed after electrodeposition will also vary. Further, although there is no particular restriction on the maximum value of the flow velocity, increasing the flow velocity only unnecessarily increases equipment costs and power consumption, and there is no benefit at all.

下記の第1表は種々の実験例におけるデータであaすな
わち、実験例1においては、電着槽(8)に水分散ワニ
スの樹脂分15重量部に対しマイカ粉85M、量部の割
合で混入し、イオン交換水を加えた不揮発分12%の電
着液(4)を調製した。この電着液(4)をI WL/
minの流速の鉛直下方向の定流とし、亀甲形の導体の
被電着物(3)に直流電圧100vを24秒間印加しな
から6”L/rninの移動速度、0.4 tnの往復
ストロークで3回の往復運動を行わせ、導体表面に平均
膜厚1.OOn+の電着皮膜を形成させたことを示して
いる。実験例1.2.S共に、電着皮膜はマイカ粉が層
状に析出され、均一な膜厚であった。
Table 1 below shows data from various experimental examples. That is, in Experimental Example 1, 85 M of mica powder was added to the electrodeposition tank (8) at a ratio of 85 M parts by weight to 15 parts by weight of the resin content of the water-dispersed varnish. An electrodeposition solution (4) with a non-volatile content of 12% was prepared by mixing and adding ion-exchanged water. This electrodeposition liquid (4) is applied to IWL/
With a constant flow in the vertical downward direction at a flow rate of min., a DC voltage of 100 V was applied for 24 seconds to the electrodeposited object (3) of a hexagonal conductor, and then a moving speed of 6"L/rnin and a reciprocating stroke of 0.4 tn were applied. This shows that an electrodeposited film with an average thickness of 1.OOn+ was formed on the conductor surface by performing three reciprocating movements.In both Experimental Examples 1 and 2. The film was deposited with a uniform thickness.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、電着槽内
の電着液を低速で液面から鉛直下方向に流すとともに、
直流電圧印加時に被電着物を水平方向に往復運動させて
被電着物と電着液の相対速度を上げることにより、電着
時間が短縮されて生産性が向上するとともに、電着液の
速度制御が簡便になり、また、このようにして電着され
た被電着物表面にはマイカ粉が層状で、なおかつ均一な
膜厚で析出するので、被電着物の各部に余分な膜厚が存
在せず、被電着物を数本組み合わせてなるところのコイ
ルの寸法がコンパクトになってスペースファクターが改
善され、かかるコイルを使用する回転機の小形軽量化が
可能となる。
As is clear from the above description, this invention allows the electrodeposition liquid in the electrodeposition tank to flow vertically downward from the liquid surface at low speed, and
By reciprocating the electrodeposition material in the horizontal direction when a DC voltage is applied and increasing the relative speed between the electrodeposition material and the electrodeposition liquid, the electrodeposition time is shortened, productivity is improved, and the speed of the electrodeposition liquid can be controlled. In addition, since the mica powder is deposited in layers on the surface of the electrodeposited object in this way and has a uniform thickness, there is no need for excessive film thickness to exist on each part of the electrodeposited object. First, the dimensions of a coil formed by combining several electrodeposited materials become compact, improving the space factor, and it becomes possible to reduce the size and weight of a rotating machine using such a coil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための装置の斜
視図、第2図および第6図はそれぞれ従来の電気絶縁導
体の製造方法を説明するための正断面図および斜視図で
ある。 (3):導体の被電着物、(4):電着液、(8):電
着槽、(9):吐出ノズル、(10):吸入孔、(11
) ニオ−バーフロー管、(12)二流入管、([) 
:昇降装置、(14)ニスライドベース、(13)二油
圧シリンダ、(16) :吊り具、(17) :支持棒
。 なお、各図中、同一符号は同−又は相当部分を示す。 篤2図 談 冨  。
FIG. 1 is a perspective view of an apparatus for explaining an embodiment of the present invention, and FIGS. 2 and 6 are a front sectional view and a perspective view, respectively, for explaining a conventional method of manufacturing an electrically insulated conductor. . (3): Conductor electrodeposited object, (4): Electrodeposition liquid, (8): Electrodeposition tank, (9): Discharge nozzle, (10): Suction hole, (11
) Niober flow tube, (12) two inflow tubes, ([)
: Lifting device, (14) Nislide base, (13) Two hydraulic cylinders, (16) : Lifting device, (17) : Support rod. In each figure, the same reference numerals indicate the same or corresponding parts. Atsushi 2 Zudantomi.

Claims (3)

【特許請求の範囲】[Claims] (1)電着槽内の、マイカ粉を主成分としそれに少量の
水分散形ワニスを加えた電着液中に、回転機のコイルを
形成するための導体の被電着物を浸漬して一方の電極と
し、他方の電極となる前記電着槽との間に直流電圧を印
加して前記被電着物に前記マイカ粉と前記水分散形ワニ
スの共電着により絶縁皮膜を形成する方法において、前
記電着液を低速で前記電着槽中を液面から鉛直下方向に
流しつつ、直流電圧印加中に前記被電着物を水平方向に
往復運動を行わせて前記絶縁皮膜を形成することを特徴
とする電気絶縁導体の製造方法。
(1) A conductor to be electrodeposited to form a coil of a rotating machine is immersed in an electrodeposition solution containing mica powder as a main component and a small amount of water-dispersed varnish in an electrodeposition bath. in the method of forming an insulating film on the electrodeposited object by co-electrodeposition of the mica powder and the water-dispersed varnish by applying a DC voltage between the electrode and the electrodeposition bath serving as the other electrode, The insulating film is formed by causing the electrodeposited material to reciprocate horizontally while applying a DC voltage while flowing the electrodeposition liquid vertically downward from the liquid level in the electrodeposition tank at a low speed. A method for producing a featured electrically insulated conductor.
(2)電着液の平均流速が少なくとも0.5m/min
で、被電着物の水平方向の平均移動速度が1.2m/m
in〜12m/minである特許請求の範囲第1項記載
の電気絶縁導体の製造方法。
(2) The average flow velocity of the electrodeposition liquid is at least 0.5 m/min.
The average moving speed of the electrodeposited material in the horizontal direction is 1.2 m/m.
2. The method for manufacturing an electrically insulated conductor according to claim 1, wherein the electrically insulated conductor is produced at a rate of in to 12 m/min.
(3)電着絶縁皮膜の形成完了までの工程を自動的に行
う特許請求の範囲第1項記載の電気絶縁導体の製造方法
(3) A method for producing an electrically insulated conductor according to claim 1, in which the steps up to the completion of forming the electrodeposited insulating film are automatically performed.
JP61127283A 1986-06-03 1986-06-03 Manufacture of electrically insulated conductor Granted JPS62285321A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61127283A JPS62285321A (en) 1986-06-03 1986-06-03 Manufacture of electrically insulated conductor
KR1019860010814A KR900003960B1 (en) 1986-06-03 1986-12-17 Manufacture of electrically insulated conductor
ES8701618A ES2004143A6 (en) 1986-06-03 1987-06-02 Manufacture of electrically insulated conductor
AU73802/87A AU583732B2 (en) 1986-06-03 1987-06-03 Method and apparatus for producing an electrically insulated conductor
CN87104001A CN1007763B (en) 1986-06-03 1987-06-03 Process for mfg. electric insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127283A JPS62285321A (en) 1986-06-03 1986-06-03 Manufacture of electrically insulated conductor

Publications (2)

Publication Number Publication Date
JPS62285321A true JPS62285321A (en) 1987-12-11
JPH0566688B2 JPH0566688B2 (en) 1993-09-22

Family

ID=14956138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127283A Granted JPS62285321A (en) 1986-06-03 1986-06-03 Manufacture of electrically insulated conductor

Country Status (5)

Country Link
JP (1) JPS62285321A (en)
KR (1) KR900003960B1 (en)
CN (1) CN1007763B (en)
AU (1) AU583732B2 (en)
ES (1) ES2004143A6 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5189179A (en) * 1978-10-18 1980-05-01 Concrete Industries (Monier) Ltd. Electroplating with moving anode

Also Published As

Publication number Publication date
KR880000987A (en) 1988-03-30
AU583732B2 (en) 1989-05-04
CN1007763B (en) 1990-04-25
CN87104001A (en) 1988-01-20
AU7380287A (en) 1988-01-07
ES2004143A6 (en) 1988-12-01
JPH0566688B2 (en) 1993-09-22
KR900003960B1 (en) 1990-06-05

Similar Documents

Publication Publication Date Title
EP0568733B1 (en) Low profile copper foil and process for making bondable metal foils
Dini et al. Electrodeposition of copper
US4590115A (en) Metallizing of plastic substrata
CN1180133C (en) Electrodeposition of metals in small recesses using modulated electric fields
CN100336940C (en) Composite electroforming preparing process for nano silicon carbide particle reinforced nickel base composite material
CN106191933B (en) Method for processing parts based on supercritical fluid 3D electrodeposition
CN106222729B (en) Drill bit supercritical composite electroplating processing method based on moving anode
CN1046899C (en) Stencil for depositing and portioning variously thick spot layers of a viscous material
CN106947997A (en) It is used for the intensifier of the electrolyte flow power of efficient mass transfer in electroplating process
CN1444437A (en) Through-hole filling method
CN108315808A (en) A kind of electroplating production facility
JP3150370U (en) Electrolytic plating equipment
JPS62285321A (en) Manufacture of electrically insulated conductor
US4085010A (en) Process for powder-dispersed composite plating
US5196098A (en) Apparatus and process for electrophoretic deposition
US4046643A (en) Production of multi-metal particles for powder metallurgy alloys
FI83439C (en) Roll in paper machine and process for making it
JP2009120935A (en) Annular plating bath
CN208167143U (en) A kind of electroplating production facility
JPS6160919B2 (en)
JPS6146559B2 (en)
CN208136374U (en) A kind of electroplating bath
CN109487305A (en) Electroforming metal mask equipment and electroforming alloy melt stirring device
KR200358909Y1 (en) Electroplating apparatus obtain two-sided uniform plated layer
JPH0241873Y2 (en)