JPS6160919B2 - - Google Patents

Info

Publication number
JPS6160919B2
JPS6160919B2 JP56152791A JP15279181A JPS6160919B2 JP S6160919 B2 JPS6160919 B2 JP S6160919B2 JP 56152791 A JP56152791 A JP 56152791A JP 15279181 A JP15279181 A JP 15279181A JP S6160919 B2 JPS6160919 B2 JP S6160919B2
Authority
JP
Japan
Prior art keywords
electrodeposition
flow path
coated
electrically insulated
insulated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56152791A
Other languages
Japanese (ja)
Other versions
JPS5853967A (en
Inventor
Aiichiro Hashizume
Yukio Yamamoto
Masami Inoe
Hideki Chidai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15279181A priority Critical patent/JPS5853967A/en
Publication of JPS5853967A publication Critical patent/JPS5853967A/en
Publication of JPS6160919B2 publication Critical patent/JPS6160919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、電気絶縁導体の製造方法および装
置に関するものであり、より詳しくは、電気導体
に縁越物を電気泳動を利用して電着して電気絶縁
導体を製造する方法および装置に関するものであ
る。 この種の技術の原理は、第1図に示すように、
電着槽1内に水性アクリル系電着塗料2を収容
し、この電着塗料2中に導体の被塗物3を浸漬
し、被塗物3を陽極、電着槽1を陰極として直流
電圧Eを印加し、被塗物3の表面に電着皮膜を形
成するものである。こゝで、被塗物3は図示のよ
うに亀甲形導体が用いられている。 かかる電気絶縁導体の製造方法および装置にお
いては、本発明者らがすでに提案したマイカ粉と
水分散形ワニスからなる電着塗料による電着析出
絶縁層の形成に際して、マイカ粉が沈降するた
め、電着塗料を常時撹拌してマイカの沈降を防い
で水分散ワニスとマイカ粉の混合状態を均一に維
持することが必要となる。一方、マイカ粉と水分
散ワニスからなる電着塗料の撹拌は、電着塗料の
流れが水深によらず等速でゆるやかな層流がもつ
とも好ましいが、実際には水深差により流速が相
違したりすることから完全な層流は得難く、結
局、撹拌のための乱流を含んだ定流が好ましいこ
とになる。 第2図は、かかる電着塗料を用いた電着槽中の
電着塗料の、従来の撹拌方式を示したもので、電
着槽1内に底部と一側に矢印Aで示す主流を形成
する第1の仕切板4を設け、この仕切板4にノズ
ル5を備え、その前方に被塗物3を位置せしめ
る。6は第2の仕切板で、仕切板4に対向して設
けられ、流出口7を備えている。ポンプ8は電着
塗料2を主流からノズル5、流出口7を経て回流
させるためのポンプである。この場合、ノズル5
から出る主流のみでは、流速が小さいとマイカ粉
が沈降し、反対に流速が大に過ぎると電着された
被膜の成分比が電着塗料2の成分と相違して良好
な電着が得られないことから、第1の仕切板の底
部に近く、主流と反対方向の矢印Bで示す方向の
流れを加えて撹拌し、マイカ粉の沈降を防止する
ようにしている。しかし、このような従来の方法
では矢印Bで示す流れが主流と同じ方向の流れと
なり、液面の流速を加速するようになる。また、
被塗物3が複雑な形状の亀甲形導体のような場合
は、導体表面に形成された電着皮膜が、電着塗料
の流れに対面している部分と影の部分で形成被膜
にバラツキが生じる等の問題があつた。 この発明は、以上の点に着目してなされたもの
であり、電着槽中の電着塗料の水分散ワニスとマ
イカ粉が均一に分散し、かつ、マイカ粉の沈降も
なく、さらに、形成された電着皮膜の厚さ、組成
が均一で良好である電気絶縁導体の製造方法を具
現することを目的とするものである。 また、この発明の目的は、電着槽中の電着塗料
の流れが被塗物位置で一定の層流をなし、マイカ
粉の沈降を防ぐ乱流を伴なわしめ、さらに電着皮
膜を均一になしうる電気絶縁導体の製造装置を提
供するにある。 以下、この発明を、図面の実施例を参照して説
明する。 第3図の一実施例において、電着槽11内に、
その底壁11aと一側壁11bに沿つて矢印Pで
示す主流路を形成する第1の仕切板14を配設
し、この仕切板14の直立部に適宜にノズル15
を備える。16は第2の仕切板で側壁11bに対
向する側壁11cに沿つて矢印Rで示す環流路を
形成するように配設され、仕切板16の上縁16
aは電着塗料12の液面より下方に位置する。1
9は第1の仕切板14の底部14a上に沿つて主
流と同一方向に流れる矢印Qで示す撹拌流路を逆
方向に反転する転向板で、仕切板14に固定され
ている。第1、第2のポンプ18a,18bは、
還流路Rから取水してそれぞれ主流路P、撹拌流
路Qを生ぜしめる。被塗物13はノズル15前方
に主流路の流れに平行に垂下されている。 電着皮膜の形成に際しては、ノズル15から吐
き出された電着塗料は被塗物13の位置で一定の
層流を形成し、そのあと第2の仕切板16の上縁
16aの上方を通つて還流路Rを経て取水口20
からポンプ18a,18bに至る。ポンプ18a
は再びノズル15へ電着塗料を送流し、ポンプ1
8bは主流路Pと平行に撹拌流路Qに電着塗料を
送流するが、この撹拌流路Qは転向板19で反転
され、徐々に上方に向つて被塗物13の位置を通
過後の主流に合流して還流路Rに至るのである。
このとき、転向板19で反転した流れは、主流路
Pの流速を加速することなく、主流路Pの流速が
もつとも弱くなつている領域の流れを促進する作
用を伴なう。かくして、被塗物位置での一定の層
流と共に満足しうる撹拌効果が達成される。 以上の場合、電着塗料の主流の流速は3m/
minないし10m/minの範囲が好適である。 また、被塗物が亀甲形導体のようなときは、被
塗物13を第4図に示すように、電着塗料の主流
路Pに対して平行にセツトし、電着中間時点で被
塗物13を鉛直線に関して、実線で示す状態から
180゜回動して破線で示す状態にして電着を行な
うことにより、主流路Pの流れに対面している部
分と影の部分での電着被膜のバラツキが少なく、
均一な厚さの電着皮膜を施こすことができる。 さらに、これらの電気導体に電着皮膜を形成す
る工程を自動化することができ、第5図の工程概
略図を参照して、その実施例を概説すると、被塗
物13を移送するコンベア21に隣接して被塗物
13を昇降、回動する掴み装置22がアーム23
に設けられており、コンベア21で移送された被
塗物13は掴み装置22で捕えられ、コンベア2
1をはなれて電着塗料12内に鎖線のように垂
下、浸漬される。浸漬後、電着槽11と被塗物1
3間に電源装置24により直流電圧が必要時間印
加される。このとき、電着進行の中間時に、一旦
直流電圧の印加をやめ、掴み装置22に掴まれて
いる被塗物13を鉛直線に関して180゜回動し、
再び電圧を印加して電着を行ない、電着終了後被
塗物13を再び180゜回動して原状に戻して引上
げ、コンベア21に移す。この場合、自動化機器
は、公知の自動化技術でできるものでよい。 下表は種々の実施例におけるデータである。
The present invention relates to a method and apparatus for manufacturing an electrically insulated conductor, and more particularly to a method and apparatus for manufacturing an electrically insulated conductor by electrodepositing a fringe material onto an electrical conductor using electrophoresis. be. The principle of this type of technology is as shown in Figure 1.
A water-based acrylic electrodeposition paint 2 is placed in an electrodeposition tank 1, a conductive object 3 is immersed in the electrodeposition paint 2, and a DC voltage is applied using the object 3 as an anode and the electrodeposition tank 1 as a cathode. E is applied to form an electrodeposited film on the surface of the object 3 to be coated. Here, as the object 3 to be coated, a hexagonal conductor is used as shown in the figure. In this method and apparatus for producing an electrically insulated conductor, when an electrodeposited insulating layer is formed using an electrodeposited paint consisting of mica powder and water-dispersed varnish, which the present inventors have already proposed, the mica powder settles, so the electrical It is necessary to constantly stir the applied paint to prevent the mica from settling and maintain a uniform state of mixing of the water-dispersed varnish and mica powder. On the other hand, stirring an electrodeposition paint made of mica powder and water-dispersed varnish is preferable because the flow of the electrodeposition paint is a gentle laminar flow with a uniform velocity regardless of the water depth, but in reality, the flow speed may differ depending on the water depth. Therefore, it is difficult to obtain a completely laminar flow, and in the end, a constant flow including turbulent flow for stirring is preferable. Fig. 2 shows the conventional stirring method of the electrodeposition paint in the electrodeposition tank using such an electrodeposition paint, in which a mainstream is formed at the bottom and one side of the electrodeposition tank 1 as indicated by the arrow A. A first partition plate 4 is provided, this partition plate 4 is provided with a nozzle 5, and the object to be coated 3 is positioned in front of the nozzle 5. Reference numeral 6 denotes a second partition plate, which is provided opposite to the partition plate 4 and is provided with an outlet 7. The pump 8 is a pump for circulating the electrodeposition paint 2 from the main flow through the nozzle 5 and the outlet 7. In this case, nozzle 5
If the flow rate is too low, the mica powder will settle, but if the flow rate is too high, the component ratio of the electrodeposited film will be different from that of electrodeposition paint 2, and good electrodeposition will not be obtained. Therefore, a flow in the direction shown by arrow B, which is opposite to the main flow, is applied near the bottom of the first partition plate to stir the mica powder and prevent the mica powder from settling. However, in such a conventional method, the flow indicated by arrow B flows in the same direction as the main flow, accelerating the flow velocity at the liquid surface. Also,
When the object to be coated 3 is a complex-shaped conductor, the electrodeposited film formed on the conductor surface may vary between the part facing the flow of the electrodeposited paint and the part in the shadow. There were some problems that occurred. This invention was made with attention to the above points, and the water-dispersed varnish and mica powder of the electrodeposition paint in the electrodeposition bath are uniformly dispersed, there is no sedimentation of the mica powder, and further, the formation of The object of the present invention is to realize a method for manufacturing an electrically insulated conductor in which the thickness and composition of the electrodeposited film are uniform and good. Another object of the present invention is to make the flow of the electrodeposition paint in the electrodeposition tank a constant laminar flow at the position of the object to be coated, to create a turbulent flow that prevents the mica powder from settling, and to make the electrodeposition film uniform. An object of the present invention is to provide an apparatus for producing an electrically insulated conductor. Hereinafter, the present invention will be explained with reference to embodiments of the drawings. In one embodiment of FIG. 3, in the electrodeposition bath 11,
A first partition plate 14 forming a main flow path indicated by an arrow P is provided along the bottom wall 11a and one side wall 11b.
Equipped with. Reference numeral 16 denotes a second partition plate, which is disposed so as to form a circulation path shown by an arrow R along the side wall 11c opposite to the side wall 11b.
a is located below the liquid level of the electrodeposition paint 12. 1
Reference numeral 9 denotes a turning plate which is fixed to the partition plate 14 and reverses the stirring flow path shown by the arrow Q flowing in the same direction as the main stream along the bottom 14a of the first partition plate 14 in the opposite direction. The first and second pumps 18a and 18b are
Water is taken from the reflux path R to create a main flow path P and a stirring flow path Q, respectively. The object to be coated 13 is suspended in front of the nozzle 15 parallel to the flow of the main flow path. When forming an electrodeposition film, the electrodeposition paint discharged from the nozzle 15 forms a certain laminar flow at the position of the object 13 to be coated, and then passes above the upper edge 16a of the second partition plate 16. Water intake 20 via return channel R
to pumps 18a and 18b. pump 18a
sends the electrodeposition paint to the nozzle 15 again, and pump 1
8b sends the electrocoating paint to the stirring channel Q parallel to the main channel P, but this stirring channel Q is reversed by the turning plate 19 and gradually moves upward after passing the position of the object 13 to be coated. It merges with the main flow of the water and reaches the reflux path R.
At this time, the flow reversed by the turning plate 19 does not accelerate the flow velocity in the main flow path P, but has the effect of promoting the flow in a region where the flow speed in the main flow path P is weak. A satisfactory stirring effect is thus achieved with a constant laminar flow at the location of the workpiece. In the above case, the mainstream flow velocity of the electrodeposition paint is 3 m/
A range of min to 10 m/min is preferred. In addition, when the object to be coated is a hexagonal conductor, the object to be coated 13 is set parallel to the main channel P of the electrodeposition paint, as shown in FIG. From the state where object 13 is shown as a solid line with respect to the vertical line
By rotating it 180 degrees and performing electrodeposition as shown by the broken line, there is less variation in the electrodeposited film between the part facing the flow of the main channel P and the shaded part.
An electrodeposited film of uniform thickness can be applied. Furthermore, the process of forming an electrodeposited film on these electrical conductors can be automated. Referring to the process schematic diagram in FIG. An arm 23 is adjacent to a gripping device 22 that lifts, lowers, and rotates the object 13 to be coated.
The object to be coated 13 transferred by the conveyor 21 is caught by the gripping device 22, and
1 is separated and hangs down and immersed in the electrodeposition paint 12 as shown by the chain line. After dipping, the electrodeposition tank 11 and the object to be coated 1
3, a DC voltage is applied by the power supply device 24 for the necessary time. At this time, in the middle of the progress of electrodeposition, the application of the DC voltage is temporarily stopped, and the object 13 to be coated, which is gripped by the gripping device 22, is rotated by 180 degrees with respect to the vertical line.
The voltage is applied again to perform electrodeposition, and after the electrodeposition is completed, the object 13 to be coated is again rotated 180 degrees to return to its original state, pulled up, and transferred to the conveyor 21. In this case, the automated equipment may be of any known automation technology. The table below provides data for various examples.

【表】 すなわち、実施例1においては、電着槽に、水
分散ワニスの樹脂分10重量部に対しマイカ粉90重
量部の割合で混入し、イオン交換水を加えた不揮
発分15%の電着塗料を調製した。この電着塗料を
8m/minの流速の定流とし、亀甲形の被塗物に
ついて、直流電圧100Vを12秒間印加した時点で
180゜回動し、再び同様に12秒間電圧印加し、厚
さ1.0mmの電着皮膜が形成できたことを示してい
る。 実施例1、2、3共に、電着皮膜は電着塗料の
液組成と異なることなく、均一な組成、厚さの皮
膜であつた。
[Table] That is, in Example 1, 90 parts by weight of mica powder was mixed with 10 parts by weight of the resin content of the water-dispersed varnish, and 15% non-volatile content electrodeposition was added to the electrodeposition bath with ion-exchanged water. A coating material was prepared. This electrodeposition paint
When a DC voltage of 100V was applied for 12 seconds to a tortoiseshell-shaped object with a constant flow rate of 8m/min,
It was rotated 180° and voltage was applied again for 12 seconds in the same manner, indicating that an electrodeposited film with a thickness of 1.0 mm was formed. In Examples 1, 2, and 3, the electrodeposited films had a uniform composition and thickness, without being different from the liquid composition of the electrodeposition paint.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電着被膜形成の原理図、第2図は従来
技術の概略図、第3図はこの発明の一実施例の概
略構成図、第4図は同じく被塗物の回動を示す略
図、第5図は同じく他の実施例の概略構成図であ
る。 11:電着槽、12:電着塗料、13:被塗
物、14:第1の仕切板、15:ノズル、16:
第2の仕切板、18a,18b:第1、第2のポ
ンプ、19:転向板、21:コンベア、22:掴
み装置、23:アーム、24:電源装置。
Fig. 1 is a diagram of the principle of electrodeposited film formation, Fig. 2 is a schematic diagram of the prior art, Fig. 3 is a schematic diagram of an embodiment of the present invention, and Fig. 4 also shows the rotation of the object to be coated. FIG. 5 is a schematic diagram of another embodiment. 11: Electrodeposition tank, 12: Electrodeposition paint, 13: Object to be coated, 14: First partition plate, 15: Nozzle, 16:
Second partition plate, 18a, 18b: first and second pumps, 19: turning plate, 21: conveyor, 22: gripping device, 23: arm, 24: power supply device.

Claims (1)

【特許請求の範囲】 1 電着槽に収容され水分散形ワニスとマイカ粉
を水に分散させた電着塗料の中に導体の被塗物を
浸漬して一方の電極として他方の電極となる前記
電着槽との間に直流電圧を印加して前記被塗物に
電着皮膜を形成する電気絶縁導体の製造方法にお
いて、前記電着槽の底部に沿つて第1、第2の二
重流路を形成し、下方の前記第1の流路を主流路
として前記被塗物の位置に3m/min〜10m/min
定速層流を与え、上方の前記第2の流路を撹拌流
路として前記被塗物の位置下方で反転して前記被
塗物の位置を通過した前記主流路と合流還流せし
め、かつ、前記被塗物を電着進行の中間時点で鉛
直線に関して一定角度回動して前記電着皮膜を形
成することを特徴とする電気絶縁導体の製造方
法。 2 被塗物の回動は、回動角がほぼ180゜である
特許請求の範囲第1項記載の電気絶縁導体の製造
方法。 3 電着皮膜の形成完了までの工程を自動的に行
なう特許請求の範囲第1項記載の電気絶縁導体の
製造方法。 4 電着槽に収容され水分散形ワニスとマイカ粉
末を水に分散させた電着塗料の中に電気導体でな
る被塗物を浸漬して一方の電極とし、他方の電極
となる前記電着槽との間に直流電圧を印加して前
記被塗物に電着皮膜を形成する電気絶縁導体の製
造装置において、前記電着槽の底面との間に主流
路を形成し側部に前記被塗物の位置に定速層流を
与える前記主流路のノズルを備えた第1の仕切板
と、前記側壁に対向する他の側壁との間に還流路
を形成する第2の仕切板と、前記第1の仕切板の
底部に沿う撹拌流路を反転して前記被塗物を通過
した前記主流路と合流せしめる転向板と、前記塗
物を前記電着塗料中に垂下浸漬しさらに前記被塗
物を鉛直線に関して一定角度回動する手段を備え
てなることを特徴とする電気絶縁導体の製造装
置。 5 還流路と主流路間および前記還流路と撹拌流
路間にそれぞれ第1、第2のポンプ手段を備えた
特許請求の範囲第4項記載の電気絶縁導体の製造
装置。
[Scope of Claims] 1 A conductor to be coated is immersed in an electrodeposition paint containing a water-dispersible varnish and mica powder dispersed in water, which is housed in an electrodeposition bath, and becomes one electrode and the other electrode. In the method for manufacturing an electrically insulated conductor, the electrodeposited film is formed on the object by applying a DC voltage between the electrodeposition tank and the electrodeposition tank. Form a flow path, and use the first flow path below as the main flow path at the position of the object to be coated at 3 m/min to 10 m/min.
A constant velocity laminar flow is applied, and the upper second flow path is used as a stirring flow path and reversed below the position of the object to be coated to merge with the main flow path that has passed through the position of the object to be coated, and to cause reflux. A method for manufacturing an electrically insulated conductor, characterized in that the electrodeposition film is formed by rotating the object to be coated at a certain angle with respect to a vertical line at an intermediate point in the progress of electrodeposition. 2. The method for producing an electrically insulated conductor according to claim 1, wherein the object to be coated is rotated at a rotation angle of approximately 180°. 3. A method for producing an electrically insulated conductor according to claim 1, wherein the steps up to the completion of forming the electrodeposited film are automatically performed. 4. A coated object made of an electrical conductor is immersed in an electrodeposition paint containing a water-dispersible varnish and mica powder dispersed in water, which is housed in an electrodeposition bath, to form one electrode, and the electrodeposition to become the other electrode. In an apparatus for manufacturing an electrically insulated conductor that forms an electrodeposited film on the object by applying a DC voltage between the electrodeposition tank and the electrodeposition tank, a main channel is formed between the electrodeposition tank and the bottom surface of the electrodeposition tank, and the electrodeposition film is formed on the side of the electrically insulated conductor. a first partition plate including a nozzle in the main flow path that provides a constant velocity laminar flow to the position of the coating material; and a second partition plate that forms a return flow path between the other side wall facing the side wall; a turning plate for reversing the stirring flow path along the bottom of the first partition plate so that it merges with the main flow path passing through the object to be coated; An apparatus for manufacturing an electrically insulated conductor, comprising means for rotating a coating material at a fixed angle with respect to a vertical line. 5. The electrically insulated conductor manufacturing apparatus according to claim 4, further comprising first and second pump means between the reflux path and the main flow path and between the reflux path and the stirring flow path, respectively.
JP15279181A 1981-09-25 1981-09-25 Preparation of insulating material of electric conductor and its device Granted JPS5853967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15279181A JPS5853967A (en) 1981-09-25 1981-09-25 Preparation of insulating material of electric conductor and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15279181A JPS5853967A (en) 1981-09-25 1981-09-25 Preparation of insulating material of electric conductor and its device

Publications (2)

Publication Number Publication Date
JPS5853967A JPS5853967A (en) 1983-03-30
JPS6160919B2 true JPS6160919B2 (en) 1986-12-23

Family

ID=15548221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15279181A Granted JPS5853967A (en) 1981-09-25 1981-09-25 Preparation of insulating material of electric conductor and its device

Country Status (1)

Country Link
JP (1) JPS5853967A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660439B2 (en) * 1986-12-26 1994-08-10 三菱電機株式会社 Electrodeposition insulation method
JP2003049994A (en) * 2001-08-03 2003-02-21 Ito Koki Kk Drain valve for lpg tank
CN106868570B (en) * 2017-04-25 2019-11-08 广东工业大学 A kind of metal surface modifying device
JP6851522B1 (en) * 2020-03-18 2021-03-31 株式会社大気社 Surface treatment equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136238A (en) * 1976-05-12 1977-11-14 Kansai Paint Co Ltd Process for electrodeposition coating
JPS5310638A (en) * 1976-07-16 1978-01-31 Mitsubishi Electric Corp Method of electrodeposition
JPS5336533A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Electrodeposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136238A (en) * 1976-05-12 1977-11-14 Kansai Paint Co Ltd Process for electrodeposition coating
JPS5310638A (en) * 1976-07-16 1978-01-31 Mitsubishi Electric Corp Method of electrodeposition
JPS5336533A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Electrodeposition

Also Published As

Publication number Publication date
JPS5853967A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
CN100564606C (en) Apparatus for continuous electrodepositing of metallic film and method thereof
US3200057A (en) Electrophoretic coating process
US3496082A (en) Electrophoretic coating method and apparatus utilizing bath circulation to minimize impurities
US2554803A (en) Apparatus for the application of finishing materials by dipping
US3200058A (en) Cyclical current reversal for an electrophoretic deposition
JPS6160919B2 (en)
US3424663A (en) Process for electrophoretic deposition using complexing agents
US4033832A (en) Method for selective plating
US5196098A (en) Apparatus and process for electrophoretic deposition
US2052131A (en) Spreading, extruding, or like operations
JPS62133097A (en) Apparatus for plating semiconductor wafer
KR900003233Y1 (en) Electro-deposition insulating device
DE1261032B (en) Method and device for applying electrically separable organic coatings to small metal objects
KR900003960B1 (en) Manufacture of electrically insulated conductor
US3752750A (en) Method for electrodeposition
JPS6112897A (en) Coating of shearing edge
US3499828A (en) Reconstituting electrocoating baths
US3573191A (en) Apparatus for reconstituting electrocoating baths
DE1921982C3 (en) Process for the electrophoretic coating of the surface of an electrical conductor with a polymeric product
JPH0660439B2 (en) Electrodeposition insulation method
JPH01139799A (en) Barrel plating apparatus
JPH01255697A (en) Method for insulating electrodeposition
US3616388A (en) Process for the production of electrical insulation
JPH0348211Y2 (en)
JPS6138280B2 (en)