JPS62284524A - Complementary type mos integrated circuit - Google Patents

Complementary type mos integrated circuit

Info

Publication number
JPS62284524A
JPS62284524A JP61128367A JP12836786A JPS62284524A JP S62284524 A JPS62284524 A JP S62284524A JP 61128367 A JP61128367 A JP 61128367A JP 12836786 A JP12836786 A JP 12836786A JP S62284524 A JPS62284524 A JP S62284524A
Authority
JP
Japan
Prior art keywords
channel mos
circuit
mos transistor
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61128367A
Other languages
Japanese (ja)
Inventor
Yukio Miyazaki
行雄 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61128367A priority Critical patent/JPS62284524A/en
Publication of JPS62284524A publication Critical patent/JPS62284524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce the through current of a output circuit at the time of switching, and to reduce spike noise and power consumption at the time of the switching by interposing a specific resistor between the p and n channel MOS transistors(TR) of an output front-stage circuit. CONSTITUTION:An analog switch 9 is interposed between the drain of the 2nd p channel MOS TR 7 of the output front-stage circuit and the drain of the 2nd n channel MOS TR 8, and this is composed of the 3rd p channel MOS TR 10 whose source and drain are connected in common and the 3rd n channel MOS TR 11. Then, the gate of the 3rd p channel MOS TR 10 is grounded and the gate of the 3rd n channel MOS TR 11 is connected to a power source. Consequently, the through current of the output circuit at the time of the switching is reduced and spike noises and power consumption at the time of the switching are also reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は相補型MOS集積回路(以下CMOS回路)に
関し、特に高速化を図る等の理由で出力回路のドライバ
能力を大きく設定した場合でもノイズの発生を低減でき
るものに関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a complementary MOS integrated circuit (hereinafter referred to as a CMOS circuit), and particularly relates to a complementary MOS integrated circuit (hereinafter referred to as a CMOS circuit). This relates to something that can reduce the generation of noise even when the value is set to a large value.

〔従来の技術〕[Conventional technology]

第3図はCMO5出力回路を示し、図において5.1は
入力端子、2は出力端子、3は電圧VCCの電源が供給
される電源端子、4はグランド(GND)端子、5は第
1のpチャネルMOSトランジスタ、6は第1のnチャ
ネルMOS)ランジスクである。
Figure 3 shows the CMO5 output circuit, in which 5.1 is an input terminal, 2 is an output terminal, 3 is a power supply terminal to which power of voltage VCC is supplied, 4 is a ground (GND) terminal, and 5 is a first terminal. A p-channel MOS transistor, 6 is a first n-channel MOS transistor.

このようなCMOS回路では、入力端子lの入力電圧が
GN011位である時はpチャネルMOSトランジスタ
5がオンし、nチャネルMo51〜ランジスタロがオフ
し、出力端子2はVCCの電位となる。逆に入力電圧が
VCC電位である時、pチャネルMOSトランジスタ5
がオフし、nチャネルMOSトランジスタロがオンし、
出力端子2はGND電位となる。入力電位がGNDとV
CCO間にある時は、pチャネルMoSトランジスタ5
とnチャネルMOSI−ランジスタロのオン抵抗比によ
り出力端子2の電位が決定される。
In such a CMOS circuit, when the input voltage of the input terminal 1 is about GN011, the p-channel MOS transistor 5 is turned on, the n-channel Mo51 to transistor are turned off, and the output terminal 2 has the potential of VCC. Conversely, when the input voltage is at VCC potential, the p-channel MOS transistor 5
turns off, the n-channel MOS transistor turns on,
Output terminal 2 is at GND potential. Input potential is GND and V
When between CCO, p-channel MoS transistor 5
The potential of the output terminal 2 is determined by the on-resistance ratio of the n-channel MOSI and transistor.

第4図は、第3図の回路に於ける貫通電流(I6.)対
入力電圧(VIN)の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the through current (I6.) and the input voltage (VIN) in the circuit of FIG.

図中■7□はnチャネルMOSトランジスタ6のしきい
値電圧、V T 11 PはpチャネルMOSトランジ
スタのしきい値電圧である。同図に示す様に、通常は入
力電位がおよそ1/2Vccの時に貫通電流(I cc
)の値がピークをもつ様にpチャネルMOSトランジス
タ5及びnチャネルMOSトランジスタロのトランジス
タサイズが決定されている。
In the figure, ■7□ is the threshold voltage of the n-channel MOS transistor 6, and V T 11 P is the threshold voltage of the p-channel MOS transistor. As shown in the figure, normally when the input potential is approximately 1/2 Vcc, the through current (Icc
) The transistor sizes of the p-channel MOS transistor 5 and the n-channel MOS transistor 5 are determined so that the value of ) has a peak.

第5図は、出力回路を駆動する出力前段回路を含めた回
路図であり、第2のpチャネルMOSトランジスタ7及
び第2のnチャネルMOSトランジスタ8により、第3
図に示す出力回路が駆動される。第7図は、上記CMO
S出力回路が基板に実装された場合の回路図であり、V
CC端子3と外部電源VCC及びGND端子4の外部電
源のGNDとの間には、L成分(集積回路内のフレーム
、金線、プリント基板の配線にできるL成分)が入って
しまう。
FIG. 5 is a circuit diagram including a pre-output circuit that drives the output circuit, in which a third p-channel MOS transistor 7 and a second n-channel MOS transistor 8 are used.
The output circuit shown in the figure is driven. Figure 7 shows the above CMO
This is a circuit diagram when the S output circuit is mounted on a board, and V
Between the CC terminal 3 and the external power supply VCC and the GND of the external power supply of the GND terminal 4, an L component (an L component formed in the frame in the integrated circuit, the gold wire, and the wiring on the printed circuit board) is introduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

最近の高速化要求に伴い、出力回路を構成するMOSト
ランジスタの電流容量(ドライブ能力)は、非常に大き
く設定されてきている(例えばVcc”5Vで200〜
30mA)ので、それニつれて、既に述べられた貫通電
流も増大し、第7図に示す回路に於いて、し成分により
発生するスパイク電圧 す事が多くなってきている。第8図は出力端子2の波形
の一例で横軸は時間、縦軸は電圧を示し、この図かられ
かるように回路の“L″−“H”。
With the recent demand for higher speeds, the current capacity (drive capacity) of the MOS transistors that make up the output circuit has been set to be extremely large (for example, 200 to
30 mA), the through current mentioned above also increases, and in the circuit shown in FIG. 7, spike voltages generated by the ion component are becoming more common. FIG. 8 is an example of the waveform of the output terminal 2, where the horizontal axis shows time and the vertical axis shows voltage, and as can be seen from this figure, the "L"-"H" of the circuit.

又は′H”−”L”への動作時に大きなスパイクノイズ
が発生し、この回路で駆動する他の回路が誤動作を引き
起こすという問題点があった。
Alternatively, there is a problem in that a large spike noise is generated during the operation from 'H' to 'L', causing malfunction of other circuits driven by this circuit.

この発明は上記の問題点を解決する為になされたもので
、出力回路を構成するMOSトランジスタのドライブ能
力を上げた時でも、貫通電流の増加を抑え、スイッチン
グ(動作)時のスパイクノイズを低減すると共に、貫通
電流の増加による消費電力の増加をも抑えた相補型MO
S集積回路を提供することを目的とする。
This invention was made to solve the above problems. Even when the drive capacity of the MOS transistors that make up the output circuit is increased, the increase in through current is suppressed and spike noise during switching (operation) is reduced. At the same time, it is a complementary MO that suppresses the increase in power consumption due to the increase in through current.
The purpose of the present invention is to provide an S integrated circuit.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る相補型MO5集積回路装置は、出力回路
を駆動する出力前段回路を、pチャネルMO5トランジ
スタと、nチャネルMOSトランジスタと、該2つのト
ランジスタ間に直列に接続された抵抗器とから構成した
ものである。
In the complementary MO5 integrated circuit device according to the present invention, the output pre-stage circuit that drives the output circuit is composed of a p-channel MO5 transistor, an n-channel MOS transistor, and a resistor connected in series between the two transistors. This is what I did.

〔作用〕[Effect]

この発明においては、上記出力前段回路をすをヤネルM
OSトランジスタと、該2つのトランジスタ間に直列に
接続された抵抗器とから構成したから、出力回路のスイ
ッチング時の貫通電流を減少させ、これによりスイッチ
ング時のスパイクノイズの減少と共に消費電力の低減を
図ることができる。
In this invention, the output pre-stage circuit is
Since it is composed of an OS transistor and a resistor connected in series between the two transistors, the through current during switching of the output circuit is reduced, thereby reducing spike noise during switching and reducing power consumption. can be achieved.

〔実施例〕〔Example〕

以下本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による相補型MOS集積回路
の出力回路及び出力前段回路を示し、図において、第5
図と同一符号は同一のものを示し、9は出力前段回路の
第2のpチャネルMOSI−ランジスタつのドレインと
第2のnチャネルMOSトランジスタ8のドレインとの
間に挿入されたアナログスイッチであり、これはソース
・ドレインがそれぞれ共通な第3のnチャネルMOSト
ランジスタ10と第3のnチャネルMOSI−ランジス
タ11から構成されている。ここで上記第3のpチャネ
ルMOSトランジスタ10のゲートはグランドに上記第
3のnチャネルMOSトランジスタ11のゲートは電源
に接続されている。
FIG. 1 shows an output circuit and a pre-output circuit of a complementary MOS integrated circuit according to an embodiment of the present invention.
The same reference numerals as in the figure indicate the same things, and 9 is an analog switch inserted between the drain of the second p-channel MOS transistor 8 and the drain of the second n-channel MOS transistor 8 of the output pre-stage circuit. This is composed of a third n-channel MOS transistor 10 and a third n-channel MOS I-transistor 11, each having a common source and drain. Here, the gate of the third p-channel MOS transistor 10 is connected to the ground, and the gate of the third n-channel MOS transistor 11 is connected to the power supply.

次に作用効果について説明する。Next, the effects will be explained.

まず、第5図の従来例について貫通電流の値を検討する
。第6図は、第5図の出力前段回路部の等価回路図で、
抵抗R107はpチャネルMOSトランジスタ7のオン
抵抗を表し、抵抗R108はnチャネルMOSトランジ
スタ8のオン抵抗を表す、また表1は、入力電圧(V’
、4)を0からVC迄変化させた時のそれぞれ抵抗R1
07,R108のオン抵抗値の変化を説明し易い様に基
準化して決めたものを示す。
First, the value of the through current for the conventional example shown in FIG. 5 will be examined. FIG. 6 is an equivalent circuit diagram of the output pre-stage circuit section of FIG.
Resistor R107 represents the on-resistance of p-channel MOS transistor 7, resistor R108 represents the on-resistance of n-channel MOS transistor 8, and Table 1 shows the input voltage (V'
, 4) respectively when changing from 0 to VC.
07 and R108 are standardized and determined to facilitate explanation of the change in on-resistance value.

表1 例えばVINが0 (V)(D時、R107(7)抵抗
値を1とし■、がVl  (V)の時10・・・・・・
と決めている。第5図に於いて出力回路のMOSトラン
ジスタ5.6のゲート電圧は同電位で、表1の下段に示
した■。□ VGHの電圧となる。この例では貫通電流
のピークは入力電圧がv2の時で、この時出力回路の両
MOSトランジスタのゲート電圧は50/100 Vc
cすなわち1/2Vccとなり、出力回路に流れる貫通
電流は次式の様に表せる。
Table 1 For example, when VIN is 0 (V) (D, R107 (7) resistance value is 1, and when is Vl (V), it is 10...
I have decided that. In FIG. 5, the gate voltages of MOS transistors 5 and 6 in the output circuit are at the same potential, and are shown in the lower part of Table 1. □ The voltage becomes VGH. In this example, the peak of the through current is when the input voltage is v2, and at this time the gate voltage of both MOS transistors in the output circuit is 50/100 Vc.
c, that is, 1/2 Vcc, and the through current flowing in the output circuit can be expressed as in the following equation.

? にはコンタクタンス係数、■711はMOSトランジス
タのしきい値電圧である。なお、ここでは、pチャネル
MOSトランジスタ5とnチャネルMOSトランジスタ
6のコンダクタンス係数及びしきいチャネル電圧は同じ
としている。例えばV(c=5 V、  Vt、l−0
,7Vとするととなる。
? is the contactance coefficient, and 711 is the threshold voltage of the MOS transistor. Here, it is assumed that the conductance coefficient and threshold channel voltage of p-channel MOS transistor 5 and n-channel MOS transistor 6 are the same. For example, V (c=5 V, Vt, l-0
, 7V.

次に第1図の実施例について同様に貫通電流の値を検討
する。第2図は従来例の第6図に相当し、R107とR
108の間に抵抗R109が挿入されており、出力回路
のpチャネルMOSトランジスタ5とnチャネルMOS
I−ランジスタロとではゲートに印加される電位が異な
る。なお、抵抗R109は第1図に於けるアナログスイ
ッチ9のオン抵抗を表す。ここでVGPIIOはpチャ
ネルMOSトランジスタ5のゲートにかかる電圧+Vl
)N111はnチャネルMOSトランジスタロのゲート
にかかる電圧である。また、表2は表1に相当し、これ
と同様にMOSトランジスタの抵抗値及び挿入した抵抗
器9の抵抗値を基準化して示している。
Next, the value of the through current for the embodiment shown in FIG. 1 will be examined in the same manner. Figure 2 corresponds to Figure 6 of the conventional example, where R107 and R
A resistor R109 is inserted between the p-channel MOS transistor 5 and the n-channel MOS transistor of the output circuit.
The potential applied to the gate is different from that of the I-range star. Note that the resistor R109 represents the on-resistance of the analog switch 9 in FIG. Here, VGPIIO is the voltage +Vl applied to the gate of p-channel MOS transistor 5.
)N111 is the voltage applied to the gate of the n-channel MOS transistor. Further, Table 2 corresponds to Table 1, and similarly shows the resistance values of the MOS transistor and the resistance value of the inserted resistor 9 on a standardized basis.

表2 表2から貫通電流のピークは、入力電圧がv2の時で、
nチャネルMOSトランジスタ8のゲート・ソース間に
かかる電圧は1/AVcc又、pチャネルMOSI−ラ
ンジスタつのゲート・ソース間にかかる電圧もVec 
 3 / 4 Vcc=1 / 4 Vccである0表
1と同様に、この時出力回路に流れる貫通電流を計算す
ると次のようになる。
Table 2 From Table 2, the peak of the through current is when the input voltage is v2,
The voltage applied between the gate and source of the n-channel MOS transistor 8 is 1/AVcc, and the voltage applied between the gate and source of the p-channel MOS transistor 8 is also Vec.
3/4 Vcc=1/4 Vcc 0 Similarly to Table 1, the through current flowing through the output circuit at this time is calculated as follows.

Vcc= 5 V、Vvn−0,7Vとするどとなる。Vcc=5V, Vvn-0.7V, etc.

すなわち、従来例の式(2)に比べ1/10以下に貫通
電流を減少させることができる。
That is, the through current can be reduced to 1/10 or less compared to the conventional equation (2).

このように本実施例回路では、出力回路のスイッチング
時の貫通電流を減少させることができ、スイッチング時
のスパイクノイズの減少、消費電力の低減を図ることが
できる。又、第1図と第5図を比較して、出力回路のp
チャネルMOSトランジスタ5及びnチャネルMOSト
ランジスタロの電流容量(ドライブ能力)は全く差がな
く、容量性負荷に対しても充分な高速性を得られる事は
いうまでもない。また、表2におけるVcpHO。
In this way, in the circuit of this embodiment, the through current during switching of the output circuit can be reduced, and spike noise during switching can be reduced, as well as power consumption. Also, by comparing Figures 1 and 5, the output circuit p
There is no difference in current capacity (drive ability) between the channel MOS transistor 5 and the n-channel MOS transistor 5, and it goes without saying that sufficient high speed can be obtained even with a capacitive load. Also, VcpHO in Table 2.

■。、111は抵抗比で決定されるが、第1図に於いて
全ての抵抗はMOSトランジスタで形成されており、バ
ラツキは同様に発生(例えば、ゲート長しがなくなるあ
るいは細くなる等)するので、抵抗比はほとんど変化せ
ず、バラツキに対して、強い回路と言える。
■. , 111 are determined by the resistance ratio, but in FIG. 1, all the resistors are formed by MOS transistors, and variations occur in the same way (for example, the gate length disappears or becomes thinner, etc.). The resistance ratio hardly changes, and it can be said that the circuit is resistant to variations.

なお、上記実施例ではアナログスイッチを常時オンさせ
て抵抗器として利用したが、これはMOSトランジスタ
のオン抵抗を抵抗器として利用するものであればどのよ
うなものでも良い。
In the above embodiment, the analog switch is always turned on and used as a resistor, but any type of switch may be used as long as it uses the on-resistance of a MOS transistor as a resistor.

また、本発明は相補型MOS集積回路だけでな(他のM
OS回路にも適用可能である。
Furthermore, the present invention is applicable not only to complementary MOS integrated circuits (other MOS integrated circuits).
It is also applicable to OS circuits.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にかかる相補型MOS集積回路によ
れば、出力前段回路をpチャネルMOSトランジスタと
、nチャネルMOSI−ランジスタと、該2つのトラン
ジスタ間に直列に接続された抵抗器とから構成したので
、出力回路のスイッチング時の貫通電流を減少させ、こ
れによりスイッチング時のスパイクノイズの減少と共に
消費電力の低減を図ることができる。
As described above, according to the complementary MOS integrated circuit according to the present invention, the output pre-stage circuit is composed of a p-channel MOS transistor, an n-channel MOS I-transistor, and a resistor connected in series between the two transistors. Therefore, it is possible to reduce the through current during switching of the output circuit, thereby reducing spike noise during switching and reducing power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による相補型MOS集積回
路を示す図、第2図は第1図の出力前段回路の等価回路
図、第3図は一般的なCMOS回路の最小単位の回路構
成を示す図、第4図は第3図の回路の貫通電流を示す図
、第5図は従来の出力回路及び出力前段回路を示す図、
第6図は第5図の出力前段回路の等価回路図、第7図は
従来の回路の基板実装時の等価回路図、第8図はスパイ
クノイズを示す図である。 1・・・入力端子、2・・・出力端子、3・・・電源端
子、4・・・グランド端子、5.7.10・・・pチャ
ネルMOSトランジスタ、6.8.11・・・nチャネ
ルMOSトランジスタ、9・・・アナログスイッチ。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing a complementary MOS integrated circuit according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of the output pre-stage circuit of FIG. 1, and FIG. 3 is a circuit of the minimum unit of a general CMOS circuit. A diagram showing the configuration, FIG. 4 is a diagram showing the through current of the circuit in FIG. 3, and FIG. 5 is a diagram showing the conventional output circuit and output pre-stage circuit.
FIG. 6 is an equivalent circuit diagram of the output pre-stage circuit of FIG. 5, FIG. 7 is an equivalent circuit diagram of the conventional circuit when it is mounted on a board, and FIG. 8 is a diagram showing spike noise. 1... Input terminal, 2... Output terminal, 3... Power supply terminal, 4... Ground terminal, 5.7.10... P channel MOS transistor, 6.8.11... n Channel MOS transistor, 9...analog switch. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)第1のpチャネルMOSトランジスタと第1のn
チャネルMOSトランジスタとを電源と接地間に直列に
接続してなる出力回路と、該出力回路を駆動する前段回
路とを有する相補型MOS集積回路において、 上記前段回路は、第2のpチャネルMOSトランジスタ
と、第2のnチャネルMOSトランジスタと、該2つの
トランジスタ間に直列に接続された抵抗器とからなるこ
とを特徴とする相補型MOS集積回路。
(1) First p-channel MOS transistor and first n-channel MOS transistor
In a complementary MOS integrated circuit, the circuit includes an output circuit including a channel MOS transistor connected in series between a power supply and ground, and a front-stage circuit that drives the output circuit, the front-stage circuit comprising a second p-channel MOS transistor. A complementary MOS integrated circuit comprising: a second n-channel MOS transistor; and a resistor connected in series between the two transistors.
(2)上記抵抗器はそのゲートが、グランドに接続され
た第3のpチャネルMOSトランジスタとそのゲートが
電源に接続された第3のnチャネルMOSトランジスタ
とが並列に接続されてなることを特徴とする特許請求の
範囲第1項記載の相補型MOS集積回路。
(2) The resistor is characterized in that a third p-channel MOS transistor whose gate is connected to the ground and a third n-channel MOS transistor whose gate is connected to the power supply are connected in parallel. A complementary MOS integrated circuit according to claim 1.
JP61128367A 1986-06-02 1986-06-02 Complementary type mos integrated circuit Pending JPS62284524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128367A JPS62284524A (en) 1986-06-02 1986-06-02 Complementary type mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128367A JPS62284524A (en) 1986-06-02 1986-06-02 Complementary type mos integrated circuit

Publications (1)

Publication Number Publication Date
JPS62284524A true JPS62284524A (en) 1987-12-10

Family

ID=14983070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128367A Pending JPS62284524A (en) 1986-06-02 1986-06-02 Complementary type mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS62284524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305616A (en) * 1988-06-02 1989-12-08 Toshiba Corp Output circuit for semiconductor integrated circuit
EP0416409A2 (en) * 1989-09-06 1991-03-13 National Semiconductor Corporation Spike current reduction in CMOS switch drivers
JPH03230616A (en) * 1990-02-05 1991-10-14 Fujitsu Ltd Cmos output circuit
JPH04330822A (en) * 1991-01-14 1992-11-18 Toshiba Corp Cmos output buffer circuit
US6329866B1 (en) 1999-01-29 2001-12-11 Nec Corporation Transient current producing method, transient current producing circuit, related semiconductor integrated circuit and logical circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305616A (en) * 1988-06-02 1989-12-08 Toshiba Corp Output circuit for semiconductor integrated circuit
EP0416409A2 (en) * 1989-09-06 1991-03-13 National Semiconductor Corporation Spike current reduction in CMOS switch drivers
JPH03230616A (en) * 1990-02-05 1991-10-14 Fujitsu Ltd Cmos output circuit
JPH04330822A (en) * 1991-01-14 1992-11-18 Toshiba Corp Cmos output buffer circuit
US6329866B1 (en) 1999-01-29 2001-12-11 Nec Corporation Transient current producing method, transient current producing circuit, related semiconductor integrated circuit and logical circuit

Similar Documents

Publication Publication Date Title
JP3435007B2 (en) Buffer that outputs high voltage swing by low voltage technology
JP2922028B2 (en) Output circuit of semiconductor integrated circuit
JPH0529995B2 (en)
US4806802A (en) CMOS circuit having shoot through current control
JPS6257318A (en) Cmos buffer circuit for receiving ttl level input
JPS62284524A (en) Complementary type mos integrated circuit
KR900007377B1 (en) Complementary mos integrated circuit with state
JPH0613884A (en) Signal translator circuit
JPH0677804A (en) Output circuit
JP2001308694A (en) Low noise buffer circuit
JPS6213120A (en) Semiconductor device
JPH06104732A (en) Ic output circuit
KR910001069B1 (en) Complementary mosaic
JPS6360625A (en) Complementary 3-state mos integrated circuit
JP2779226B2 (en) Bi-CMOS output circuit
JPS62254520A (en) Complementary mos integrated circuit
JPH0355912A (en) Hysteresis circuit
JPH03179814A (en) Level shift circuit
JP2697024B2 (en) Output circuit
JP2855796B2 (en) Semiconductor output circuit
JPS6347008B2 (en)
JPH04248713A (en) Output circuit
JPH09205356A (en) Output circuit
JP2551845B2 (en) Exclusive OR circuit
JP2621628B2 (en) Semiconductor memory