JPS62283505A - Ac superconductor - Google Patents

Ac superconductor

Info

Publication number
JPS62283505A
JPS62283505A JP61126275A JP12627586A JPS62283505A JP S62283505 A JPS62283505 A JP S62283505A JP 61126275 A JP61126275 A JP 61126275A JP 12627586 A JP12627586 A JP 12627586A JP S62283505 A JPS62283505 A JP S62283505A
Authority
JP
Japan
Prior art keywords
superconducting
hysteresis loss
magnetization
superconductor
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126275A
Other languages
Japanese (ja)
Inventor
一也 大松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61126275A priority Critical patent/JPS62283505A/en
Publication of JPS62283505A publication Critical patent/JPS62283505A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 この発明は超電導発電機用、超電導トランス用などとし
て有用な超電導線に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to a superconducting wire useful for use in superconducting generators, superconducting transformers, and the like.

〈従来の技術とその問題点〉 近年、超電導発電機や超電導トランスなどの交流応用の
ための超電4線が開発されている。
<Conventional technology and its problems> In recent years, superconducting 4-wires for AC applications such as superconducting generators and superconducting transformers have been developed.

これらの超電導線は、超電導体の磁化によるヒステリシ
ス損失や、超電導フィラメント間に発生する結合損失あ
るいは安定化材として用いられるQや一合金中に発生す
る渦電流損失が低いことが要求される。
These superconducting wires are required to have low hysteresis loss due to magnetization of the superconductor, coupling loss occurring between superconducting filaments, or eddy current loss occurring in Q or an alloy used as a stabilizing material.

従来の数10μのフィラメント径をもつ超電導線ではヒ
ステリシス損失がオーダ的に最も大きい。
In conventional superconducting wires with filament diameters of several tens of microns, hysteresis loss is the largest in terms of order.

このヒステリシス損失を低下させるためには、フィラメ
ント径を数μあるいはサブμまで細くする必要がある。
In order to reduce this hysteresis loss, it is necessary to reduce the filament diameter to several microns or even sub-microns.

これまでに、14Ti超電4線では0.1μ程度までの
フィラメント径をもつものが開発されているが、フィラ
メント径を細くするにしたがってヒステリシス損失が減
少する傾向が知られている。
Up to now, 14Ti superconductor 4-wires with filament diameters of up to about 0.1 μ have been developed, but it is known that hysteresis loss tends to decrease as the filament diameter becomes smaller.

しかし、その減少はあるフィラメント径で飽和すること
が最近の実験で報告されており、ヒステリシス損失を限
りなく低減する試みは未だ成功していない。
However, recent experiments have reported that this reduction reaches saturation at a certain filament diameter, and attempts to reduce hysteresis loss to the limit have not yet succeeded.

またNb3Sn超電導線では種々の方法でフィラメント
径が小さい線材が開発されつつあるが、F’kr Ti
超電導線はど低ヒステリシス損失導体の開発は進んでい
ないのが実情である。
Furthermore, Nb3Sn superconducting wires with smaller filament diameters are being developed using various methods, but F'kr Ti
The reality is that the development of low hysteresis loss conductors for superconducting wires has not progressed.

〈問題点を解決するための手段〉 この発明は交流応用のための超電導線における上記した
ような欠陥に鑑みて、ヒステリシス損失や渦電流損失の
低い超電導線を得るべく鋭意検討の結果、得られたもの
である。
<Means for Solving the Problems> In view of the above-mentioned defects in superconducting wires for AC applications, this invention was obtained as a result of intensive studies to obtain superconducting wires with low hysteresis loss and eddy current loss. It is something that

詳しくのべると、この発明はヒステリシス損失の低減に
よって、交流損失の少ない交流用超電導線を得んとする
ものである。
Specifically, the present invention aims to obtain an AC superconducting wire with low AC loss by reducing hysteresis loss.

即ち、常電導金属マトリックス中に磁性体不純物を含有
させると、ヒステリシス損失が極めて低くなることを見
出したものである。
That is, it has been discovered that when a magnetic impurity is contained in a normally conducting metal matrix, hysteresis loss is extremely reduced.

く作用〉 一般に超電導線のヒステリシス損失は、第1図に示す如
く、超電導体のヒステリシス損失磁化面1に依存するも
のである。
Effect> Generally, the hysteresis loss of a superconducting wire depends on the hysteresis loss magnetization surface 1 of the superconductor, as shown in FIG.

そしてヒステリシス損失を小さくするためには、第1図
の磁化曲線に囲まれた面積を小さくすることが必要であ
る。一方磁性体において、例えば強磁性体の磁化曲線2
は一般に第2図に示す如く曲線となる。
In order to reduce the hysteresis loss, it is necessary to reduce the area surrounded by the magnetization curve in FIG. 1. On the other hand, in a magnetic material, for example, the magnetization curve 2 of a ferromagnetic material
generally forms a curve as shown in FIG.

超電導体の磁性はマイスナー効果による反磁性の性質を
示すため、磁化の方向は外部Wi場と逆向きになる。−
力強磁性体の磁化は外部磁場と同一方向である。
Since the magnetism of a superconductor exhibits diamagnetic properties due to the Meissner effect, the direction of magnetization is opposite to the external Wi field. −
The magnetization of a strongly ferromagnetic material is in the same direction as the external magnetic field.

従って、磁化の小さい強磁性体あるいは含有量を微量に
すると、超電導体による反磁性と強磁性不純物による強
磁性体の打消し効果によって複合多芯超電導体の磁化ヒ
ステリシス損失は小さくなるのである。
Therefore, when a ferromagnetic material with low magnetization or a small amount of ferromagnetic material is contained, the magnetization hysteresis loss of the composite multicore superconductor becomes small due to the canceling effect of the diamagnetic property of the superconductor and the ferromagnetic material of the ferromagnetic impurity.

また、常電導金属中に含有する磁性体不純物は、強磁性
だけでなくフェリ磁性等の反強磁性体や低次元磁性体で
あってもよい。これらの場合においても超電導体による
反磁性とスピンによる磁性が相互作用し、複合多芯超電
導線の磁化ヒステリシスは小さくなる。
Furthermore, the magnetic impurities contained in the normally conducting metal may be not only ferromagnetism but also antiferromagnetism such as ferrimagnetism or low-dimensional magnetic material. In these cases as well, the diamagnetic property of the superconductor and the magnetism of the spin interact, and the magnetization hysteresis of the composite multicore superconducting wire becomes small.

上記のように、この発明によれば、 (1)  ヒステリシス損失、交流損失が小さいので、
超電導発電礪や超電導トランスなど新しい交流用途に用
いることができること。
As mentioned above, according to the present invention, (1) Hysteresis loss and AC loss are small, so
It can be used for new AC applications such as superconducting power generators and superconducting transformers.

(2)交流損失が小さく、銅線を用いた場合より経済的
に有利であることから交流顆器のための線材として安価
なコストであること。
(2) Since the AC loss is small and it is economically advantageous compared to using copper wire, it is inexpensive as a wire material for AC condyle.

(3)超電導体の反磁性磁化を磁性不純物の磁化で打消
すため、線材全体の磁1ヒが低下し、全体のヒステリシ
ス損失が小さいところから、フィラメントを極限まで細
くする必要ががないため、工業製作上人単重が可能でコ
ストも従来の線材と殆んど変らないこと。
(3) Since the diamagnetic magnetization of the superconductor is canceled out by the magnetization of the magnetic impurity, the magnetic flux of the entire wire is reduced, and the overall hysteresis loss is small, so there is no need to make the filament extremely thin. It is possible to produce it industrially with a high unit weight, and the cost is almost the same as that of conventional wire rods.

などの効果を秦するのである。It is the effect of Qin.

かくして得られるこの発明の超電導線は、超電導発電機
用、超電導トランス用、高エネルギー加速器用、交流闘
器用、などの超電導線として用いることができる。
The thus obtained superconducting wire of the present invention can be used as a superconducting wire for superconducting generators, superconducting transformers, high-energy accelerators, AC warfighters, and the like.

この発明において、金属マトリックス中に含有する磁性
体不純物としては、Fe、Co、i、Cr等の金属また
はそれらの合金が用いられることが多い。
In this invention, metals such as Fe, Co, i, Cr, or alloys thereof are often used as the magnetic impurities contained in the metal matrix.

またその濃度としては、5%以下であることが好ましい
Further, its concentration is preferably 5% or less.

これは一般にFe、Goなどの磁性体の磁化は超電導体
の反磁化に比較してはるかに大きく(特にFeは大きい
)、濃度が5%以上になると、強磁性成分の増大により
ヒステリシス損失が増大するばかりでなく、強磁性によ
り超電導状態そのものが破壊されてしまうためである。
This is because the magnetization of magnetic materials such as Fe and Go is generally much larger than the demagnetization of superconductors (particularly large for Fe), and when the concentration exceeds 5%, the hysteresis loss increases due to the increase in the ferromagnetic component. Not only that, but the superconducting state itself is destroyed by ferromagnetism.

〈実施例〉 以下、この発明を実施例により説明する。<Example> This invention will be explained below with reference to Examples.

CILNLをマトリックスとして、Nb Tiフィラメ
ント径が1.4μmの交流超電導線を第1表に示すよう
に製造した。
AC superconducting wires with Nb Ti filaments having a diameter of 1.4 μm were manufactured using CILNL as a matrix as shown in Table 1.

第  1  表 上表からヒステリシス損失の結果では、超電導線■、■
と比較して■が最もヒステリシス損失が小さいことがわ
かった。これは、強磁性体不純物としてのFeがマトリ
ックス中に含有されている効果であると認められる。
Table 1 From the above table, the results of hysteresis loss show that superconducting wires ■, ■
It was found that ■ has the smallest hysteresis loss compared to . This is recognized to be an effect of Fe as a ferromagnetic impurity being contained in the matrix.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超電導体のヒステリシス損失磁化曲線を示す線
図、第2図は強磁性体の磁化曲線を示す線図である。 出願人代理人  弁理士  和 1) 昭第1図 第2図
FIG. 1 is a diagram showing a hysteresis loss magnetization curve of a superconductor, and FIG. 2 is a diagram showing a magnetization curve of a ferromagnetic material. Applicant's agent Patent attorney Kazu 1) Showa 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)常電導金属マトリックス中に多芯の超電導フィラ
メントが埋込まれた複合多芯超電導線において、常電導
金属マトリックス中に磁性体不純物が含有されているこ
とを特徴とする交流用超電導線。
(1) A composite multicore superconducting wire in which multicore superconducting filaments are embedded in a normal conducting metal matrix, wherein the AC superconducting wire is characterized in that the normal conducting metal matrix contains magnetic impurities.
(2)磁性体不純物の濃度が5%以下である特許請求の
範囲第1項記載の交流用超電導線。
(2) The AC superconducting wire according to claim 1, wherein the concentration of magnetic impurities is 5% or less.
JP61126275A 1986-05-31 1986-05-31 Ac superconductor Pending JPS62283505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126275A JPS62283505A (en) 1986-05-31 1986-05-31 Ac superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126275A JPS62283505A (en) 1986-05-31 1986-05-31 Ac superconductor

Publications (1)

Publication Number Publication Date
JPS62283505A true JPS62283505A (en) 1987-12-09

Family

ID=14931169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126275A Pending JPS62283505A (en) 1986-05-31 1986-05-31 Ac superconductor

Country Status (1)

Country Link
JP (1) JPS62283505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148517A (en) * 1988-11-29 1990-06-07 Furukawa Electric Co Ltd:The Superconducting wire and its manufacture
WO1991003060A1 (en) * 1989-08-25 1991-03-07 The Furukawa Electric Co., Ltd. Superconductive wire material and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148517A (en) * 1988-11-29 1990-06-07 Furukawa Electric Co Ltd:The Superconducting wire and its manufacture
WO1991003060A1 (en) * 1989-08-25 1991-03-07 The Furukawa Electric Co., Ltd. Superconductive wire material and method of producing the same

Similar Documents

Publication Publication Date Title
Amin et al. Morin temperature of annealed submicronic α-F 2 O 3 particles
JPS6039705A (en) Aluminum stabilized superconductive conductor
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JPS62283505A (en) Ac superconductor
Nakamura et al. Mössbauer Effect and Neutron Diffraction of Fe65 (Ni1− xMnx) 35 Alloys
Collings et al. Magnetic studies of proximity-effect coupling in a very closely spaced fine-filament NbTi/CuMn composite superconductor
JP2003123556A (en) MgB2-BASED SUPERCONDUCTOR AND ITS MANUFACTURING METHOD
US3805119A (en) Superconductor
JPH0676649A (en) Composite superconductor
JPH0114299B2 (en)
Collings et al. Stability and AC losses in HTSC/Ag multifilamentary strands
Sakai et al. Critical current densities and magnetic hysteresis losses in submicron filament bronze-processed Nb/sub 3/Sn wires
JPS61227306A (en) Stabilizing material for superconducting composite body
Krishnan et al. Magnetic studies in some melt spun amorphous Fe‐Ho‐B alloys
JPS61224214A (en) Aluminum stabilization superconductor
Jin et al. Shifted MH loop in a phase-decomposed Fe-12% Mn alloy
Forsyth Intermetallic superconductors---The state of development in 1991
Fuwa et al. Enhancement of Tirr and ΔM (H) in Bi2Sr2CaCu2Ox in the presence of Ni particles
WO1992022915A1 (en) Current lead of an oxide superconductor
Jurczyk et al. Magnetism of Nd 2 Fe 12-x Mn x Co 2 B alloys
Goldfarb et al. Magnetic evaluation of Cu-Mn matrix material for fine-filament Nb-Ti superconductors
JPS5828104A (en) High critical magnetic field superconductive material
JPS61198510A (en) Manufacture of superconductor
JPS61231143A (en) Manufacture of stabilizing material for composite superconductor
JPH072978B2 (en) Manufacturing method of high-performance compound superconducting materials by powder metallurgy.