JPH0114299B2 - - Google Patents

Info

Publication number
JPH0114299B2
JPH0114299B2 JP55077632A JP7763280A JPH0114299B2 JP H0114299 B2 JPH0114299 B2 JP H0114299B2 JP 55077632 A JP55077632 A JP 55077632A JP 7763280 A JP7763280 A JP 7763280A JP H0114299 B2 JPH0114299 B2 JP H0114299B2
Authority
JP
Japan
Prior art keywords
gold
weight
added
ferromagnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077632A
Other languages
Japanese (ja)
Other versions
JPS575833A (en
Inventor
Kazuma Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP7763280A priority Critical patent/JPS575833A/en
Publication of JPS575833A publication Critical patent/JPS575833A/en
Publication of JPH0114299B2 publication Critical patent/JPH0114299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 開示技術は、Fe、Co、Ni、Auから成る金合金
において、Au母相の非磁性相中にFe、Co、Niの
強磁性相を分散させて永久磁石合金とする技術分
野に属する。 <要旨の概要> 而して、この出願の発明はFe、Co、Ni、を母
相のAuに添加し、塑性変形加工後に時効処理等
の処理を施して保磁力を具備された金系永久磁石
合金に関する発明であり、特に、Fe、Co、Ni、
Au金属組成をそれぞれ、0.5〜20%、0.5〜10%、
0.1〜10%、残部とした重量比とし、更には、Cu
を0.5〜20%、Znを0.5〜10%、或は、Ti、Zrの少
くとも一方を0.5〜2%添加して所定の塑性加工
を行つた後300℃〜600℃の温度領域で時効処理
し、その場合、3000〜5000Oeの磁界を加えるよ
うにもして再塑性加工を行い、Au母相の非磁性
相中にFe、Co、Niの強磁性相が微細に均一に分
散され、形状が異方性で、保磁力が強固に付与さ
れた金系永久磁石合金に係る発明である。 <従来技術> 周知の如く永久磁石は各方面に広く用いられて
いるが、近年電子機器の発達に伴い各産業分野で
は経時的に変化しない高磁力性を有し、コンパク
トでしかも耐腐触性に秀でた永久磁石に対するニ
ーズが強くなり、又、他の工業材料や装飾材料に
おいても同様な需要が生じてきている。 而して、これまで永久磁石用の材料として知ら
れているものには、例えば、アルニコ系、フエラ
イト系、希土類系、Fe−Cr−Co系合金等の多く
の合金があり、又、貴金属を主成分とした素材合
金もあり、例えば、Pt−Co合金に代表されるよ
うな加工性に優れているPt族合金が主流として
用いられている。 <発明が解決しようとする問題点> さりながら、該種在来の永久磁石用の合金材料
は要望される充分な加工性を有さない点でニーズ
に応えられない欠点があり、又、非磁性母材中の
強磁性相の方向性や磁力増強性に乏しいという不
具合があつた。 加えて、添加元素による磁力特性の変化に富み
難い難点があり、各種の電装応用機器の機能に必
らずしも充分マツチングしないという不具合があ
つた。 <発明の目的> この出願の発明の目的は上述従来技術に基づく
永久磁石の合金の問題点を解決すべき技術的課題
とし、加工性に充分に富み、被固溶性にも優れて
おり、強磁性相の分散がし易いAuに対しFe、
Co、Niを添加し、更に併せて磁性強化金属を添
加し、通常の加工、時効処理等を行うことにより
非磁性母相中に強磁性相を均一に分散させて磁力
特性を有するようにして各種産業における電磁技
術利用分野に益する優れた金系永久磁石合金を提
供せんとするものである。 <問題点を解決するための手段・作用> 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明の構成は、前述問題点を解決す
るために、Auに母相非磁性相を成さしめるよう
にし、強磁性相構成材として重量比にてFe:0.5
〜20%、Co:0.5〜10%、Ni:0.1〜10%とし、残
はAuと不可避的な不純物とした金合金とし、更
にこれにCu:0.5〜20%、Zn:0.5〜10%添加した
金合金としてAu母相に対する上記強磁性金属
Fe、Coの溶解度を高めて塑性加工し易い状態に
し、或は、Ti、Zrの少くとも1種を各々0.05〜2
%添加して溶解時の脱酸作用を促進すると共に析
出磁性粒子の粒度を微細にして保磁力を高めるよ
うにし、而して金合金をしてスエージング加工、
ダイスによる伸線加工、或は、圧延加工等の一般
的塑性加工等を行つた後300℃〜600℃の温度領域
で時効処理を行い、その場合、併せて3000〜
5000Oeの磁界を付与し、強磁性粒子を磁界に並
行に微細に析出させ、又、その後更に一般的塑性
加工を付与して析出強磁性粒子を加工方向に伸延
させるようにし、所定の永久磁石特性を得るよう
にした技術的手段を講じたものである。 <発明の理論的背景> 而して、この出願の発明における添加金属元
素、及び、各処理についての定性、定量の理論的
背景については次の通りである。 即ち、Fe、Co、Niについては帯磁、及び、磁
化強度増強を図るべく添加されるものであり、
Auに対するFeの固溶度は最大40%である。 そして、Feの添加量が多ければ、それに伴つ
て形成される磁石の飽和磁束密度が比例的に増加
するメリツトがあるものの、20重量%を越えると
逆に塑性加工性に困難性が生ずるようになり、し
たがつて、その相関において上限は20重量%と
し、飽和磁束密度の実効最低限の0.5重量%を添
加最小値とするものである。 次に、CoについてはFeと同様に、その添加量
の増大と共に得られる磁石の飽和磁束密度は増加
するものの、本来的にAuに対する固溶度が少く、
10重量%が固溶限であり、それを越えると塑性加
工不能となるため、当該10重量%を添加上限と
し、逆に、0.5重量%以下では飽和磁束密度に実
効が無いためそれを最小添加値とするものであ
る。 又、Niについては母相Auに対し全率固溶体を
形成するのみならず、オーステナイトを形成する
元素でもあるため、析出する強磁性相をして母相
のAuと同様に面心立方格子とし、加工性を向上
させる機能に有効に与り、その有効機能を得さし
める上限は実験によれば10重量%であり、それを
越えると加工性は急激に低下し、これに対し0.1
重量%以下では全く効果が無く、したがつて、
0.1〜10重量%を設定範囲とする。 次に、Cu、Znについては直接的には合金の飽
和磁束密度を増加させるものではないけれども、
強磁性金属のFe、CoのAuに対する溶解度を促進
させる働きがあり、その限りにおいて間接的に飽
和磁束密度を増加させ、合金の塑性加工性をより
良好にさせるように与る。 而して、両金属は0.5重量%以下の添加量では
上述間接的促進効果は薄く、Cuについては20重
量%以上、Znについては10重量%以上の添加で
は磁気特性を低下させるようにマイナスに働くた
め、Cuについては0.5〜20重量%、Znについては
0.5〜10重量%を最適添加範囲とする。 又、Ti、Zrについては合金を溶解処理するプ
ロセスで脱酸作用を行うように機能すると共に時
効処理プロセスにて析出する強磁性粒子を微細
に、且つ、均一に分散する機能に与り、地肌が滑
らかで、保磁力の増加に極めて有効に働き、両者
共に添加すれば猶有効な態様となり、各々最適添
加範囲は実験によれば、0.05〜2.0重量%である。 尚、時効処理において、温度領域が300℃〜600
℃の範囲とすると極めて効果的であるが、その理
由は300℃以下ではその効果がほとんどなく、又、
600℃以上では逆に時効処理が阻害され強磁性相
析出の効率が低下するからである。 而して、時効処理の際に3000〜5000Oeの磁界
を付与すると良いが、時効処理によつて析出する
強磁性粒子を磁界に並行な方向により配向させて
磁力特性の向上を図るようし、その場合3000Oe
以下では実験により磁界に配向能力がみられず、
又、5000Oe以上では限界を越すので3000〜
5000Oeを最適範囲とする。 <実施例> 次にこの出願の発明の実施例を第1表により示
せば次の通りである。 尚、当該第1表表示実施例合金についてはいず
れもArガスを吹きつける状態で周知の適宜高周
波溶解炉で溶解してφ10mmの金型に鋳造し、得ら
れたインゴツトを更に1000℃Arガス雰囲気中で
溶体化処理を行つた後φ6mmまで再加工し、再び
上記と同条件、即ち、Arガス雰囲気で溶体化処
理を行い、最終的にスエージング加工により75%
の塑性加工を施してφ3.0mmの各試料表材としたも
のである。
<Industrial Application Field> The disclosed technology disperses ferromagnetic phases of Fe, Co, and Ni in the nonmagnetic phase of the Au matrix in a gold alloy consisting of Fe, Co, Ni, and Au to create a permanent magnetic alloy. belongs to the technical field of <Summary of the gist> The invention of this application is to add Fe, Co, and Ni to the parent phase of Au, and to apply treatments such as aging treatment after plastic deformation to create a metal-based permanent material with coercive force. This invention relates to magnetic alloys, especially Fe, Co, Ni,
Au metal composition: 0.5~20%, 0.5~10%, respectively
The weight ratio is 0.1 to 10%, the balance is Cu
After adding 0.5 to 20% of Zn, 0.5 to 10% of Zn, or 0.5 to 2% of at least one of Ti and Zr and performing the specified plastic working, aging treatment is performed in a temperature range of 300℃ to 600℃. In that case, re-plastic processing is performed by applying a magnetic field of 3000 to 5000 Oe, and the ferromagnetic phases of Fe, Co, and Ni are finely and uniformly dispersed in the nonmagnetic phase of the Au matrix, and the shape is changed. This invention relates to a gold-based permanent magnet alloy that is anisotropic and has a strong coercive force. <Prior art> As is well known, permanent magnets are widely used in various fields, but in recent years, with the development of electronic equipment, permanent magnets have been used in various industrial fields. There is a growing need for permanent magnets with excellent properties, and similar demands are also emerging for other industrial and decorative materials. So far, there are many alloys known as materials for permanent magnets, such as alnico, ferrite, rare earth, Fe-Cr-Co alloys, and precious metals. There are also alloys as main components, and for example, Pt group alloys, which have excellent workability, such as Pt-Co alloys, are mainly used. <Problems to be Solved by the Invention> However, the conventional alloy materials for permanent magnets have the disadvantage that they do not have the required sufficient workability, and cannot meet the needs. The problem was that the directionality of the ferromagnetic phase in the magnetic base material and the ability to enhance magnetic force were poor. In addition, there was a drawback that the magnetic properties did not vary widely depending on the additive elements, and the function of various electrical equipment was not necessarily well matched. <Objective of the Invention> The object of the invention of this application is to solve the technical problem of the permanent magnet alloy based on the above-mentioned prior art, and to create a permanent magnet alloy that is sufficiently processable, has excellent solid solubility, and is strong. In contrast to Au, where the magnetic phase is easily dispersed, Fe,
By adding Co and Ni, and further adding a magnetically reinforcing metal, and performing normal processing, aging treatment, etc., the ferromagnetic phase is uniformly dispersed in the non-magnetic matrix and it has magnetic properties. The purpose of this invention is to provide an excellent gold-based permanent magnet alloy that is useful in the field of electromagnetic technology in various industries. <Means/effects for solving the problems> In order to solve the above-mentioned problems, the structure of the invention of this application, which is based on the above-mentioned claims in accordance with the above-mentioned object, is to add a matrix non-magnetic phase to Au. Fe: 0.5 by weight as a ferromagnetic phase constituent material
~20%, Co: 0.5~10%, Ni: 0.1~10%, the rest is a gold alloy with Au and inevitable impurities, and further added with Cu: 0.5~20% and Zn: 0.5~10%. The above ferromagnetic metal for the Au matrix as a gold alloy
Increase the solubility of Fe and Co to facilitate plastic working, or add at least one of Ti and Zr by 0.05 to 2
% is added to promote the deoxidizing effect during melting and to make the precipitated magnetic particles finer in particle size to increase the coercive force.
After wire drawing with dies or general plastic processing such as rolling, aging treatment is performed in a temperature range of 300℃ to 600℃, and in that case, the temperature range is 3000℃ to 600℃.
A magnetic field of 5000 Oe is applied to finely precipitate ferromagnetic particles in parallel to the magnetic field, and then general plastic working is applied to elongate the precipitated ferromagnetic particles in the processing direction to achieve the specified permanent magnet characteristics. This technology takes technical measures to obtain the desired results. <Theoretical Background of the Invention> The theoretical background of the qualitative and quantitative aspects of the added metal elements and each treatment in the invention of this application is as follows. That is, Fe, Co, and Ni are added to increase magnetization and magnetization strength.
The solid solubility of Fe in Au is up to 40%. If the amount of Fe added is large, the saturation magnetic flux density of the formed magnet increases proportionally, but if it exceeds 20% by weight, the plastic workability becomes difficult. Therefore, in this correlation, the upper limit is set to 20% by weight, and the minimum addition value is set to 0.5% by weight, which is the effective minimum of the saturation magnetic flux density. Next, as for Co, like Fe, although the saturation magnetic flux density of the obtained magnet increases as the amount of Co added increases, it inherently has a low solid solubility in Au.
10% by weight is the solid solubility limit, and if it exceeds it, plastic workability becomes impossible, so 10% by weight is the upper limit of addition, and conversely, below 0.5% by weight, it has no effect on the saturation magnetic flux density, so it is the minimum addition. It is a value. In addition, Ni not only forms a complete solid solution with the parent phase Au, but is also an element that forms austenite, so the precipitated ferromagnetic phase forms a face-centered cubic lattice similar to the parent phase Au. According to experiments, the upper limit for effectively participating in the function of improving processability and achieving that effective function is 10% by weight; beyond this, the processability decreases rapidly;
There is no effect at all below weight%, therefore,
The setting range is 0.1 to 10% by weight. Next, although Cu and Zn do not directly increase the saturation magnetic flux density of the alloy,
It has the function of promoting the solubility of ferromagnetic metals such as Fe and Co in Au, and to that extent it indirectly increases the saturation magnetic flux density and improves the plastic workability of the alloy. Therefore, if the amount of both metals added is less than 0.5% by weight, the above-mentioned indirect promoting effect will be weak, and if the amount of Cu added is more than 20% by weight, and if the amount of Zn is added more than 10% by weight, the magnetic properties will be negatively affected. To work, 0.5-20 wt% for Cu and for Zn
The optimum addition range is 0.5 to 10% by weight. In addition, Ti and Zr have a deoxidizing effect in the process of melting the alloy, and also have a function of finely and uniformly dispersing the ferromagnetic particles that precipitate in the aging process. is smooth and very effective in increasing the coercive force, and if both are added, they are still effective.According to experiments, the optimum addition range for each is 0.05 to 2.0% by weight. In addition, in aging treatment, the temperature range is 300°C to 600°C.
It is extremely effective when it is in the range of 300°C, but the reason is that it has almost no effect below 300°C, and
This is because at temperatures above 600°C, aging treatment is inhibited and the efficiency of ferromagnetic phase precipitation is reduced. Therefore, it is good to apply a magnetic field of 3000 to 5000 Oe during the aging treatment, but it is better to improve the magnetic properties by orienting the ferromagnetic particles that precipitate during the aging treatment in a direction parallel to the magnetic field. Case 3000Oe
In the following experiments, no orientation ability was observed in the magnetic field;
Also, if it exceeds 5000Oe, it will exceed the limit, so 3000~
The optimum range is 5000Oe. <Examples> Next, Examples of the invention of this application are shown in Table 1 as follows. All of the example alloys shown in Table 1 were melted in a well-known high-frequency melting furnace while blowing Ar gas, cast into a φ10 mm mold, and the resulting ingots were further heated in an Ar gas atmosphere at 1000°C. After solution treatment in the interior, reprocessing to φ6 mm, solution treatment again under the same conditions as above, that is, in an Ar gas atmosphere, and finally swaging to 75%
The surface material of each sample with a diameter of 3.0 mm was obtained by plastic working.

【表】 而して、上記各実施例の試料の合金の実施処理
についは、試料番号1〜8の合金において、前記
試料素材φ3.0mmの合金をArガス雰囲気電気炉に
より設計温度で加熱時効処理を行つたものであ
る。 又、試料番号9、10の合金においては、上述同
様φ3.0mm試料素材についてArガス雰囲気電気炉
により設計温度で加熱時効処理を行うと共に外部
から設定Oeの磁界を作用させたものである。 そして、試料番号11、12の合金については同じ
くφ3.0mm試料素材合金をArガス雰囲気電気炉に
より設計温度にて加熱時効処理を行つた後、再び
スエージング加工による加工率55%塑性加工を行
つたものである。 尚、この出願の発明の実施態様は上述各実施例
に限るものでないことは勿論であり、例えば、加
熱時効処理の前後の塑性加工についてはスエージ
ングの外にダイスによる線延加工、圧延加工等の
手段も可能である等種々の態様が採用可能であ
る。 <発明の効果> 以上、この出願の発明によれば、金に他元素を
添加した金系永久磁石合金において、基本的に金
にFe、Co、Niの強磁性元素を先述特許請求の範
囲記載の有効値の範囲にて添加し、所定塑性加工
後に時効処理を設定有効温度領域で行つたものに
したことにより、基本的に前述第1表試料番号
1、2、3に示す様に、最大エネルギー積0.25〜
0.38M.G Oeの優れた磁気特性が得られる顕著な
効果が奏され、加えて金を母相とする加工性にお
いて、良好な点が各方面の電子機器等の電装品に
対する加工のし易さとなつて現われるという優れ
た効果も奏される。 又、上記Fe、Co、Niに加えてCu、Znを第3
の元素として先述特許請求の範囲記載の有効範囲
で添加することにより、前述第1表試料番号4、
5に示す様に磁気特性を何ら損うことなく、Fe、
Coの溶解度を増加させたことを介して塑性加工
性を著しく向上さ、磁石の機器適合性をアツプさ
せることが出来る効果が奏される。 更に、他の第3元素としてTi、Zrの少くとも
1つを同じく先述特許請求の範囲記載の設定範囲
で添加することにより、析出強磁性粒子を微細で
均一に分散させるようにすることを介し、第1表
試料番号6、7、8に見られる様に保磁力を大き
く増加させることが出来るメリツトがあるのみな
らず、それらの添加により脱酸が容易に行われ、
表面状態が極めて良好である利点がある。 而して、第1図に示す写真は上記資料番号9の
実施例合金の電子顕微鏡写真であるが、母相非磁
性相に対し析出強磁性粒子が磁界方向に延び配向
している点が明瞭に観察される。 そして、第2図に見られる様に前記試料番号11
の電子顕微鏡写真でも明らかな如く、強磁性相の
配向と形状異方性が顕著となり、又、第3図に示
す試料番号1と11のヒステリシス曲線においても
明らかである。 而して、この出願の発明の金系永久磁石合金は
上述の如く、設定条件により種々の磁気特性を得
られるので、単に電子機器のみならず、各種工業
材料、装飾材料等用途を広く弾力的に利用出来る
効果もある。
[Table] Regarding the processing of the alloys of the samples in each of the above examples, for the alloys of sample numbers 1 to 8, the sample material φ3.0 mm was heated and aged at the design temperature in an Ar gas atmosphere electric furnace. It has been processed. In addition, for the alloys of sample numbers 9 and 10, as described above, the φ3.0 mm sample material was subjected to heat aging treatment at the design temperature in an Ar gas atmosphere electric furnace, and a magnetic field of a set Oe was applied from the outside. For alloys with sample numbers 11 and 12, the same φ3.0 mm sample material alloys were heated and aged at the design temperature in an Ar gas atmosphere electric furnace, and then plastic working was performed again using swaging at a working rate of 55%. It is ivy. It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments. For example, for plastic working before and after heat aging treatment, in addition to swaging, wire rolling with a die, rolling, etc. Various embodiments can be adopted, including the following means. <Effects of the Invention> As described above, according to the invention of this application, in a gold-based permanent magnet alloy in which other elements are added to gold, ferromagnetic elements such as Fe, Co, and Ni are basically added to gold as described in the preceding claims. By adding within the effective value range of Energy product 0.25~
The remarkable effect of obtaining excellent magnetic properties of 0.38 MG Oe has been achieved, and in addition, the good workability of gold as a matrix makes it easy to process electrical components such as electronic devices in various fields. It also has the excellent effect of appearing as Also, in addition to the above Fe, Co, and Ni, Cu and Zn are added as a tertiary
By adding the element within the effective range described in the claims, the above-mentioned Table 1 sample number 4,
As shown in Figure 5, Fe,
By increasing the solubility of Co, the plastic workability is significantly improved and the compatibility of the magnet with equipment can be improved. Furthermore, by adding at least one of Ti and Zr as other third elements in the range set forth in the claims above, the precipitated ferromagnetic particles are finely and uniformly dispersed. , as seen in Sample Nos. 6, 7, and 8 in Table 1, not only do they have the advantage of greatly increasing the coercive force, but their addition also facilitates deoxidation.
It has the advantage of having an extremely good surface condition. The photograph shown in Fig. 1 is an electron micrograph of the example alloy of Document No. 9, and it is clear that the precipitated ferromagnetic particles extend and are oriented in the direction of the magnetic field with respect to the non-magnetic matrix phase. observed. Then, as seen in Figure 2, the sample number 11
As is clear from the electron micrograph, the orientation and shape anisotropy of the ferromagnetic phase are remarkable, and this is also evident from the hysteresis curves of samples Nos. 1 and 11 shown in FIG. As mentioned above, the gold-based permanent magnet alloy of the invention of this application can obtain various magnetic properties depending on the setting conditions, so it can be used not only for electronic devices but also for various industrial materials, decorative materials, etc. There are also effects that can be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの出願の発明の実施例を示すものであ
り、第1図は1実施例の顕微鏡による組織図、第
2図は他の実施例の顕微鏡組織図、第3図はヒス
テリシスのグラフ図である。
The drawings show examples of the invention of this application; FIG. 1 is a microscopic organizational diagram of one embodiment, FIG. 2 is a microscopic organizational diagram of another embodiment, and FIG. 3 is a graph of hysteresis. be.

Claims (1)

【特許請求の範囲】 1 金属組成が重量比でFe0.5〜20%、Co0.5〜10
%、Ni0.1〜10%、残部Auよりなり、塑性加工後
300゜〜600℃の温度領域で時効熱処理がなされ、
Au母相の非磁性相中にFe、Co、Niの強磁性相が
微細に析出分散されている金系永久磁石合金。 2 金属組成が重量比でFe0.5〜20%、Co0.5〜10
%、Ni0.1〜10%、残部Auよりなるものに更に
Cu0.5〜20%、Zn0.5〜10%の重量比元素を添加さ
れており塑性加工後300゜〜600℃の温度領域で時
効熱処理がなされ、Au母相の非磁性相中にFe、
Co、Niの強磁性相が微細に析出分散されている
金系永久磁石合金。 3 金属組成が重量比でFe0.5〜20%、Co0.5〜10
%、Ni0.1〜10%、残部Auよりなるものに、更に
Ti0.05〜2%、Zr0.05〜2%の重量比元素が少く
とも一種添加されており塑性加工後300゜〜600℃
の温度領域で時効熱処理がなされ、Au母相の非
磁性相中にFe、Co、Niの強磁性相が微細に析出
分散されている金系永久磁石合金。
[Claims] 1. Metal composition is Fe0.5-20% and Co0.5-10% by weight.
%, Ni0.1~10%, balance Au, after plastic working
Aging heat treatment is performed in the temperature range of 300° to 600°C,
A gold-based permanent magnetic alloy in which ferromagnetic phases of Fe, Co, and Ni are finely precipitated and dispersed in the nonmagnetic phase of the Au matrix. 2 Metal composition is Fe0.5~20%, Co00.5~10 by weight ratio
%, Ni0.1 to 10%, and the remainder consists of Au.
The weight ratio elements of 0.5 to 20% Cu and 0.5 to 10% Zn are added, and after plastic working, aging heat treatment is performed in the temperature range of 300° to 600°C, and the non-magnetic phase of the Au matrix contains Fe,
A gold-based permanent magnetic alloy in which ferromagnetic phases of Co and Ni are finely precipitated and dispersed. 3 Metal composition is Fe0.5-20%, Co0.5-10 by weight ratio
%, Ni0.1~10%, balance Au, and further
At least one element with a weight ratio of 0.05 to 2% Ti and 0.05 to 2% Zr is added, and the temperature is 300° to 600°C after plastic working.
A gold-based permanent magnet alloy that has been subjected to aging heat treatment in the temperature range of 100 to 1000 ml, and has ferromagnetic phases of Fe, Co, and Ni finely precipitated and dispersed in the nonmagnetic phase of the Au matrix.
JP7763280A 1980-06-11 1980-06-11 Gold permanent magnet alloy Granted JPS575833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7763280A JPS575833A (en) 1980-06-11 1980-06-11 Gold permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7763280A JPS575833A (en) 1980-06-11 1980-06-11 Gold permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS575833A JPS575833A (en) 1982-01-12
JPH0114299B2 true JPH0114299B2 (en) 1989-03-10

Family

ID=13639271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7763280A Granted JPS575833A (en) 1980-06-11 1980-06-11 Gold permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS575833A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225655A (en) * 1989-02-28 1990-09-07 Agency Of Ind Science & Technol Gold alloy capable of coloring into bright black color and coloring method therefor
US5139739A (en) * 1989-02-28 1992-08-18 Agency Of Industrial Science And Technology Gold alloy for black coloring, processed article of black colored gold alloy and method for production of the processed article
US4938922A (en) * 1989-06-23 1990-07-03 Gte Products Corporation Gold-nickel-titanium brazing alloy
CH678949A5 (en) * 1989-06-27 1991-11-29 Muller Ludwig Sa

Also Published As

Publication number Publication date
JPS575833A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP2000508476A (en) Low loss easy-saturated adhesive magnet
JPH06346101A (en) Magnetically anisotropic powder and its production
US4695333A (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JPH0114299B2 (en)
JP2994318B2 (en) Fe-based amorphous soft magnetic material and method for producing the same
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS59132105A (en) Permanent magnet
Jin et al. New ductile Fe‐Mo‐Ni magnet alloys
US5433795A (en) Fabrication of permanent magnets without loss in magnetic properties
CN113512685A (en) Fe-based magnetic alloy and preparation method thereof
US4419148A (en) High-remanence Fe-Ni and Fe-Ni-Mn alloys for magnetically actuated devices
JPH0152469B2 (en)
US4340434A (en) High remanence Fe-Mo-Ni alloys for magnetically actuated devices
CA1170084A (en) Magnetically anisotropic alloys for magnetically actuated devices
CN106710769B (en) A kind of Nd-Fe-B permanent magnetism thin strip magnet and preparation method thereof
JPS63111602A (en) High performance rare earth cast magnet
JPS63216307A (en) Alloy powder for magnet
Shimoda et al. New resin-bonded Sm 2 Co 17 type magnets
JPH02285604A (en) Hot-worked magnet and manufacture thereof
JPS6053107B2 (en) Rare earth magnet manufacturing method
JPS6257701B2 (en)
JPH03267346A (en) Alloying of low level additive to heat treated nd-fe-b magnet
Homma et al. New gold permanent magnet alloys
JPH05315120A (en) Rare earth sintered magnet and its manufacture