JPH02285604A - Hot-worked magnet and manufacture thereof - Google Patents

Hot-worked magnet and manufacture thereof

Info

Publication number
JPH02285604A
JPH02285604A JP1106509A JP10650989A JPH02285604A JP H02285604 A JPH02285604 A JP H02285604A JP 1106509 A JP1106509 A JP 1106509A JP 10650989 A JP10650989 A JP 10650989A JP H02285604 A JPH02285604 A JP H02285604A
Authority
JP
Japan
Prior art keywords
magnet
content
permanent magnet
warm
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1106509A
Other languages
Japanese (ja)
Other versions
JP2823076B2 (en
Inventor
Shigeo Tanigawa
茂穂 谷川
Katsunori Iwasaki
克典 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1106509A priority Critical patent/JP2823076B2/en
Publication of JPH02285604A publication Critical patent/JPH02285604A/en
Application granted granted Critical
Publication of JP2823076B2 publication Critical patent/JP2823076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain an R-T-B hot-worked magnet on which a plastic processing can be conducted easily and having excellent magnetic crystal orientation and magnetic characteristics by a method wherein its carbon content is limited to a specific range. CONSTITUTION:In a magnetically anisotropic permanent magnet made of R-T-B-C alloy, which is mainly composed of transition metal T and containing yttrium-carrying rare-earth R and boron B, having fine crystal grains of average grain diameter of 0.2 to 1.0mum, carbon content is set at 0.01 to 0.8wt.%. Also, the permanent magnet such as above-mentioned is composed or R-content of 28 to 35wt.%, T-content of 60 to 72wt.%, B-content of 0.5 to 1.5wt.% and other inevitable impurities, and the angle dispersion from the C-axis of the degree of crystal orientation measured by X-rays is set at 30 degrees or less on the surface of the magnet. As a result, excellent self-lubricating properties can be obtained when a hot-work operation is conducted, and also a permanent magnet having a high energy product can be obtained.

Description

【発明の詳細な説明】 本発明は、コンピューターの外部記憶装置であるハード
ディスク、フロッピディスクあるいは、各種端末装置に
用いられる、希土類遷移金属、硼素から実質的になる永
久磁石であって温間での塑性加工によって磁気異方性を
付与する温間加工磁石の改良に関し特に適量の添加元素
を加えることにより加工性を改善し割れが無く且つ結晶
配向性を向上して良好な磁気特性を有する永久磁石と、
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet substantially made of rare earth transition metals and boron, which is used in hard disks and floppy disks, which are external storage devices of computers, and various terminal devices. Regarding the improvement of warm-worked magnets that impart magnetic anisotropy through plastic working, permanent magnets that have improved workability by adding an appropriate amount of additive elements, are free from cracking, have improved crystal orientation, and have good magnetic properties. and,
It relates to its manufacturing method.

〔従来の技術] 希土類、遷移金属から実質的になる永久磁石(以下R−
T−B磁石と呼ぶ)は、安価で且つ高磁気特性を有する
永久磁石として注目を集めている。正方晶系の結晶構造
を持ったR2T、4Bで表される金属間化合物が優れた
磁気特性を発現するからである。この金属間化合物は室
温で正方形の一辺が0.878nmでその面に垂直なC
軸方向の格子定数が1.218nmである。この金属間
化合物は、C軸方向に強い磁気異方性を有している。
[Prior art] Permanent magnets (hereinafter referred to as R-
T-B magnets (called T-B magnets) are attracting attention as permanent magnets that are inexpensive and have high magnetic properties. This is because intermetallic compounds represented by R2T and 4B, which have a tetragonal crystal structure, exhibit excellent magnetic properties. This intermetallic compound has a square side of 0.878 nm at room temperature, and a C
The lattice constant in the axial direction is 1.218 nm. This intermetallic compound has strong magnetic anisotropy in the C-axis direction.

この金属間化合物を利用した磁石の工業的な製造方法と
しては、粉末冶金法による焼結磁石と超急冷法による温
間塑性加工磁石に大別される。焼結磁石は、所望の組成
に調整溶解、鋳造して得られるインゴットを粗粉砕、微
粉砕して得られる3〜5μmの微粉末を磁場中で成形し
焼結、熱処理することにより得られる。焼結磁石の場合
、微粉砕あるいはその後の焼結、熱処理工程中に雰囲気
からの酸素の浸入が避けられず、通常焼結体中には、3
000〜8000ppmの酸素が不純物として含有され
る。この不純物酸素は、合金中の希土類成分と結合し酸
化物として存在する。この非磁性酸化物は、永久磁石の
飽和磁気モーメントを低下させると伴に永久磁石に反転
磁界を励磁した場合、反転磁区の核生成サイトとして働
く為、保磁力を低下させる要因となる。焼結磁石のこの
問題点を解消する為に種々の発明が提案されている。
Industrial methods for manufacturing magnets using this intermetallic compound are broadly divided into sintered magnets using powder metallurgy and warm plastically worked magnets using ultra-quenching. The sintered magnet is obtained by coarsely pulverizing and finely pulverizing an ingot obtained by adjusting the composition to a desired composition, melting, and casting, and then molding, sintering, and heat-treating fine powder of 3 to 5 μm in a magnetic field. In the case of sintered magnets, the intrusion of oxygen from the atmosphere during the pulverization, subsequent sintering, and heat treatment processes is unavoidable, and the sintered body usually contains 3
000 to 8000 ppm of oxygen is contained as an impurity. This impurity oxygen is combined with the rare earth component in the alloy and exists as an oxide. This non-magnetic oxide reduces the saturation magnetic moment of the permanent magnet, and when the permanent magnet is excited with a reversal magnetic field, it acts as a nucleation site for reversal magnetic domains, which causes a decrease in coercive force. Various inventions have been proposed to solve this problem with sintered magnets.

例えば、最も一般的に用いられる方法としては、R成分
中の重希土類成分(例えばoy 、 Tb)の比率を高
めることである。しかしながら、この方法では重希土類
の全角運動量と、Feのスピン角運動量が反平行に結合
する為に、重希土類成分の比率を多くすればする程、合
金の飽和磁気モーメントは低下するという欠点を有する
。あるいは、微量の添加元素例えば、^42.Nb、G
a等を添加し保磁力を向上させるという提案もなされて
いるが、前記重希土を用いる場合に比較して効果は小さ
い。
For example, the most commonly used method is to increase the proportion of heavy rare earth components (eg, oy, Tb) in the R component. However, this method has the disadvantage that the total angular momentum of the heavy rare earth and the spin angular momentum of Fe are coupled antiparallelly, so the saturation magnetic moment of the alloy decreases as the ratio of heavy rare earth components increases. . Alternatively, trace amounts of additional elements, for example, ^42. Nb,G
Although it has been proposed to improve the coercive force by adding a, etc., the effect is smaller than when using the heavy rare earth.

また、プロセス中での酸素の浸入を抑制し、磁気特性を
改善する試みもなされているが、設備が大がかりとなり
、製造コストが高くなる為工業上問題点が多い。
Attempts have also been made to suppress the infiltration of oxygen during the process and improve the magnetic properties, but this requires large-scale equipment and increases manufacturing costs, resulting in many industrial problems.

一方、超急冷法においては、メルトスピニング法あるい
はその他の超急冷法で得られた非晶質又は微細な結晶質
あるいは両者の混合物で形成される、薄帯又は粉末を温
間でホットプレスによりち密化した後、引き続き塑性加
工により異方性化し、製造れさる。本方法では工程中に
微粉砕工程を含まないため、不純物酸素量を通常200
0ppm以下に抑制することが可能であり、したがって
高い飽和磁気モーメントが期待出来る。また、高温での
焼結工程を必要としないことから、温間塑性加工を施し
得られる最終製品の結晶粒径は0.02〜1.0μmと
微細であり特に好ましい温度領域で温間加工された磁石
の平均粒径は0.1〜0.5μmと本系磁石の単磁区臨
界寸法0.3μmに近く本質的に高い保磁力が得られる
。温間加工磁石においては塑性流動と直角な方向の磁気
的な結晶配列状態の密接な相関が重要である。すなわち
塑性流動を被加工物の全体に均一に充分行わせることが
磁気特性に関係する結晶配向度の向上に必要である。
On the other hand, in the ultra-quenching method, a ribbon or powder formed of amorphous or fine crystalline material or a mixture of both obtained by melt spinning or other ultra-quenching methods is densified by hot pressing in a warm state. After that, it is made anisotropic by plastic working and manufactured. Since this method does not include a pulverization step in the process, the amount of impurity oxygen is usually reduced to 200%.
It is possible to suppress it to 0 ppm or less, and therefore a high saturation magnetic moment can be expected. In addition, since there is no need for a sintering process at high temperatures, the final product obtained by warm plastic working has a fine crystal grain size of 0.02 to 1.0 μm, and warm working is performed in a particularly preferable temperature range. The average grain size of the magnet is 0.1 to 0.5 μm, which is close to the single domain critical dimension of the present magnet of 0.3 μm, and an essentially high coercive force can be obtained. In warm-worked magnets, a close correlation between plastic flow and magnetic crystal alignment in the orthogonal direction is important. That is, it is necessary to uniformly and sufficiently apply plastic flow to the entire workpiece in order to improve the degree of crystal orientation related to magnetic properties.

また、温間塑性加工時の粒子間あるいは薄帯間の摩擦は
不均一変形をもたらすと伴に引張応力を発生させ、クラ
ックを生じさせる要因となる。このことは、工業製品と
しての永久磁石を得ようとする場合には大きな問題点で
ある。温間加工の際に印加される加工力の大部分は塑性
仕事に使われるが、一部はダイスとワークの摩擦あるい
は、ワーク内の粒子間の摩擦に浪費される。従って、温
間加工時の加工性を向上させ、クランクのない永久磁石
を得る為に種々の外部潤滑剤が提案されている。例えば
特開昭60−100402号公報には温間加工に用いる
ダイス表面に黒鉛を外部潤滑剤としてライニングした例
が記載されている。しかし、この場合には磁石体内部の
粒子間摩擦による不均一な塑性流動を改善する作用効果
は無い。
Further, friction between particles or ribbons during warm plastic working causes non-uniform deformation and generates tensile stress, which is a factor that causes cracks. This is a big problem when trying to obtain a permanent magnet as an industrial product. Most of the working force applied during warm working is used for plastic work, but some is wasted due to friction between the die and workpiece or friction between particles within the workpiece. Therefore, various external lubricants have been proposed in order to improve the workability during warm working and to obtain a permanent magnet without a crank. For example, JP-A-60-100402 describes an example in which the surface of a die used for warm working is lined with graphite as an external lubricant. However, in this case, there is no effect of improving the non-uniform plastic flow caused by friction between particles inside the magnet body.

温間加工時の粒子間あるいは、薄帯間の摩擦による不均
一な、塑性流動を改善することを目的としてMO321
CHBN等の微粉末を添加することにより塑性流動を容
易にし、割れのない温間加工磁石を得る技術が提案され
ている。この方法によると磁石粉末あるいは薄帯間で添
加した微粉末が粉末間あるいは薄帯間の摩擦を緩和する
ことにより、クラックの抑制と配向度の向上に顕著な効
果を及ぼす。しかしながら、上記発明の効果も超急冷磁
石を構成する固々の粒子間にまでは及ばない為限界があ
る。
MO321 was developed for the purpose of improving uneven plastic flow caused by friction between particles or ribbons during warm working.
A technique has been proposed to facilitate plastic flow by adding fine powder such as CHBN to obtain a crack-free warm-worked magnet. According to this method, the magnet powder or the fine powder added between the ribbons alleviates the friction between the powders or between the ribbons, which has a remarkable effect on suppressing cracks and improving the degree of orientation. However, the effects of the above-mentioned invention have limitations because they do not reach between the solid particles that constitute the ultra-quenched magnet.

本発明は、上記問題点を解消し、塑性加工が容易でかつ
磁気的な結晶配向が均一で磁気特性に優れたR−T−B
系の温間加工磁石を提供することを目的とする。
The present invention solves the above problems and provides an R-T-B which is easy to plastically work, has uniform magnetic crystal orientation, and has excellent magnetic properties.
The purpose of the present invention is to provide a system of warm-processed magnets.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はまず、遷移金属Tを主成分とし、イツトリウム
を含む希土類元素Rおよび硼素B、炭素Cを含有するR
−T−B−C系合金の溶湯を超急冷凝固して、薄帯又は
薄片を得て破砕して粉末状とした後、温間加工により磁
気異方性を付与する温間加工磁石において、Cを微量添
加することを特徴とする温間加工磁石の製造方法である
。RT−13−C系合金の磁気的な性質については例え
ば、J、 Appl、 Phys、 61 (8) P
3574においてFe1.NdqDybBo、 qCt
、 zなる組成により8 KOeの保磁力が得られるこ
とが報告されている。また、J。
The present invention first focuses on R containing a transition metal T as a main component, a rare earth element R containing yttrium, boron B, and carbon C.
- In a warm-worked magnet in which a molten TB-C alloy is ultra-rapidly solidified to obtain a ribbon or flake, which is crushed into powder, and then warm-worked to impart magnetic anisotropy, This is a method for manufacturing a warm-worked magnet characterized by adding a small amount of C. Regarding the magnetic properties of RT-13-C alloys, see, for example, J. Appl. Phys. 61 (8) P.
In 3574 Fe1. NdqDybBo, qCt
It has been reported that a coercive force of 8 KOe can be obtained with a composition of , z. Also, J.

Mag、 and Mag、 Mat、72 (198
8)P167ではR2Fe+ 4C化合物における基本
的な磁気的な性質が報告されている。しかしながら、こ
れ等の合金系に対する塑性加工条件に関する研究はなさ
れていない。本発明は、超袋、冷性により得られる非晶
質又は微細な結晶質あるいはそれ等の混合物を温間で塑
性加工して得られるR−T−B−C系異方性永久磁石の
製造方法に関し、温間加工時の自己潤滑性に優れ、高い
エネルギー積を有する永久磁石合金を提供することを目
的としている。従来、R−T−B系永久磁石合金を温間
で塑性変形する場合、外部より印加された圧力の一部は
、ワークと工具間の摩擦、薄帯間あるいは粒子間の摩擦
により消費される為、ワーク内に均一な塑性歪を与える
ことが困難であり、その結果得られる、異方性永久磁石
の結晶配向度すなわち異方性化度は微粉末を磁場中で配
向させ焼結して得られる焼結磁石と比較し劣るという問
題点があった。
Mag, and Mag, Mat, 72 (198
8) Basic magnetic properties in R2Fe+ 4C compounds have been reported for P167. However, no research has been conducted on the plastic working conditions for these alloy systems. The present invention is directed to the production of R-T-B-C system anisotropic permanent magnets obtained by warm plastic processing of amorphous or fine crystalline materials obtained by ultra-bagging, cold processing, or mixtures thereof. Regarding the method, the objective is to provide a permanent magnet alloy that has excellent self-lubricating properties during warm working and has a high energy product. Conventionally, when warm plastically deforming an R-T-B permanent magnet alloy, part of the externally applied pressure is consumed by friction between the workpiece and tool, friction between ribbons, or friction between particles. Therefore, it is difficult to apply uniform plastic strain within the workpiece, and the degree of crystal orientation, that is, the degree of anisotropy, of the resulting anisotropic permanent magnet is determined by orienting the fine powder in a magnetic field and sintering it. There was a problem that it was inferior to the obtained sintered magnet.

このような問題点を克服する為、外部潤滑材、あるいは
無機有機の内部潤滑材を塗布又は混合し、異方性化度を
改善する提案がなされているものの、これ等の手法は、
R−T−B系合金固有の機械的性質を改善するものでは
なく、その効果には限界があった。また、これ等の手法
によると、塑性変形に関する個々の粒子ひとつ、ひとつ
にまでは及ばないという問題点もある。本発明者等は、
このような従来技術の問題点を解決する為にR−TB系
合金の温間での機械的性質の改質を試み本発明に敗った
In order to overcome these problems, proposals have been made to improve the degree of anisotropy by applying or mixing an external lubricant or an inorganic or organic internal lubricant, but these methods
It does not improve the mechanical properties inherent to RTB alloys, and its effectiveness is limited. Furthermore, these methods have the problem that plastic deformation cannot be applied to individual particles one by one. The inventors,
In order to solve the problems of the prior art, an attempt was made to modify the mechanical properties of the R-TB alloy under warm conditions, but the present invention failed.

すなわち、R−T−B系合金に微量なCを添加すること
により、温間での塑性加工性が改善され結晶配向度が大
巾に改善されることを見出した。
That is, it has been found that by adding a small amount of C to the RTB alloy, the warm plastic workability is improved and the degree of crystal orientation is greatly improved.

ここで微量添加されたCは、合金中のNd及び若干のF
e成分と結合し、いわゆるNdリッチ相を形成する。こ
こで形成されたNd リッチ相は、本系合金で永久磁石
、特性を現出する、NdzFe+ 4B相の粒子を取り
巻くように存在し、温間加工時の自己潤滑剤として働く
と伴に、外部より印加された圧力を有効に塑性仕事に変
換する媒体となる。Cの添加量が0.01重量%以下で
は、Ndリッチ相の粘性が低く、圧力媒体としての役割
りが不十分であり、高い異方性を得ることが出来ない。
Here, the small amount of C added is the Nd in the alloy and some F.
It combines with the e component to form a so-called Nd-rich phase. The Nd-rich phase formed here surrounds the NdzFe+ 4B phase particles that exhibit permanent magnetic properties in this alloy, and acts as a self-lubricating agent during warm working, as well as external It becomes a medium that effectively converts the applied pressure into plastic work. If the amount of C added is 0.01% by weight or less, the viscosity of the Nd-rich phase is low, the role as a pressure medium is insufficient, and high anisotropy cannot be obtained.

また、Cが0.8重量%以上では、CがNdzFel 
4B相中のBと置換する為、余剰のBにより機械的に脆
性なりリッチ相が形成され、材料自体の変形抵抗が著し
く高くなり、十分な塑性変形を付与することが困難とな
ると伴に保磁力も低下するため好ましくない。本発明に
おいて平均結晶粒径が0.02μm未満の微結晶を工業
的に安定して得ることは、現時点の技術においては、極
めて困難であり、1.0μmを越える場合には、保磁力
が低下して好ましくない。ここで、平均結晶粒径の測定
は、顕微鏡写真における切断法による。すなわち、写真
に任意に線分を引いたとき線分を切断する結晶粒の数で
線分長さを除した値を結晶粒径とし、少なくとも20個
以上について求めた平均値を平均粒径とする。ここで注
意すべきことは、温間加工磁石においては結晶のC軸に
垂直な面に偏平な形状をしており、C軸を含む面で切断
するときは平板の厚み方向となる。従って、前述の平均
結晶粒径はC軸に垂直な面上のものをいう。また、本発
明に係る合金は遷移金属を主成分としイツトリウムを含
む希土類元素R及び硼素、炭素を含有する。本発明で遷
移金属とは、鉄を主体とし、一部Co、 Ni。
Moreover, when C is 0.8% by weight or more, C is NdzFel
Because it replaces B in the 4B phase, the excess B makes it mechanically brittle and forms a rich phase, which significantly increases the deformation resistance of the material itself, making it difficult to apply sufficient plastic deformation and making it difficult to maintain. This is not preferable because the magnetic force also decreases. In the present invention, it is extremely difficult to industrially stably obtain microcrystals with an average crystal grain size of less than 0.02 μm using current technology, and if the average crystal grain size exceeds 1.0 μm, the coercive force decreases. I don't like it. Here, the average crystal grain size is measured by a cutting method in a micrograph. In other words, when a line segment is arbitrarily drawn on a photograph, the line segment length is divided by the number of crystal grains that cut the line segment, and the grain size is defined as the grain size. do. What should be noted here is that warm-processed magnets have a flat shape in a plane perpendicular to the C-axis of the crystal, and when cutting along a plane that includes the C-axis, the direction is the thickness direction of the flat plate. Therefore, the above-mentioned average grain size refers to that on a plane perpendicular to the C-axis. Further, the alloy according to the present invention contains a transition metal as a main component, a rare earth element R including yttrium, boron, and carbon. In the present invention, the transition metals are mainly composed of iron, with some of them being Co and Ni.

Ru、 Rh、 Pd+ Os、 Ir+ Ptの狭義
の遷移金属のみならず原子番号21〜29.39〜47
.72〜79.89以上の元素を全て含む広義の遷移金
属をいう。
Not only transition metals in the narrow sense of Ru, Rh, Pd+ Os, Ir+ Pt but also atomic numbers 21-29.39-47
.. It refers to transition metals in a broad sense, including all elements of 72 to 79.89 or more.

またGaの添加は本発明者等が既に発表したように温間
加工磁石において保磁力を顕著に向上する効果があるた
め、必要に応じて添加すると効果的である。更に、公知
の添加元素を目的に応じて添加することも本発明の効果
を逸脱するものではない。希土類元素RもNd、 Pr
を主体とし公知の通り、コスト低減の目的にはCe、ジ
ジム等による一部置換、温度特性を改善する目的には重
希土類等による一部置換ができることは言うまでもない
。本発明に係るRの組成範囲は28〜40重量%であり
、Rの含有量が29重量%未満の場合はFeリッチなN
d2Fe+J相が形成され保磁力を著しく低下させる為
、高いエネルギー積は得られない。
Furthermore, as the present inventors have already announced, the addition of Ga has the effect of significantly improving the coercive force in warm-worked magnets, so it is effective to add Ga as necessary. Furthermore, addition of known additive elements according to the purpose does not deviate from the effects of the present invention. The rare earth elements R are also Nd, Pr
As is well known, it is possible to partially substitute with Ce, didymium, etc. for the purpose of cost reduction, and to partially substitute with heavy rare earths, etc. for the purpose of improving temperature characteristics. The composition range of R according to the present invention is 28 to 40% by weight, and when the R content is less than 29% by weight, Fe-rich N
Since a d2Fe+J phase is formed and the coercive force is significantly reduced, a high energy product cannot be obtained.

またRが40重量%以上では合金中のNdリッチ相の割
合が多くなり過ぎて、微量なCによる効果を十分に発揮
することが出来ない。遷移金属Tの含有量は60〜70
重量%が好ましく、60重重量未満では、飽和磁気モー
メントが低下し、70重量%以上では保磁力が低下する
。Bの含有量は、0.5重量%未満では、Nd2Fe+
Jの形成が十分でなく、1.5重量%を越えると、Bリ
ッチ相が多量に形成される為、塑性加工性を著しく阻害
する為好ましくない。本発明に係るX線回折によって求
められる結晶配向度の指票である、角度分散値は以下の
ように定義される。まず、等方性の試料においてデイフ
ラクトメータ法で各回折面のX線回折強度を測定し、次
いで異方性化した温間加工磁石から切り出した試料の各
回折面のX線回折強度を測定し、その強度を等方性試料
の各回折強度で規格化する。次いで規格化した値すなわ
ち相対強度を各回折面が0面となす角度に対してプロッ
トし、得られた魚群を、0面を中心とするガウス分布で
近似しその分散を求める。この分散の値が結晶配置1 向性の指票となる。
Further, if R is 40% by weight or more, the proportion of the Nd-rich phase in the alloy becomes too large, and the effect of a small amount of C cannot be fully exhibited. The content of transition metal T is 60-70
Weight% is preferable; if it is less than 60% by weight, the saturation magnetic moment will decrease, and if it is 70% by weight or more, the coercive force will decrease. If the B content is less than 0.5% by weight, Nd2Fe+
If the formation of J is insufficient and exceeds 1.5% by weight, a large amount of B-rich phase will be formed, which will significantly impede plastic workability, which is not preferable. The angular dispersion value, which is an index of the degree of crystal orientation determined by X-ray diffraction according to the present invention, is defined as follows. First, measure the X-ray diffraction intensity of each diffraction surface of an isotropic sample using the diffractometer method, and then measure the X-ray diffraction intensity of each diffraction surface of a sample cut from an anisotropic warm-processed magnet. Then, the intensity is normalized by each diffraction intensity of the isotropic sample. Next, the normalized value, that is, the relative intensity, is plotted against the angle that each diffraction surface makes with the 0 plane, and the obtained fish school is approximated by a Gaussian distribution centered on the 0 plane, and its dispersion is determined. The value of this dispersion becomes an index of crystal orientation 1 tropism.

本発明は結晶のC軸からの角度分散が磁石表面において
30°未満という顕著な配向度の向上をもたらせるもの
である。従来の温間加工磁石においては磁石表面での角
度分散が30°以上となるため磁気配向が揃わず磁気特
性が不十分であった。
The present invention can bring about a remarkable improvement in the degree of orientation in which the angular dispersion from the C axis of the crystal is less than 30° on the magnet surface. In conventional warm-processed magnets, the angular dispersion on the magnet surface is 30° or more, so the magnetic orientation is not uniform and the magnetic properties are insufficient.

本発明の温間加工磁石は温間での塑性加工によって得ら
れその手段として押出し、スェージング、圧延、据込み
加工等の塑性加工が用いられる。特に据込み加工が異方
性付与の効率が良い。
The warm-worked magnet of the present invention is obtained by warm plastic working, and plastic working such as extrusion, swaging, rolling, and upsetting is used as a means for this purpose. Upsetting is particularly effective in imparting anisotropy.

本発明に係る炭素を添加剤として添加した温間加工磁石
の特徴は、変形が均一であって、その結果断面内におけ
る歪分布が均一であることである。
A feature of the warm-worked magnet to which carbon is added as an additive according to the present invention is that the deformation is uniform, resulting in a uniform strain distribution within the cross section.

〔実施例〕〔Example〕

(実施例1) Nd 29 Wχ、 Fe 69.5 W%’ 、 B
 IWX 、 CO,5H%なる合金と、比較材として
、Nd” 29 Wχ、 Fe 70會χ、B′1繭 
なる合格を、アーク溶解にて、溶製しボタンインゴット
とした。得られたボタンインゴットをAr中で高・周波
溶解し、周速が30’m/sで回転する単ロール上に射
出し、約30μmの厚さを持った不定形のフレーク状の
薄片を作製した。
(Example 1) Nd 29 Wχ, Fe 69.5 W%', B
IWX, CO, 5H% alloy, and as comparison materials, Nd''29 Wχ, Fe 70 χ, B'1 cocoon
Those that passed the test were melted into button ingots using arc melting. The obtained button ingot was high-frequency melted in Ar and injected onto a single roll rotating at a circumferential speed of 30 m/s to produce irregularly shaped flakes with a thickness of about 30 μm. did.

次いで、フレーク状の薄片を500μm以下に粉砕し粉
末状とし成形圧3トン/cIIIで磁場を印加せずに冷
間で成形し密度が5.7 g /cc、で直径28mm
、高さ47mmの圧粉体を作製した。
Next, the flakes were crushed to a size of 500 μm or less to form a powder, which was then cold-molded at a molding pressure of 3 tons/cIII without applying a magnetic field to a density of 5.7 g/cc and a diameter of 28 mm.
A green compact with a height of 47 mm was produced.

得られた圧粉体を700°Cで1トン/ c+flでホ
ットプレスし、密度が約7.5 g /ccの圧密体と
し、この圧密体を引き続き700 ’Cで圧縮比(据込
み前の高さを据込み後の高さで除した値)が4となるよ
うに据込み加工によって温間加工して磁気異方性を付与
した。
The obtained compact was hot pressed at 700°C at 1 ton/c+fl to obtain a compact with a density of approximately 7.5 g/cc, and this compact was then heated at 700°C to reduce the compression ratio (before upsetting). The magnetic anisotropy was imparted by warm processing by upsetting so that the value obtained by dividing the height by the height after upsetting was 4.

第1図に据込み加工時の真心カー真否線図を比較材との
比較で示す。Cを微量添加することにより、真応力は低
い歪量にて立ち上るが、以後の歪量では応力はほぼ一定
で変形が進行することが分る。
Figure 1 shows a true/false diagram of the true car during upsetting in comparison with a comparison material. It can be seen that by adding a small amount of C, the true stress rises at a low amount of strain, but at subsequent amounts of strain, the stress remains almost constant and deformation progresses.

一方、Cを含まない比較材においては、初期歪、領域で
の応力の立ち上りは低く、高歪域で応力は急激に立上る
ことが分る。
On the other hand, it can be seen that in the comparative material that does not contain C, the stress rises in the initial strain region is low, and the stress rises rapidly in the high strain region.

又、第1表に据込み加工後の材料から切り出した試料の
磁気特性とX線回折により求めた角度分散値を示す。第
1表より、Cの微量添加により、結晶配向度が改善され
、磁気特性は大巾に改善されることが分る。
Furthermore, Table 1 shows the magnetic properties of samples cut from the material after upsetting and the angular dispersion values determined by X-ray diffraction. From Table 1, it can be seen that by adding a small amount of C, the degree of crystal orientation is improved and the magnetic properties are greatly improved.

(実施例2) 重量%でN(] 30.5 、 Fe 67.9 、 
B O,9、GaO,5、CO,2なる合金をアーク溶
解で溶製し、以後実施例1と同様に据込み加工し、磁気
特性と、結晶配向度測定した。得られた磁気特性は、B
r12.8 KG 、 Hci  17.5 KOe 
、 (BH)、 40.2 MGOe、であり、X線回
折により求めた角度分散値は17゜となり、C微量添加
による顕著な効果が認められた。
(Example 2) N(] 30.5, Fe 67.9, in weight%
An alloy of B 2 O,9, GaO,5, and CO,2 was melted by arc melting, and then upset in the same manner as in Example 1, and its magnetic properties and degree of crystal orientation were measured. The obtained magnetic properties are B
r12.8 KG, Hci 17.5 KOe
, (BH), 40.2 MGOe, and the angular dispersion value determined by X-ray diffraction was 17°, indicating a remarkable effect due to the addition of a small amount of C.

(実施例3) 実施例1と同様の方法により、Nd 30.5Fe b
ai!、−B 0.9− Ga O,5−Cxなる合金
を温間据え込み加工により異方性化し、磁気特性のC量
に対する依存性を調べた。結果を第2表に示す。
(Example 3) By the same method as in Example 1, Nd 30.5Fe b
ai! , -B0.9-GaO,5-Cx was made anisotropic by warm upsetting, and the dependence of magnetic properties on the amount of C was investigated. The results are shown in Table 2.

C量が0.01〜0.8重量%において、良好な磁気特
性が得られる。
Good magnetic properties are obtained when the amount of C is 0.01 to 0.8% by weight.

(実施例4) C量を一定とし、Nd、’Fe、B量を種々変えた異方
性据込み磁石を、実施例1と同様の方法で作製し、磁気
特性と結晶配向性を評価した。結果を第3.4表に示す
(Example 4) Anisotropic upsetting magnets with a constant C amount and various Nd, 'Fe, and B amounts were produced in the same manner as in Example 1, and the magnetic properties and crystal orientation were evaluated. . The results are shown in Table 3.4.

第3表より、Nd 28〜40 Wχ、 Fe 60〜
70 WLB O,5〜1.5−χの範囲で高い磁気特
性が得られることが分る。
From Table 3, Nd 28~40 Wχ, Fe 60~
It can be seen that high magnetic properties can be obtained in the range of 70 WLB O,5 to 1.5-χ.

以上述べたように、本発明によれば温間塑性加工磁石に
おいて従来不十分であった結晶配向性を改善した、高い
エネルギー積を有するものが得られる。
As described above, according to the present invention, it is possible to obtain a warm plastically worked magnet that has improved crystal orientation, which has conventionally been insufficient, and has a high energy product.

■ (発明の効果) 本発明によると温間加工が容易でかつ磁気的な結晶配向
が均一で磁気特性に優れたR−T−B系の永久磁石が得
られる。
(Effects of the Invention) According to the present invention, it is possible to obtain an R-T-B permanent magnet that is easy to warm-work, has a uniform magnetic crystal orientation, and has excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る温間加工磁石と比較例の場合の据
込み加工時の真応力・真歪線図を示す。
FIG. 1 shows true stress/true strain diagrams during upsetting for a warm worked magnet according to the present invention and a comparative example.

Claims (3)

【特許請求の範囲】[Claims] (1)遷移金属Tを主成分とし、イットリウムを含む希
土類元素R及び硼素Bを含有するR−T−B−C系合金
であって磁気的異方性を有する平均結晶粒径が0.02
〜1.0μmの微細な結晶粒を有する、永久磁石におい
て、炭素含有量が0.01〜0.8重量%以下であるこ
とを特徴とする温間加工磁石。
(1) R-T-B-C alloy containing transition metal T as the main component, rare earth element R including yttrium, and boron B, with an average crystal grain size of 0.02 and having magnetic anisotropy.
A permanent magnet having fine crystal grains of ~1.0 μm, characterized in that the carbon content is 0.01 to 0.8% by weight or less.
(2)遷移金属Tを主成分とし、イットリウムを含む希
土類元素R及び硼素Bを含有するR−T−B−C合金で
あって、磁気的異方性を有する平均結晶粒径が0.02
〜1.0μmの微細な結晶粒を有する永久磁石において
、Rの含有量が28〜35重量%、Tの含有量が60〜
72重量%、Bの含有量が0.5〜1.5重量%その他
不可避不純物からなることを特徴とする温間加工磁石。
(2) R-T-B-C alloy containing transition metal T as a main component, rare earth element R including yttrium, and boron B, and having an average crystal grain size of 0.02 with magnetic anisotropy.
In a permanent magnet having fine crystal grains of ~1.0 μm, the R content is 28-35% by weight and the T content is 60-35% by weight.
72% by weight, a B content of 0.5 to 1.5% by weight, and other unavoidable impurities.
(3)遷移金属Tを主成分として、イットリウムを含む
希土類元素R及び硼素Bを含有するR−T−B−C系合
金であって磁気的異方性を有する平均結晶粒径が0.0
2〜1.0μmの微細な結晶粒を有する永久磁石におい
て、X線回折により測定した結晶配向度のC軸からの角
度分散が磁石表面において30度未満であることを特徴
とする温間加工磁石。
(3) R-T-B-C alloy containing transition metal T as a main component, rare earth element R including yttrium, and boron B, and having magnetic anisotropy and an average crystal grain size of 0.0
A permanent magnet having fine crystal grains of 2 to 1.0 μm, characterized in that the angular dispersion of the degree of crystal orientation from the C axis measured by X-ray diffraction is less than 30 degrees at the magnet surface. .
JP1106509A 1989-04-26 1989-04-26 Warm magnet Expired - Lifetime JP2823076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106509A JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106509A JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Publications (2)

Publication Number Publication Date
JPH02285604A true JPH02285604A (en) 1990-11-22
JP2823076B2 JP2823076B2 (en) 1998-11-11

Family

ID=14435398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106509A Expired - Lifetime JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Country Status (1)

Country Link
JP (1) JP2823076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2021128801A1 (en) * 2019-12-24 2021-07-01 厦门钨业股份有限公司 Rtb-based permanent magnet material, preparation method thereof, and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647504A (en) * 1986-10-14 1989-01-11 Hitachi Metals Ltd Magnetic anisotropic magnetic powder, magnetic anisotropic pressurized powder magnet, magnetic anisotropic bond magnet, and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647504A (en) * 1986-10-14 1989-01-11 Hitachi Metals Ltd Magnetic anisotropic magnetic powder, magnetic anisotropic pressurized powder magnet, magnetic anisotropic bond magnet, and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2021128801A1 (en) * 2019-12-24 2021-07-01 厦门钨业股份有限公司 Rtb-based permanent magnet material, preparation method thereof, and application thereof

Also Published As

Publication number Publication date
JP2823076B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
Rong et al. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
WO2012008623A1 (en) Process for producing rare-earth magnet, and rare-earth magnet
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JPH06346101A (en) Magnetically anisotropic powder and its production
JPS63114939A (en) R2t14b-type composite-type magnet material and its production
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
US5536334A (en) Permanent magnet and a manufacturing method thereof
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH01100242A (en) Permanent magnetic material
JPH02285604A (en) Hot-worked magnet and manufacture thereof
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JP3037917B2 (en) Radial anisotropic bonded magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP7409285B2 (en) Rare earth magnet and its manufacturing method
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH03267346A (en) Alloying of low level additive to heat treated nd-fe-b magnet
JPH09115711A (en) Anisotropic bond magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11