JPS61198510A - Manufacture of superconductor - Google Patents

Manufacture of superconductor

Info

Publication number
JPS61198510A
JPS61198510A JP60037166A JP3716685A JPS61198510A JP S61198510 A JPS61198510 A JP S61198510A JP 60037166 A JP60037166 A JP 60037166A JP 3716685 A JP3716685 A JP 3716685A JP S61198510 A JPS61198510 A JP S61198510A
Authority
JP
Japan
Prior art keywords
alloy
superconducting conductor
winding frame
superconducting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60037166A
Other languages
Japanese (ja)
Inventor
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60037166A priority Critical patent/JPS61198510A/en
Publication of JPS61198510A publication Critical patent/JPS61198510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は超電導導体の製造方法に関するものである。[Detailed description of the invention] <Industrial application field> This invention relates to a method for manufacturing a superconducting conductor.

〈従来の技術〉 超電導導体のなかで陽)Sn合金は臨界温度が高く、ま
た臨界磁場も高く、高磁場発生用導体とじてNb3Sn
合金はNbとC1i−8T1合金を一体加工して線材と
した俊、マグネットに巻線してから熱処理を施し、陽と
81を熱拡散してNb3Snを生成させて作るのが最も
一般的である。
<Prior art> Among superconducting conductors, Sn alloys have a high critical temperature and a high critical magnetic field, and Nb3Sn is used as a conductor for generating high magnetic fields.
The most common alloy is made by integrally processing Nb and C1i-8T1 alloy into a wire rod, winding it around a magnet, then heat-treating it, and then thermally diffusing positive and 81 to generate Nb3Sn. .

この時、巻線巻枠としては従来ステンレスや純銅が用い
られていた。
At this time, stainless steel or pure copper was conventionally used as the winding frame.

〈発明が解決しようとする問題点〉   □しかしなが
ら、Nb3Snの熱処理温度は600〜800℃で数1
0時間を必要とし、この熱処理条件を経た復は、巻線用
巻枠として銅を用いた場合は、強度が20KF14程度
となり、後工程で傷がついたり、歪んでしまうという欠
点があった。
<Problems to be solved by the invention> □However, the heat treatment temperature for Nb3Sn is 600 to 800°C, which is several 1
It takes 0 hours, and when copper is used as the winding frame, the strength is about 20KF14, and there is a drawback that it may be scratched or distorted in the subsequent process.

ざらに巻枠としてステンレスを用いると、熱処理により
磁性をおび、超電導マグネットとしての磁場の均一性が
悪くなるという欠陥がめった。
When stainless steel is used for the winding frame, it often becomes magnetic due to heat treatment, resulting in poor uniformity of the magnetic field as a superconducting magnet.

〈問題点を解決するための手段〉 この発明はNb3Sn導体を用いた超電導導体の巻線用
枠として、アルミナ粒子分散強化銅合金を用いることを
特徴とするものであって、アルミナ粒子分散強化鋼合金
としては、約1μm以下のアルミナ粒子を分散粒子とし
て5〜50VOr1%含む銅合金か用いられている。
<Means for Solving the Problems> The present invention is characterized in that an alumina particle dispersion strengthened copper alloy is used as a winding frame for a superconducting conductor using an Nb3Sn conductor. As the alloy, a copper alloy containing 5 to 50 VOr1% of alumina particles of about 1 μm or less as dispersed particles is used.

この合金を用いるのは、 (1)分散したアルミナ粒子による耐熱性がすぐれ、約
900’Cまでの熱処理を経ても強度が劣化しない。
This alloy is used because: (1) It has excellent heat resistance due to the dispersed alumina particles, and its strength does not deteriorate even after heat treatment up to about 900'C.

(2)銅、)アルミナともに非磁性体であり、超電導マ
グネッlへとしての巻枠として考えた場合、磁場の均一
性が非常ににい。
(2) Both copper and alumina are non-magnetic materials, and when considered as a winding frame for a superconducting magnet, the uniformity of the magnetic field is extremely poor.

ことからである。This is because of this.

〈作用〉 この発明はNbJSTl導体を用いた超電導導体の巻線
用巻枠として1μm以下のアルミナ粒子を分散させた強
化銅合金を用いることにより、マ]〜リックスである銅
の耐熱性が格段にすぐれるのである。
<Function> This invention uses a strengthened copper alloy in which alumina particles of 1 μm or less are dispersed as a winding frame for a superconducting conductor using a NbJSTl conductor, thereby significantly improving the heat resistance of copper as a matrix. It is excellent.

例えば800’CX 50 hrsの熱処理でも強度は
40に94以上である。
For example, even after heat treatment at 800'CX 50 hrs, the strength is 40 to 94 or more.

従って強力な磁場にも歪まず、また熱処理後の後工程に
おいても傷がついたり、歪むことがない。
Therefore, it will not be distorted even by a strong magnetic field, and will not be scratched or distorted even in post-processing after heat treatment.

ざらに銅を用い−Cいるので非磁性であり、NbJSn
を用いた超電導導体マグネッ1〜としての磁場の均一性
にずぐれているのである。
It is non-magnetic because it uses copper and -C, and NbJSn
The uniformity of the magnetic field is inferior to that of the superconducting conductor magnets 1 to 1 using superconducting conductor magnets.

しかしてこの発、明で得られる超電導導体はNMRマグ
ネツi〜、N M R−CTマグネット、実験用小型マ
グネットとして有用である。
However, the superconducting conductor obtained in this invention is useful as NMR magnets, NMR-CT magnets, and small experimental magnets.

〈実施例〉 以下実施例にてこの発明を説明する。<Example> This invention will be explained below with reference to Examples.

内径20mm、外径160mm、高さ300mmの肉厚
3mmの銅、ステンレス、アルミナ粒子、分散強化銅合
金で作った巻枠にNb、Cu−Sn合金を一体化した直
径1.0mmφの線材を巻き、780’CX j20時
間の熱処理を施してNb4Sn超電導線材を作り、この
巻枠をそのままボビンとして低温容器に配し、超電導マ
グネットを作成した。
A wire rod with a diameter of 1.0 mmφ that is integrated with Nb and Cu-Sn alloy is wound around a winding frame made of copper, stainless steel, alumina particles, and dispersion-strengthened copper alloy with an inner diameter of 20 mm, an outer diameter of 160 mm, a height of 300 mm, and a wall thickness of 3 mm. , 780'CX j A Nb4Sn superconducting wire was produced by heat treatment for 20 hours, and the winding frame was placed in a low-temperature container as a bobbin to produce a superconducting magnet.

熱処理して低温容器に入れるまでの加工を経た後のボビ
ンの歪およびマグネットに加工して後の磁場の均一性を
評価した。
The distortion of the bobbin after heat treatment and processing up to placing it in a low-temperature container and the uniformity of the magnetic field after processing into a magnet were evaluated.

ここで歪は元の形状に対して10%以上の歪を人、5%
以下を小、磁場の均一性は0.1%以上を難、0,1%
未満を良として判定した。
Here, the distortion is 10% or more of the original shape, 5%
Below is small, magnetic field uniformity is 0.1% or more is difficult, 0.1%
Less than that was judged as good.

その結果は第1表に示した。The results are shown in Table 1.

第1表 〈発明の効果〉 以上からこの発明のアルミナ粒子分散強化銅合金を超電
導導体の巻線用巻枠として使用することによって、磁場
の均一性、強度の強い超電導マグネットの得られること
が認められた。
Table 1 <Effects of the Invention> From the above, it is recognized that by using the alumina particle dispersion strengthened copper alloy of the present invention as a winding frame for a superconducting conductor, a superconducting magnet with a uniform magnetic field and strong strength can be obtained. It was done.

Claims (2)

【特許請求の範囲】[Claims] (1)Cu−Sn合金とNbを一体加工して線材とした
のち、熱処理してNb_3Sn合金を生成せしめる超電
導導体の製法において、巻線用巻枠としてアルミナ粒子
分散強化銅合金を用いることを特徴とする超電導導体の
製造方法。
(1) A method for producing a superconducting conductor in which a Cu-Sn alloy and Nb are integrally processed into a wire rod, and then heat-treated to produce a Nb_3Sn alloy, which uses an alumina particle dispersion-strengthened copper alloy as the winding frame. A method for manufacturing a superconducting conductor.
(2)アルミナ粒子分散強化銅合金は該合金中にアルミ
ナ粒子が1μm以下の径で5〜50vol%含有してい
ることを特徴とする特許請求の範囲第1項記載の超電導
導体の製造方法。
(2) The method for producing a superconducting conductor according to claim 1, wherein the alumina particle dispersion-strengthened copper alloy contains 5 to 50 vol% of alumina particles with a diameter of 1 μm or less.
JP60037166A 1985-02-26 1985-02-26 Manufacture of superconductor Pending JPS61198510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60037166A JPS61198510A (en) 1985-02-26 1985-02-26 Manufacture of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037166A JPS61198510A (en) 1985-02-26 1985-02-26 Manufacture of superconductor

Publications (1)

Publication Number Publication Date
JPS61198510A true JPS61198510A (en) 1986-09-02

Family

ID=12490010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037166A Pending JPS61198510A (en) 1985-02-26 1985-02-26 Manufacture of superconductor

Country Status (1)

Country Link
JP (1) JPS61198510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255623B2 (en) 2010-09-06 2016-02-09 Kawasaki Jukogyo Kabushiki Kaisha Engine with inclined cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255623B2 (en) 2010-09-06 2016-02-09 Kawasaki Jukogyo Kabushiki Kaisha Engine with inclined cylinder

Similar Documents

Publication Publication Date Title
Levi Permanent magnets obtained by drawing compacts of parallel iron wires
CA1310821C (en) Gallium-containing magnet for a motor
US4435228A (en) Process for producing NB3 SN superconducting wires
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS61198510A (en) Manufacture of superconductor
JPH0328502B2 (en)
CN1020171C (en) Method for making amorphous constant-permeability core
JPH0627308B2 (en) Method of manufacturing permanent magnet material
CA1170084A (en) Magnetically anisotropic alloys for magnetically actuated devices
Tenzer Influence of Various Heat Exposures on Alnico V. Magnets
JPH05135636A (en) Manufacture of compound superconductive wire
SU1678530A1 (en) Process for manufacturing permanent magnets from neodymium-ferrum-boron alloy powder
JPS63150814A (en) Manufacture of nb-ti based fine multi-core superconductor
JPS58147537A (en) Permanent magnet alloy and its manufacture
JPS58136757A (en) Manufacture of permanent magnet alloy
JP3016098B2 (en) Manufacturing method of permanent magnet
JPS62283505A (en) Ac superconductor
KR870003471A (en) Method of producing ferromagnetic particles
Galligan et al. Solid solutions of niobium--tin for preparing Nb $ sub 3$ Sn superconductors
JPS61124553A (en) Alloy for permanent magnet
CN85104348B (en) 2-17 type rare-earth permament magnet having temp. compensation
Reynolds et al. New high field superconductor alloy.[Nb-40% Ti]
JPS5828682B2 (en) NBYSN1-XALX
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JPS5848606A (en) Production of permanent magnet of rare earths