JPS62281423A - Method and device for dry etching - Google Patents

Method and device for dry etching

Info

Publication number
JPS62281423A
JPS62281423A JP12336186A JP12336186A JPS62281423A JP S62281423 A JPS62281423 A JP S62281423A JP 12336186 A JP12336186 A JP 12336186A JP 12336186 A JP12336186 A JP 12336186A JP S62281423 A JPS62281423 A JP S62281423A
Authority
JP
Japan
Prior art keywords
temperature
etching
electrode
sample
etching treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12336186A
Other languages
Japanese (ja)
Other versions
JPH0691037B2 (en
Inventor
Makoto Nawata
誠 縄田
Ryoji Fukuyama
良次 福山
Yoshichika Fukushima
義親 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61123361A priority Critical patent/JPH0691037B2/en
Publication of JPS62281423A publication Critical patent/JPS62281423A/en
Publication of JPH0691037B2 publication Critical patent/JPH0691037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To suppress slowing down of an etching rate in an initial stage and improve an average etching rate by starting an etching treatment using plasmas after heating a sample and keeping a temperature of the sample at a prescribed temperature during a period of the etching treatment. CONSTITUTION:An etching treatment is started by heating a sample 50 using plasmas and keeps a temperature of the sample 50 at a prescribed temperature during a period of etching treatment. The plasmas are generated in a container 10 whose inside is maintained in a vacuum. A device, which performs the etching treatment of the sample 50 that is put on a electrode 30 in the container 10, is provided with heat source means 60 which heat or cool an electrode 30, for example, a circulating heat exchanger, temperature detecting means 70 which detect a temperature of electrode 30, and control means 80, for example, a microcomputer controlling the temperature of electrode 30 at a preset temperature through the heat source means 60, thereby comparing a temperature of electrode 30 preset according to a given temperature of the sample 50 during the period of etching treatment with the temperature of electrode 30 detected by the temperature detecting means 70.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、ドライエツチング方法及び装置に係;ハ特i
こ半導体素子基板(以下、基板と略)等の試料をプラズ
マによりエツチング処理するのに好適なドライエツチン
グ方法及び装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a dry etching method and apparatus;
The present invention relates to a dry etching method and apparatus suitable for etching a sample such as a semiconductor element substrate (hereinafter abbreviated as "substrate") using plasma.

〔従来の技術〕[Conventional technology]

従来、例えば、特開昭57−66642号公報に記載の
ようなドライエツチング技術では、基板を載置する電極
を水冷により冷却し、該冷却された電極を介してエツチ
ング処理中に基板が冷却される。
Conventionally, in a dry etching technique such as that described in Japanese Unexamined Patent Publication No. 57-66642, an electrode on which a substrate is placed is cooled by water cooling, and the substrate is cooled through the cooled electrode during the etching process. Ru.

しかし、このような従来の技術では、レジストの変質防
止のためにエツチング処理中に基板を冷却するものであ
り、エツチング速度の温度依存性については配慮されて
いない。
However, in such conventional techniques, the substrate is cooled during the etching process to prevent deterioration of the resist, and no consideration is given to the temperature dependence of the etching rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、エツチング速度の温度依存性について
は配慮されておらず、エツチング初期は試料の温度が低
いためにエツチング速度が小さく、平均のエツチング速
度が小さいという問題があった。特に試料を1枚1枚処
理するエツチング装置ではエツチング時間が短いために
、平均のエツチング速度はエツチング初期のエツチング
速度により大幅に変化する。また、このような問題は、
接地電極に試料を設置してエツチング処理を行う場合に
、特に顕著に生じる。
The above conventional technique does not take into account the temperature dependence of the etching rate, and has the problem that the etching rate is low at the initial stage of etching because the temperature of the sample is low, and the average etching rate is low. In particular, since the etching time is short in an etching apparatus that processes each sample one by one, the average etching speed varies greatly depending on the etching speed at the initial stage of etching. In addition, such problems
This phenomenon is particularly noticeable when etching is performed with a sample placed on the ground electrode.

本発明の目的は、エツチング速度の温度依存性を考慮し
、エツチング初期のエツチング速度の低下を抑制し、平
均のエツチング速度を向上できるドライエツチング方法
及び装置を提供することに市る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dry etching method and apparatus that takes into account the temperature dependence of etching rate, suppresses a decrease in etching rate at the initial stage of etching, and improves the average etching rate.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的は、ドライエツチング方法を、プラズマにより
試料をエツチング処理する方法で、前記試料を加熱して
エツチング処理を開始し、該エツチング処理期間中に前
記試料の温度を所定温度に保持する方法とし、また、ド
ライエツチング装置を、真空に保持された容器内でプラ
ズマを発生さ寸前記容器内に設けた電極に設置された試
料を前記プラズマによりエツチング処理する装置で、前
記電極を加熱、冷却する熱源手段と、前記電極の温度を
検知する温度検知手段と、エツチング処理期間中の前記
試料の所定温度に対応して予め設定された前記電極の温
度と前記温度検知手段で検知された前記電極の温度とを
比較し前記熱源手段を介して前記電極の温度を予め設定
された温度に制御する制御手段とを具備したものとする
ことによポ リ、達成lれる。
The above object is a dry etching method in which a sample is etched with plasma, the sample is heated to start the etching process, and the temperature of the sample is maintained at a predetermined temperature during the etching process; In addition, a dry etching device is a device that generates plasma in a container kept in a vacuum and etches a sample placed on an electrode provided in the container using the plasma, and a heat source that heats and cools the electrode. a temperature detection means for detecting the temperature of the electrode; a temperature of the electrode preset corresponding to a predetermined temperature of the sample during the etching process; and a temperature of the electrode detected by the temperature detection means. This can be achieved by comprising a control means for controlling the temperature of the electrode to a preset temperature via the heat source means.

〔作  用〕[For production]

エツチング処理開始時の試料の温度を高(することによ
りエツチング初期のエツチング速度は大きくなる。また
、試料が設置されている電極の温度をエツチング時間と
ともに低くすることにより試料の温度は所定の温度に保
たれ、レジストが変質することな(エツチング処理が進
行する。それによってエツチング初期のエツチング速度
の低下がなくなり平均のエツチング速度が向上する。
By raising the temperature of the sample at the start of the etching process, the etching rate at the initial stage of etching increases.Also, by lowering the temperature of the electrode on which the sample is installed as the etching time progresses, the temperature of the sample is maintained at a predetermined temperature. The resist is maintained without deterioration (the etching process progresses. As a result, the decrease in etching speed at the initial stage of etching is eliminated and the average etching speed is improved.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図で、真空容器10内には、互いiこ平行に、かつ
、この場合、上下方向に対向して電極20.30が設け
られている。この場合、電極力は、例えば、周波数13
.56 MHzのRF電源切に接続されている。電極力
は、接地電位となっており、試料、例えば、基板(資)
を1個設置可能な大きさを有している。また、電極(資
)の内部には、熱媒体循環流路(図示省略)が形成され
ている。熱源手段は、この場合、循環熱交換器ωであり
、熱媒体の温度な調整する機能を有している。なお、循
環熱交換器ωで温度を調整された熱媒体は、電極(資)
の熱媒体循環流路に供給され、また、該熱媒体循環流路
から排出された熱媒体は、循環熱交換器圀に戻される。
In FIG. 1, electrodes 20 and 30 are provided in a vacuum vessel 10 in parallel with each other and in this case facing each other in the vertical direction. In this case, the electrode force is, for example, at a frequency of 13
.. Connected to 56 MHz RF power off. The electrode force is at ground potential, and the sample, e.g.
It is large enough to install one. Further, a heat medium circulation channel (not shown) is formed inside the electrode. In this case, the heat source means is a circulating heat exchanger ω, which has a function of adjusting the temperature of the heat medium. Note that the heat medium whose temperature has been adjusted in the circulating heat exchanger ω is
The heat medium supplied to the heat medium circulation flow path and discharged from the heat medium circulation flow path is returned to the circulation heat exchanger area.

温度検知手段は、この場合、温度測定器70でゐり、温
度測定器70としては、高周波ノイズの影響を受けない
、例えば、センサに螢光物質を、プローブ1こ光フアイ
バーケーブルを用いた温度測定器が用いられる。制御手
段は、この場合、マイクロコンピュータ梼である。マイ
クロコンピュータ帥には。
In this case, the temperature sensing means is a temperature measuring device 70, which is not affected by high frequency noise, for example, a temperature measuring device using a fluorescent substance in the sensor and an optical fiber cable in the probe 1. A measuring device is used. The control means in this case is a microcomputer. To the microcomputer master.

エツチング処理期間中の基板間の所定温度に対応して予
め設定された’II!極(9)の温度(以下、設定温度
と略)が、予め入力される。マイクロコンピュータ(資
)には、温度測定器70で間室された電極力の温度(以
下、実MJ温度と略)が入力される。マイクロコンピュ
ータ関は、予め入力された設定温度と温度測定器70か
ら入力された実測温度とを比較し、該温度差に応じて電
極Iの温度が設定温度になるように制御信号を循環熱交
換器間に出力する機能を有する。該制御信号を受は循環
熱交?!A器ωでは、電極(資)の温度が設定温度にな
るように熱媒体の温度は調整される。
'II! which is preset corresponding to the predetermined temperature between the substrates during the etching process. The temperature of the pole (9) (hereinafter abbreviated as set temperature) is input in advance. The temperature of the electrode force measured by the temperature measuring device 70 (hereinafter abbreviated as actual MJ temperature) is inputted into the microcomputer. The microcomputer compares the set temperature input in advance with the actual measured temperature input from the temperature measuring device 70, and circulates a control signal for heat exchange so that the temperature of the electrode I reaches the set temperature according to the temperature difference. It has a function to output between devices. Is the circulation heat exchanger receiving the control signal? ! In the A device ω, the temperature of the heat medium is adjusted so that the temperature of the electrode (material) becomes the set temperature.

第1図で、マイクロコンピュータ関には、例えば、第2
図に一例を示すような設定温度が予め入力される。第2
図で、エツチング処理開始時の基板間の温度が100℃
になるように設定温度も100℃となっている。エツチ
ング処理期間中(こエツチング時間の経過と共に基板間
の温度は100℃を起点として上昇しようとする。この
ため、設定温度は100℃を起点として逆に下降させる
必要があり、これによって、エツチング処理期間中0こ に基板間の温度の上昇は抑制されて120〆程度の温度
に保持される。ここで、基板間の温度100℃、120
℃程度ということは、レジストが変質しない程度の温度
ということを意味している。
In FIG. 1, the microcomputer includes, for example, a second
A set temperature, an example of which is shown in the figure, is input in advance. Second
In the figure, the temperature between the substrates at the start of the etching process is 100°C.
The set temperature is also 100°C to ensure that. During the etching process (as the etching time passes, the temperature between the substrates tends to rise from 100°C as a starting point. Therefore, the set temperature needs to be lowered from 100°C as a starting point. During this period, the rise in temperature between the substrates is suppressed and the temperature is maintained at about 120℃.Here, the temperature between the substrates is 100℃, 120℃.
The temperature of about 0.degree. C. means that the resist does not change in quality.

第1図で、真空容器10内は、真空排気装置it(図示
省略)の作動により所定圧力まで減圧排気される。所定
圧力まで減圧排気された真空容器10内には、エツチン
グガス供給装道(図示省略)より所定流量のエツチング
ガスが導入される。真空容器10内曝こ導入されたエツ
チングガスの一部は、作動している真空排気装置により
真空容器10外へ排気され、これにより、真空容器10
内は、所定のエツチング圧力に調節される。一方、1!
極加の温度が温度測定器70により測定される。この実
測温度が第2図に示す設定温度100°Cよりも低温の
場合は、マイクロコンピュータ関の制御信号により熱媒
体は循環熱交換器間で電極間の温度が100℃になるよ
うな温度に加熱、昇温させられた後に、電!f!30の
熱媒体循環流路に供給される。これにより、電極間の温
度は100℃に制御され、これと共に、基板間の温度は
l 00 ’Cに上昇させられる。
In FIG. 1, the inside of a vacuum container 10 is evacuated to a predetermined pressure by the operation of a vacuum evacuation device it (not shown). A predetermined flow rate of etching gas is introduced into the vacuum container 10, which has been evacuated to a predetermined pressure, from an etching gas supply channel (not shown). A part of the etching gas introduced into the vacuum container 10 is exhausted to the outside of the vacuum container 10 by the operating vacuum evacuation device.
The etching pressure inside is adjusted to a predetermined etching pressure. On the other hand, 1!
The temperature of the extreme temperature is measured by a temperature measuring device 70 . If the measured temperature is lower than the set temperature of 100°C shown in Figure 2, the control signal from the microcomputer will control the heating medium to a temperature that will bring the temperature between the electrodes to 100°C between the circulating heat exchangers. After heating and raising the temperature, electricity! f! 30 heat medium circulation channels. As a result, the temperature between the electrodes is controlled to 100°C, and at the same time, the temperature between the substrates is raised to l 00 'C.

その後、電極IにはRFlを極荀より電力が印加される
。これにより、t!L極20.30間にはグロー放電が
発生し、エツチングガスは、プラズマ化される。
Thereafter, power is applied to the electrode I from the RF1 source. As a result, t! Glow discharge occurs between the L poles 20 and 30, and the etching gas is turned into plasma.

このプラズマにより基板(資)の被処理面のエツチング
処理が開始される。このエツチング処理期間中に゛電極
間の温度は、温度測定器70により連続または断続して
測定される。この実測温度は、その都度、マイクロコン
ピュータ関に入力され、第2図に示す設定a夏で、かつ
、その時間擾こ対応した設定温度と比較される。該比較
結果によりマイクロコンピュータ関からは、その都度、
制御信号が循環熱交換認印に出力される。その結果、電
極Jの温度は、第2図に示す設定温度に制御され、これ
によって基板(資)の温度は120°C程度着こエツチ
ング処理期間中保持される。
This plasma starts etching the surface of the substrate to be processed. During this etching process, the temperature between the electrodes is continuously or intermittently measured by a temperature measuring device 70. This measured temperature is input into the microcomputer each time and compared with the set temperature shown in FIG. 2, which is set in summer and corresponds to that time. Based on the comparison results, the microcomputer department recommends each time,
A control signal is output to the circulating heat exchanger stamp. As a result, the temperature of the electrode J is controlled to the set temperature shown in FIG. 2, whereby the temperature of the substrate is maintained at about 120 DEG C. during the etching process.

本実施例では、エツチング処理開始時の基板の温度を1
00℃と高くしているため、エツチング処理初期時のエ
ツチング速度の低下が抑制され、したがって、平均のエ
ツチング速度が向上する。
In this example, the temperature of the substrate at the start of the etching process was set to 1
Since the temperature is as high as 00° C., a decrease in the etching rate at the initial stage of the etching process is suppressed, and therefore the average etching rate is improved.

また、エツチング処理開始時の基板の温度を100℃と
レジストが変質しない程度の温度に制御しているため、
エツチング処理初期時におけるエツチング速度をパター
ン精度を高精度に保った状態で向上させることができる
。基板を1枚毎処理するドライエツチング装置において
は、エツチング処理時間を更1こ短縮でき、高効率化を
実現できる。
In addition, since the temperature of the substrate at the start of the etching process is controlled to 100°C, a temperature that does not change the quality of the resist,
Etching speed at the initial stage of etching processing can be improved while maintaining high pattern accuracy. In a dry etching apparatus that processes each substrate one by one, the etching processing time can be further shortened by one point, and high efficiency can be achieved.

なお、本実施例では、周波数13.56 MHzのRF
電源を用いるエツチング装置を例に挙げて説明したが、
この他の装置、例えば、マイクロ波を用いるエツチング
装置においても同様の効果が得られる。更に、例えば、
RFg源が接続された@極に基板を設置してエツチング
処理する場合や、マイクロ波を用いるエツチング装置で
基板にバイアス電圧を印加する場合においても、条件に
よっては、同様の効果が得られる。
In addition, in this example, RF with a frequency of 13.56 MHz
The explanation was given using an etching device that uses a power supply as an example.
Similar effects can be obtained with other devices, such as etching devices that use microwaves. Furthermore, for example,
Similar effects can be obtained depending on the conditions when etching the substrate by placing it on the @ pole connected to the RFg source, or when applying a bias voltage to the substrate using an etching device using microwaves.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エツチング初期のエツチング速度の低
下を抑制できるので、平均のエツチング速度を向上でき
るという効果がある。
According to the present invention, since it is possible to suppress a decrease in the etching rate at the initial stage of etching, there is an effect that the average etching rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第2図は、本発明の一実施例のドライエツチング装置の
構成図、第2図は、第1図の装置のマイクロコンピュー
タに予め入力される設定温度と基板温度、エツチング時
間との関係線図である。
FIG. 2 is a block diagram of a dry etching apparatus according to an embodiment of the present invention, and FIG. 2 is a relationship diagram between the set temperature input in advance to the microcomputer of the apparatus shown in FIG. 1, substrate temperature, and etching time. It is.

Claims (1)

【特許請求の範囲】 1、プラズマにより試料をエッチング処理する方法にお
いて、前記試料を加熱してエッチング処理を開始し、該
エッチング処理期間中に前記試料の温度を所定温度に保
持することを特徴とするドライエッチング方法。 2、真空に保持された容器内でプラズマを発生させ前記
容器内に設けた電極に設置された試料を前記プラズマに
よりエッチング処理する装置において、前記電極を加熱
、冷却する熱源手段と、前記電極の温度を検知する温度
検知手段と、エッチング処理期間中の前記試料の所定温
度に対応して予め設定された前記電極の温度と前記温度
検知手段で検知された前記電極の温度とを比較し前記熱
源手段を介して前記電極の温度を予め設定された温度に
制御する制御手段とを具備したことを特徴とするドライ
エッチング装置。
[Claims] 1. A method for etching a sample using plasma, characterized by heating the sample to start the etching process, and maintaining the temperature of the sample at a predetermined temperature during the etching process. Dry etching method. 2. In an apparatus for generating plasma in a container kept in vacuum and etching a sample placed on an electrode provided in the container using the plasma, a heat source means for heating and cooling the electrode; A temperature detection means for detecting the temperature compares the temperature of the electrode detected by the temperature detection means with the temperature of the electrode set in advance corresponding to a predetermined temperature of the sample during the etching process, and A dry etching apparatus comprising: control means for controlling the temperature of the electrode to a preset temperature via means.
JP61123361A 1986-05-30 1986-05-30 Dry etching method and device Expired - Lifetime JPH0691037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123361A JPH0691037B2 (en) 1986-05-30 1986-05-30 Dry etching method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123361A JPH0691037B2 (en) 1986-05-30 1986-05-30 Dry etching method and device

Publications (2)

Publication Number Publication Date
JPS62281423A true JPS62281423A (en) 1987-12-07
JPH0691037B2 JPH0691037B2 (en) 1994-11-14

Family

ID=14858681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123361A Expired - Lifetime JPH0691037B2 (en) 1986-05-30 1986-05-30 Dry etching method and device

Country Status (1)

Country Link
JP (1) JPH0691037B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137318A (en) * 1988-11-18 1990-05-25 Tokyo Electron Ltd Processing apparatus
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
JPH031530A (en) * 1989-05-29 1991-01-08 Tokuda Seisakusho Ltd Dry etching device
JPH03272137A (en) * 1990-03-22 1991-12-03 Sony Corp Low-temperature treatment and low-temperature treatment device
US6843069B2 (en) 2002-01-10 2005-01-18 Nec Electronics Corporation Etching apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162472A (en) * 1978-06-13 1979-12-24 Nec Corp Plasma processing method
JPS57116774A (en) * 1981-01-14 1982-07-20 Hitachi Ltd Etching method
JPS58125830A (en) * 1982-01-22 1983-07-27 Fujitsu Ltd Plasma etching method
JPS6113617A (en) * 1984-06-28 1986-01-21 Toshiba Mach Co Ltd Vapor growth method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162472A (en) * 1978-06-13 1979-12-24 Nec Corp Plasma processing method
JPS57116774A (en) * 1981-01-14 1982-07-20 Hitachi Ltd Etching method
JPS58125830A (en) * 1982-01-22 1983-07-27 Fujitsu Ltd Plasma etching method
JPS6113617A (en) * 1984-06-28 1986-01-21 Toshiba Mach Co Ltd Vapor growth method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137318A (en) * 1988-11-18 1990-05-25 Tokyo Electron Ltd Processing apparatus
JPH031530A (en) * 1989-05-29 1991-01-08 Tokuda Seisakusho Ltd Dry etching device
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
JPH03272137A (en) * 1990-03-22 1991-12-03 Sony Corp Low-temperature treatment and low-temperature treatment device
US6843069B2 (en) 2002-01-10 2005-01-18 Nec Electronics Corporation Etching apparatus

Also Published As

Publication number Publication date
JPH0691037B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP4256031B2 (en) Processing apparatus and temperature control method thereof
KR0165898B1 (en) Vacuum processing method and apparatus
KR100244440B1 (en) Susceptor temperature control method
JPH09172001A (en) Method and device for controlling temperature in semiconductor manufacturing apparatus
JP2011135097A (en) Correction of wafer temperature drift in plasma reactor based on continuous wafer temperature measurement using in-situ wafer temperature optical probe
KR20160146534A (en) Temperature control method and plasma processing apparatus
JPS62281423A (en) Method and device for dry etching
JPS6218028A (en) Descumming unit
JP2000232098A (en) Control method for sample temperature and vacuum process device
JPS61238985A (en) Parallel flat plate type plasma etching device
JPH1131599A (en) Preheating method for plasma-processing device, and plasma-processing device
JPH03107484A (en) Plasma treating device
JPH0567672A (en) Vacuum processing device
JPH11297802A (en) Electrostatic adsorption device and vacuum device mounted therewith
JP2656658B2 (en) Sample temperature control method and vacuum processing device
JPH0529265A (en) Plasma ashing device
JPS63141317A (en) Etching treatment device
JP3269781B2 (en) Vacuum processing method and device
JPH09162176A (en) Plasma processing system
JP3020621B2 (en) Plasma etching method
JPH0549904A (en) Vacuum treatment and equipment therefor
KR200145300Y1 (en) Plasma etching device capable of end point detection
WO2023100850A1 (en) Plasma processing method and plasma processing device
JPH09191005A (en) Specimen temperature control method and vacuum treatment apparatus
JPH0334540A (en) Plasma treatment apparatus and temperature control of wafer in this apparatus