JPS58125830A - Plasma etching method - Google Patents
Plasma etching methodInfo
- Publication number
- JPS58125830A JPS58125830A JP839482A JP839482A JPS58125830A JP S58125830 A JPS58125830 A JP S58125830A JP 839482 A JP839482 A JP 839482A JP 839482 A JP839482 A JP 839482A JP S58125830 A JPS58125830 A JP S58125830A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- substrate
- temperature
- resist
- processed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001020 plasma etching Methods 0.000 title claims abstract description 17
- 238000005530 etching Methods 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000001816 cooling Methods 0.000 claims description 15
- 230000007850 degeneration Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000005368 silicate glass Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101100480484 Rattus norvegicus Taar8a gene Proteins 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UNRFQJSWBQGLDR-UHFFFAOYSA-N methane trihydrofluoride Chemical compound C.F.F.F UNRFQJSWBQGLDR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は平行平板蓋のエツチング装置f:J@いるプラ
ズマエツチング方法に係ヤ、特に平行千*mのエツチン
グ装置を用いて絶縁膜tエツチングするーのプラズマエ
ツチング方法に関する0Cb) 技術の背景
做細パターンt**良く形成するためのエツチング方法
として、平行平板蓋のエツチング装置を用いるプラズマ
エツチング方法がToゐ。そして諌平行平1IjL1i
プラズマエツチング方法の代表的なものにリアクティブ
・イオン・エツチング方法がある。このリアクティブφ
イオン拳エツチング方法に11にては通?l 0.5
(W、An ) 5度の低パワーでエツチングがなされ
るか、半導体装置の製造工程等に於て、二酸化シリコン
(StO,)中9ん珪酸ガラス(P2O)轡の絶縁膜に
電極窓を形成する際等の絶縁属のエツチングに於て、前
記低パワー・エツチングは次のような問題点を含んでい
ゐ。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a plasma etching method using an etching apparatus f:J@ for a parallel plate lid, and in particular to etching an insulating film using a parallel etching apparatus f:J@. Background of the Technology As an etching method for forming a fine pattern T** well, a plasma etching method using an etching device with a parallel plate lid is the best. And Parallel flat 1IjL1i
A typical plasma etching method is a reactive ion etching method. This reactive φ
Are you familiar with the Ion fist etching method at 11? l 0.5
(W, An) Etching is performed at a low power of 5 degrees, or electrode windows are formed in the insulating film of 9-phosphorus silicate glass (P2O) in silicon dioxide (StO,) during the manufacturing process of semiconductor devices. When etching insulating metals, the low power etching has the following problems.
即ち絶縁膜の電極窓明はエツチングに於ては、絶縁膜と
下層のシリコン(Sl )層との選択比を上げるために
四弗化炭素(CF4)と三弗化メタン(CHF、)が1
:1程度の割合に混合されたエツチング・ガスが用いら
れる。この場合前記のような低パワーでリアクティブ・
イオン・エツチングを行うと被エツチング面即ち絶縁膜
上にエツチング・ガスの反応によって生ずる炭素の重合
体(カーボン・ポリマ)が被着し、エツチング速度が大
幅に低下するという現象、及びエツチング形成され曳電
極窓内に表出する別層表面にも前記炭素重合体が被着し
て電極のコンタクト特性が悪くなるという現象等である
。この現象を防ぐ手段としてエツチング強度スに酸素(
0り’を混合する方法もあるが、このようにするとレジ
ストのアッシング・レートが増しレジスト・マスクパタ
ーンか変形するので電極窓の形成精度が悪くなる。That is, when etching the electrode window of the insulating film, carbon tetrafluoride (CF4) and methane trifluoride (CHF) are used to increase the selectivity between the insulating film and the underlying silicon (Sl) layer.
Etching gases mixed at a ratio of about 1 :1 are used. In this case, the low power reactive
When ion etching is performed, a carbon polymer produced by the reaction of the etching gas adheres to the surface to be etched, that is, the insulating film, and the etching rate is significantly reduced. This is a phenomenon in which the carbon polymer also adheres to the surface of another layer exposed within the electrode window, deteriorating the contact characteristics of the electrode. As a means to prevent this phenomenon, the etching strength is increased with oxygen (
There is also a method of mixing 0 and 1, but this increases the ashing rate of the resist and deforms the resist mask pattern, resulting in poor electrode window formation accuracy.
(c) 従来技術と問題点
そこでリアクティブ−イオンエツチング法を用いて!8
嶽物をエツチングする際には、従来印加する高周波パワ
ーを前記の数倍例えば2〜3CW/d)程度に上ばて、
高密度プラズマ管形成し、エツチング強度を増大させる
ことによって、前記炭素重合体が絶縁膜及び81層上に
被着すゐのを防止して突によ)被処履基&温度が著しく
(例えば300(’C)近くまで)上昇し、エツチング
・マスクとして被処理基板上に形成されているフォトレ
ジスト・パターンが溶融変形や変質を起こす。そしてフ
ォトレジスト会パターンの変形は絶縁属に形成される電
極窓の寸法形状を変動させて半導体装置に於ける性能の
低下を招き、又フォトレジスト・パターンの変質は該フ
ォトレジスト・パターンの剥離性を悪くして半導体装置
に於ける製造歩留まりを低下させるという問題があった
。(c) Conventional technology and problems Therefore, using reactive ion etching method! 8
When etching a piece, the high frequency power that is conventionally applied is increased several times the above-mentioned value, for example, about 2 to 3 CW/d).
By forming a high-density plasma tube and increasing the etching intensity, the carbon polymer can be prevented from depositing on the insulating film and the 81 layer, thereby significantly reducing the substrate and temperature to be treated (e.g. The photoresist pattern formed on the substrate to be processed as an etching mask is melted and deformed or altered in quality. The deformation of the photoresist pattern changes the size and shape of the electrode window formed in the insulating material, leading to a decline in the performance of the semiconductor device, and the deformation of the photoresist pattern also reduces the peelability of the photoresist pattern. There is a problem in that the manufacturing yield of semiconductor devices is lowered.
(d) 発明の目的
本発明の目的は、平行平板型のエツチング鉄置會用いる
プラズマエツチング方法に於て、被処理基板の温度上昇
を所定の温度以下に抑えて高パワー密度のプラズマエツ
チングを行う方法を提供し、上記問題点【除去すること
にある。(d) Purpose of the Invention The purpose of the present invention is to perform high power density plasma etching while suppressing the temperature rise of the substrate to be processed to a predetermined temperature or less in a plasma etching method using a parallel plate type etching iron apparatus. A method is provided to eliminate the above problems.
(・)発明の構成
却ち本発明は、ターゲット電極の冷却手段及びターゲッ
ト電極上への被処理基板の密着手段を有する平行平板智
エツチング装置it用いるプラズマエツチング方法に於
て、高周波パワーを間欠的に印加してエツチングを行う
ことを特徴とする。(・) Structure of the Invention In other words, the present invention provides a plasma etching method using a parallel plate etching apparatus which has means for cooling a target electrode and means for adhering a substrate to be processed onto the target electrode. The feature is that etching is performed by applying
(f) 発明の実施例
以下本発qt−爽施例について、第1図に示すエツチン
グ装置の模式断面図、N2図に示すダミー被処理基板の
模式断面図、及び第3図(1)乃至(c)に示すエツチ
ング・プロファイル作成工程図を用いて詳細に説明する
。(f) Examples of the Invention The following qt-etching examples of the present invention are shown in a schematic sectional view of an etching apparatus shown in FIG. 1, a schematic sectional view of a dummy substrate to be processed shown in FIG. N2, and FIGS. This will be explained in detail using the etching profile creation process diagram shown in (c).
本発明の方法に用いる平行平板型プラズマエツチング装
置は通常の構造な有しており、例えば第1図に示すよう
に基台lと、該基台1上に真空パツキン2t−介して載
置されたガス尋人口3と真空排気口4を有するペルジャ
ー5によってエツチング室6が形成され、該エツチング
室6の下部に、冷却水循#に機#47を具備し、且つ上
面に直流高電圧電極が絶縁体に堀め込1れてなる公知の
静電チャック8が献置固定逼れた平板状のターゲット電
極9が基台1を貫通するmlの支柱10によシ支持配設
され、該ターゲット電極9の上部にペルジャー5を貫通
する縞2の支柱11で支持された平板上の対向電極12
が平行に配設されてなっている。そして例えば半導体基
板上に絶縁Mt−有し、該絶縁膜上に7オトレジスト・
マスクが形成されてなる被(エツチング)処理基板13
t−前記静電チャック8上に静電的に密着固定し、ガス
導入口3から所定のエツチング・ガスを所定の床蓋で流
入しながら真空排気口4から所定の排気を行い、エツチ
ング室6内ヲH「定のエツチング・ガス圧に保った状態
で、ターゲット電極9と対向寛憔12間に所定高周波高
パワー(RFtj k印カロしく対向電極liI接地G
)、ターゲット電極9と対向電極12間に高密度プラズ
マ14をさせて絶縁膜のりアクティブ・イオンエツチン
グを行う。The parallel plate type plasma etching apparatus used in the method of the present invention has a normal structure, for example, as shown in FIG. An etching chamber 6 is formed by a pelger 5 having a gas intake 3 and a vacuum exhaust port 4, a cooling water circulation device #47 is provided at the bottom of the etching chamber 6, and a DC high voltage electrode is installed on the upper surface. A plate-shaped target electrode 9 on which a well-known electrostatic chuck 8, which is embedded in an insulator and is fixed, is supported by a column 10 penetrating through the base 1, and the target A counter electrode 12 on a flat plate supported by struts 11 of stripes 2 passing through the Pelger 5 on the top of the electrode 9
are arranged in parallel. For example, an insulating Mt- is provided on the semiconductor substrate, and a 7-photoresist is provided on the insulating film.
Substrate 13 to be etched (etched) on which a mask is formed
t- The electrostatic chuck 8 is electrostatically tightly fixed, and while a predetermined etching gas is introduced from the gas inlet 3 through a predetermined floor cover, a predetermined exhaust is performed from the vacuum exhaust port 4, and the etching chamber 6 is Inside, while maintaining a constant etching gas pressure, a predetermined high frequency high power (RFtj k mark) is applied between the target electrode 9 and the opposing electrode 12, and the opposing electrode liI is grounded.
), high-density plasma 14 is applied between the target electrode 9 and the counter electrode 12 to perform active ion etching of the insulating film.
上記エツチング装置に於てはエツチング中高密度プラズ
マ14中に形成式れたエツチング・ガスのイオン及びラ
ジカルの備突により昇温した被処理基板13は静電チャ
ック8及びターゲット電極9t−介して冷却がなされる
が、2〜3 [W/、id )程度の高パワー密度で長
時間連続エツチングを行った際にはその飽和温度は30
U (1;)近傍まで上昇するO
本発明の方法に於ては製品となる被処理基板と殆んど同
一形状に形成したダミーの被処理基板を用い例えば下記
の手順に従ってパワー印加時開と冷却時間全決定し、該
エツチング・プロファイルに従って製品となる被処理基
板のエツチングを行い、その温度上昇を所定の温度以下
に抑える。なお第2図はダミー被処理基板の断面を模式
的に示したもので、該図に於て15は所定の直径及び厚
さ上布するシリコン(81)基板、16は所定の厚さの
りん珪酸ガラス(PSG)膜、17は所定の厚さ形状を
有する例えはポジ・レジス)let示している。In the above-mentioned etching apparatus, the substrate 13 to be processed, whose temperature has risen due to the collision of etching gas ions and radicals formed in the high-density plasma 14 during etching, is cooled via the electrostatic chuck 8 and the target electrode 9t. However, when continuous etching is performed for a long time at a high power density of about 2 to 3 [W/, id), the saturation temperature is 30
In the method of the present invention, a dummy substrate to be processed that is formed in almost the same shape as the substrate to be processed that will become a product is used, and for example, according to the following procedure, the dummy substrate is opened when power is applied. The entire cooling time is determined, and the substrate to be processed, which will become the product, is etched according to the etching profile, and the temperature rise is suppressed to below a predetermined temperature. FIG. 2 schematically shows a cross section of a dummy substrate to be processed. In the figure, 15 is a silicon (81) substrate with a predetermined diameter and thickness, and 16 is a phosphor layer with a predetermined thickness. A silicate glass (PSG) film 17 has a predetermined thickness (for example, positive resist).
即ち先ず上記ダミー被処理基板をターゲット電極の静電
チャックLに固着し、所定のエツチング条件例えばエツ
チング・ガス0.3 (Torr)(CFI 十CHF
す、13.56[届h]高周波パワー密度2 〔w/c
−d)の条件で、先ず1回目のパワー印加を行い、ポジ
拳レジスト膜表面が白濁&*した時点でパワーを停止し
、この間の時間を測定し、続いて被処理基板−の温度か
所定の温度例えば80 (”CJまで冷却される時間全
測定し、第3図(&)に示すような温度プロファイル図
を作成する。なお該図に於て’I’llは初期温度、’
I’+2はレジスト変質点@f(ポジ・レジストでは1
50(℃)程東入T13は冷却温IL(該実施例では5
O(−C))、1.は1回目パワー印加時間、C1は1
回目冷却時間を示す。そして1.の例えは80〔≠〕に
当る時間t+’(温度T11’)’Ky実処理に於ける
1回目のパワー印加時間に決める。ここでパワー印加時
の被処理基板温度は実側困嬌なので、上記のようにレジ
スト変質点を基準としパワー印加時間を短縮することに
より規定する。次いで新たなダミー被処理基板を用い、
1回目パワー印加時間Ll’+冷却時間C1に続いてレ
ジスト変質まで2回目のパワー印加を行った後80(’
にJまで冷却して第3図(b)に示すような温度プロフ
ァイル全作成し、レジスト変質温度T22に遅するまで
の2回目のパワー印加時間t!の80C%)を実処理に
於ける2回目のパワー印加時間t 、Iに規定する。な
お該図に於てC1は2回目の冷却時間+ Telは冷却
温度即ち5o(C)。That is, first, the above-mentioned dummy substrate to be processed is fixed to the electrostatic chuck L of the target electrode, and predetermined etching conditions such as etching gas 0.3 (Torr) (CFI 10 CHF) are applied.
13.56 [delivery h] High frequency power density 2 [w/c
- Under the conditions of d), first apply power for the first time, stop the power when the surface of the positive resist film becomes cloudy, measure the time during this period, and then adjust the temperature of the substrate to be processed to a specified level. For example, the temperature of 80 ("CJ" is measured for the entire cooling time, and a temperature profile diagram as shown in Figure 3 (&) is created. In the diagram, 'I'll is the initial temperature, '
I'+2 is the resist alteration point @f (1 for positive resist)
The cooling temperature IL (50 (°C) in this example) is approximately 50 (°C).
O(-C)), 1. is the first power application time, C1 is 1
Indicates the second cooling time. And 1. For example, the time t+'(temperature T11')'Ky corresponding to 80 [≠] is determined as the first power application time in the actual processing. Here, since the temperature of the substrate to be processed during power application is actually difficult, it is defined by shortening the power application time using the resist deterioration point as a reference as described above. Next, using a new dummy substrate,
Following the first power application time Ll' + cooling time C1, the second power application was performed until resist deterioration.
The temperature profile shown in FIG. 3(b) is created by cooling the resist to J, and the second power application time t! is reached until the resist deterioration temperature T22 is reached. (80C%) is defined as the second power application time t, I in actual processing. In the figure, C1 is the second cooling time + Tel is the cooling temperature, 5o (C).
Ttt’はt、Lに於ける被処理基板温度を示す。次い
で史にli次なダミー枝処理基板を用い前記で規定され
た1回目のパワー印加及び冷却、2回目のパワー印加及
び冷却に続いて前記同様3回目のパワー印加及び冷却を
行って、第3図(c)に示す温度プロファイルを作成し
、前記同様実処理に於ける3回目のパワー印加時間1
、/及び冷ムレ時間C,t−決定する。なお第3図(c
)に於てTHはレジスト変質温度。Ttt' indicates the temperature of the substrate to be processed at t and L. Next, using a dummy branch-treated substrate that had been previously treated, the first power application and cooling as specified above, the second power application and cooling, and the third power application and cooling were performed in the same manner as described above. The temperature profile shown in Figure (c) is created, and the third power application time 1 in the actual process is as described above.
,/and cold stuffiness time C, t-determine. In addition, Figure 3 (c
), TH is the resist deterioration temperature.
Ta11は冷却温度+ tlはレジスト変質までの3回
目のパワー印加時間+ +[、l/はT、′に於ける被
処理基板温度を示す。以下同様の方法によりダミー被処
理基板を用いて実処理に於けるn回目までのエツチング
争プロファイルを作成する。そして本発明のプラズマエ
ツチング方法に於ては、上記ダミー基板を用いて作成し
たエツチング・プロファイルに従って間欠的に高周波パ
ワーを印加してエツチングを行い、尚パワー密度エツチ
ングに於ける被処理基板の鉦度上昇を抑止する0
4お上記実施例に於ては、マスク材料にポジ・レジスト
を用いたが、本発明はマスク材料にネガ・レジスト変質
用する際にも適用できる0但しこの場合変形発生温度(
170〜180(℃))を基単にしてエツチング・プロ
ファイルの決定がなされも又本発明はス・きツタ・エツ
チング等リアクティブ・イオン・エツチング以外の平行
平板−プラズマ・エツチングにも適用できる。Ta11 is the cooling temperature + tl is the third power application time until resist deterioration + +[, l/ is the temperature of the substrate to be processed at T,'. Thereafter, etching profile profiles up to the nth time in actual processing are created using a dummy substrate in the same manner. In the plasma etching method of the present invention, etching is performed by intermittently applying high frequency power according to the etching profile created using the dummy substrate. In the above embodiment, a positive resist was used as the mask material, but the present invention can also be applied when deteriorating a negative resist as a mask material.However, in this case, the temperature at which deformation occurs (
Although the etching profile is determined based on the etching temperature (170 to 180° C.), the present invention can also be applied to parallel plate-plasma etching other than reactive ion etching such as spot etching.
(g) 発明の詳細
な説明したように、本発明によれば^パフー密度のプラ
ズマエツチングに於ける被処理基板の温度上昇を抑止す
ることができる。促って特に半導体基板上の絶縁膜に電
極窓を形成する一曾吟の高パワー密度りfファイグ嗜イ
オン・エツチング等に於て、レジスト・マスクの変形変
質が防止されるので、倣、抽バターyヲ有する半導体装
置の性能や製a歩貿煙りを向上させることができる。(g) As described in detail, according to the present invention, it is possible to suppress the temperature rise of the substrate to be processed during plasma etching at Parfous density. This prevents deformation and deterioration of the resist mask, making it easier to copy and extract, especially in ion etching, etc., which uses high-power density FFIG to form electrode windows on insulating films on semiconductor substrates. The performance and manufacturing efficiency of semiconductor devices with butter can be improved.
第1図は本発明の一実施例に用いたエツチング装置の模
式l!yT面図、第2凶は本発明の一呆九例に用いたダ
ミー被処理、楡板の模式〜[面図で、第3図(a)乃至
(c)は本発明の一実施例に於けるエツチング・プロフ
ァイル作成T二り図である。
図にyで、1は基台、2は真空パツキン、3はガス導入
口、4は真空排気0.5はペルジャー。
6はエツチング¥、7ば6ムV水循環機楕、8は静電チ
ャック、9はターゲット%憧、、10.11は支柱。
12は対向電極、13は被(エツチング)処理基板。
14は高密度プラズマ、15はシリコン基板、16は夛
ん珪酸ガラス属、17はポジ・レジスト属、RFは高周
波パワー、G#i接地、TiIは初期温度e TH*T
、*T’amはレジスト変質点温度* T+ * Ts
e Tsはレジスト変質まで01回目、3回目、3回
目のパワー印加時間e j1’* jl’@ t@’
は実処理に於ける111@、111目、 3WA目の
パワー印加時間、C,、C,、C畠は1囲鵬。
2iI@、all目の冷却時間を示す。
第 ) 霞FIG. 1 is a schematic diagram of an etching apparatus used in an embodiment of the present invention. yT plane view, the second figure is a dummy treated object used in one embodiment of the present invention, and a schematic diagram of the elm board. It is a two-dimensional diagram of the etching profile creation process. In the figure, y indicates 1 is the base, 2 is the vacuum gasket, 3 is the gas inlet, 4 is the vacuum exhaust, and 0.5 is the Pelger. 6 is etching ¥, 7 is 6mm V water circulation machine oval, 8 is electrostatic chuck, 9 is target % yearning, 10.11 is support. 12 is a counter electrode, and 13 is a substrate to be etched (etched). 14 is high-density plasma, 15 is silicon substrate, 16 is silicate glass metal, 17 is positive resist metal, RF is high frequency power, G#i grounding, TiI is initial temperature e TH*T
, *T'am is resist alteration point temperature* T+ *Ts
e Ts is the power application time for the 1st, 3rd, and 3rd time until resist deterioration e j1'* jl'@t@'
is the power application time of 111@, 111th, and 3rd WA in actual processing, and C, , C, , C is 1 time. 2iI@, indicates the cooling time of all eyes. Chapter) Kasumi
Claims (1)
処理基板の冑着手段を有する平行千*aiエツチング装
置を用いるプラズマエツチング方法に11にて、高周波
パワーを間欠的に印加してエツチングを行うことtII
II黴とするプラズマエツチング方法。In step 11, etching is performed by intermittently applying high frequency power to a plasma etching method using a parallel 10*ai etching apparatus having means for cooling the target electrode and means for attaching the substrate to be processed onto the target electrode.tII
II Plasma etching method using mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP839482A JPS58125830A (en) | 1982-01-22 | 1982-01-22 | Plasma etching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP839482A JPS58125830A (en) | 1982-01-22 | 1982-01-22 | Plasma etching method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58125830A true JPS58125830A (en) | 1983-07-27 |
Family
ID=11691969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP839482A Pending JPS58125830A (en) | 1982-01-22 | 1982-01-22 | Plasma etching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58125830A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60208755A (en) * | 1984-04-03 | 1985-10-21 | Canon Inc | Exposure method and transfer method |
JPS60208754A (en) * | 1984-04-03 | 1985-10-21 | Canon Inc | Transfer method |
JPS6118155A (en) * | 1984-07-04 | 1986-01-27 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPS62281423A (en) * | 1986-05-30 | 1987-12-07 | Hitachi Ltd | Method and device for dry etching |
JP2001274099A (en) * | 2000-03-24 | 2001-10-05 | Mitsubishi Heavy Ind Ltd | Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method |
JP2006024633A (en) * | 2004-07-06 | 2006-01-26 | Sharp Corp | Plasma processing method and plug formation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4983764A (en) * | 1972-12-15 | 1974-08-12 | ||
JPS5766641A (en) * | 1980-10-09 | 1982-04-22 | Mitsubishi Electric Corp | Plasma etching |
-
1982
- 1982-01-22 JP JP839482A patent/JPS58125830A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4983764A (en) * | 1972-12-15 | 1974-08-12 | ||
JPS5766641A (en) * | 1980-10-09 | 1982-04-22 | Mitsubishi Electric Corp | Plasma etching |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60208755A (en) * | 1984-04-03 | 1985-10-21 | Canon Inc | Exposure method and transfer method |
JPS60208754A (en) * | 1984-04-03 | 1985-10-21 | Canon Inc | Transfer method |
JPH0574207B2 (en) * | 1984-04-03 | 1993-10-18 | Canon Kk | |
JPS6118155A (en) * | 1984-07-04 | 1986-01-27 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH0426212B2 (en) * | 1984-07-04 | 1992-05-06 | Mitsubishi Electric Corp | |
JPS62281423A (en) * | 1986-05-30 | 1987-12-07 | Hitachi Ltd | Method and device for dry etching |
JP2001274099A (en) * | 2000-03-24 | 2001-10-05 | Mitsubishi Heavy Ind Ltd | Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method |
JP2006024633A (en) * | 2004-07-06 | 2006-01-26 | Sharp Corp | Plasma processing method and plug formation method |
JP4643933B2 (en) * | 2004-07-06 | 2011-03-02 | パナソニック株式会社 | Plasma processing method and plug forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4253907A (en) | Anisotropic plasma etching | |
CA1228180A (en) | Method of making a high performance small area, thin film transistor | |
US4243506A (en) | Plasma-etching apparatus | |
JPS6337193B2 (en) | ||
US4403241A (en) | Method for etching III-V semiconductors and devices made by this method | |
JPS58125830A (en) | Plasma etching method | |
IE52047B1 (en) | Method of manufacturing a semiconductor device | |
JPS60170238A (en) | Dry etching method | |
JPH07335570A (en) | Control method of substrate temperature in plasma treatment | |
WO2016134558A1 (en) | Etching method and substrate | |
JPH02106925A (en) | Dry etching apparatus | |
US5908791A (en) | Method of forming a polycide gate of a semiconductor device | |
US5509995A (en) | Process for anisotropically etching semiconductor material | |
US5110410A (en) | Zinc sulfide planarization | |
US4569718A (en) | Method for plasma etching III-V semiconductors with a BCl3 -Cl2 gas | |
JPS58191432A (en) | Forming method for thin-film | |
JPS61150336A (en) | Manufacture of semiconductor device | |
JP2005026348A (en) | Plasma treatment method | |
JPH0423416B2 (en) | ||
JPS5846637A (en) | Reactive ion etching method | |
JPS584930A (en) | Removing method of photoresist | |
JPH06302555A (en) | Plasma etching apparatus | |
JP2643584B2 (en) | Method for manufacturing semiconductor device | |
JPH0344028A (en) | Apparatus for plasma etching | |
JPH10209126A (en) | Plasma etching equipment |