JPS62280617A - Thermal type flow meter - Google Patents

Thermal type flow meter

Info

Publication number
JPS62280617A
JPS62280617A JP61125313A JP12531386A JPS62280617A JP S62280617 A JPS62280617 A JP S62280617A JP 61125313 A JP61125313 A JP 61125313A JP 12531386 A JP12531386 A JP 12531386A JP S62280617 A JPS62280617 A JP S62280617A
Authority
JP
Japan
Prior art keywords
fluid
temperature
temperature sensing
circuit
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61125313A
Other languages
Japanese (ja)
Other versions
JPH0676898B2 (en
Inventor
Kyoichi Ishikawa
亨一 石川
Masayuki Kamo
加茂 政行
Yoritaka Isoda
磯田 頼孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S Tec Inc
Original Assignee
S Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S Tec Inc filed Critical S Tec Inc
Priority to JP61125313A priority Critical patent/JPH0676898B2/en
Publication of JPS62280617A publication Critical patent/JPS62280617A/en
Publication of JPH0676898B2 publication Critical patent/JPH0676898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To eliminate influence caused by variation in fluid temperature and to take an accurate measurement speedily by dividing an energy difference given between temperature sensing bodies provided in a fluid and a stationary area by energy given to the temperature sensing body in the stationary area and thus taking a measurement. CONSTITUTION:Temperature sensing resistance bodies 7S and 8S and heaters 7H and 8H are formed by thin film resistance body patterns on the bases and wafers of the heat sensing bodies 7 and 8 provided in the fluid flow area and stationary areas. Potentials VA1 and VA2 at connection points 33 and 34 and potentials VB1 and VB2 at connection points 35 and 36 of bridge circuits 17 and 18 including the resistance bodies 7S and 8S are inputted to control circuits 25 and 26 to put switching elements 27 and 28 with difference signals S1 and S2. Outputs P1 and P2 generated so as to hold the temperature sensing bodies 7 and 8 at the same constant temperature at any time are processed by the subtraction of a circuit 39 and outputs P1-P2 and P2 proportional to a flow rate are inputted to a dividing circuit 40. The circuit 40 performs arithmetic (P1-P2)/P2 to compensate the temperature influence of fluid and multiplying a value proportional to the flow rate by a constant to measure the accurate flow rate.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、熱式11ft計に係り、特に、流体が流れる
流路内の流体流動域及び該流体流動域に連通する流体静
止域に、それぞれ感温体を設けた熱式流量計に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Application Field] The present invention relates to a thermal 11ft meter, and particularly relates to a fluid flow area in a flow path through which a fluid flows and a fluid flow area in the fluid flow area. The present invention relates to a thermal flowmeter in which a temperature sensing element is provided in each communicating fluid stationary region.

(従来の技術〕 前記流量計として、例えば米国特許第2859617号
が公知である。第5図、第6図はこの米国特許に係る流
量計の概略を示すもので、流路50の内部の流体Fが流
れる流体流動域51に一方のセンサ52を設けると共に
、この流体流動域51に連通し流体Fが直接に作用しな
いようにバフフル53によってシールドされた流体静止
域44に他方のセンサ55を設け、これら両センサ52
.55をリード56.57によって導出して、抵抗58
.59と共にプリフジ回路−3を構成し、電圧Eを導線
60.61を介して前記ブリッジ回路Hに与えるように
したものである。尚、62はゼロバランス調整用の抵抗
である。
(Prior Art) As the flowmeter, for example, U.S. Pat. No. 2,859,617 is known. FIGS. One sensor 52 is provided in a fluid flow region 51 in which F flows, and the other sensor 55 is provided in a fluid stationary region 44 that communicates with this fluid flow region 51 and is shielded by a buff full 53 so that fluid F does not act directly. , both these sensors 52
.. 55 through leads 56 and 57 to resistor 58
.. 59 constitutes a prefuji circuit-3, and the voltage E is applied to the bridge circuit H via conductive wires 60 and 61. Note that 62 is a resistor for zero balance adjustment.

このように構成した流量計においては、流体の温度変化
を補償することができ、ゼロ点の補正を効果的に行うこ
とができるといった利点を備えている。
The flowmeter configured in this manner has the advantage of being able to compensate for temperature changes in the fluid and effectively correcting the zero point.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来技術においては、2つのセンサ
52.55は一つのブリッジ回路−5に組み込まれてあ
り、個々に温度制御されるようには構成されてないため
、応答性が悪く、特に気体に対する応答性が良くないと
いった欠点がある。又、測定対象である流体の温度によ
って感度が変化するという欠点があり、従って、流体温
度に対する較正を行う必要があった。
However, in the above-mentioned prior art, the two sensors 52 and 55 are incorporated into one bridge circuit 5 and are not configured to be individually temperature controlled, resulting in poor responsiveness, especially for gases. The drawback is that the responsiveness is not good. Another disadvantage is that the sensitivity changes depending on the temperature of the fluid to be measured, and therefore it is necessary to perform calibration with respect to the fluid temperature.

本発明は、上述の事柄に留意してなされたもので、その
目的とするところは、優れた応答性を存すると共に、被
測定流体の温度によって感度が変化せず正11な測定を
行うことができる熱式流量計を提供することにある。
The present invention has been made with the above-mentioned considerations in mind, and its purpose is to provide excellent responsiveness and to perform accurate measurements without changing sensitivity depending on the temperature of the fluid to be measured. Our goal is to provide a thermal flowmeter that can

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的を達成するため、本発明に係る熱式流量計は
、流体が流れる流路内の流体流動域及び該流体流動域に
連通ずる流体静止域にそれぞれ設けられる感温体のそれ
ぞれを感温抵抗体とヒータとによって構成し、前記感温
抵抗体をそれぞれ含む2つの定温度制御回路を独立して
設け、該定温度制御回路によって前記両感温体の温度を
常に相等しくかつ一定となるように制御し、該両感温体
にそれぞれ与えられるエネルギの差を、前記流体静止域
に設けられる感温体に与えられるエネルギによって除し
た値に基づいて前記流路内の流体の質量流量を測定する
ようにした点に特徴がある。
In order to achieve the above-mentioned object, the thermal flowmeter according to the present invention senses each of the temperature sensing elements provided in the fluid flow region in the flow path through which the fluid flows and the fluid stationary region communicating with the fluid flow region. Two constant-temperature control circuits each comprising a temperature-sensitive resistor and a heater are provided independently, and the constant-temperature control circuit always keeps the temperatures of both temperature-sensitive bodies equal and constant. The mass flow rate of the fluid in the flow path is determined based on the value obtained by dividing the difference in energy given to both temperature sensitive bodies by the energy given to the temperature sensitive body provided in the fluid stationary region. It is unique in that it measures .

〔作用〕[Effect]

上記構成において、2つの感温抵抗体をそれぞれ含む定
温度制御回路は、それぞれブリッジ回路と演算回路で構
成されており、それぞれの定温度制御回路は2つの感温
体の温度を常に相等しくかつ一定となるように制御して
いる。それぞれの定温度制御回路の出力は各rfA温体
を一定温度に保持するために必要なエネルギを示してお
り、その差を流体静止域に設けられる感温体に与えられ
るエネルギによって除することによって温度影響が補償
された流体の質量流量に比例した出力が得られる。
In the above configuration, the constant temperature control circuits each including the two temperature sensitive resistors are each composed of a bridge circuit and an arithmetic circuit, and each constant temperature control circuit keeps the temperatures of the two temperature sensitive bodies equal and constant. It is controlled to remain constant. The output of each constant temperature control circuit indicates the energy required to maintain each rfA hot body at a constant temperature, and by dividing the difference by the energy given to the temperature sensitive body provided in the fluid static area, An output proportional to the fluid mass flow rate is obtained, with temperature effects compensated for.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図は本発明に係る熱式流量計の概略構造を
示し、両図において、■はステンレス等の金属又はプラ
スチックより成るブロック体で、その両端には導管2.
2が接続してあり、これらブロック体l及び導管2.2
によって測定対象である気体、液体等の流体Fが流れる
流路3が形成されている。
1 and 2 schematically show the structure of a thermal flowmeter according to the present invention. In both figures, ▪ is a block made of metal such as stainless steel or plastic, and a conduit 2.
2 are connected, and these block body l and conduit 2.2
A flow path 3 is formed through which a fluid F such as gas or liquid to be measured flows.

4はブロック体lの周面の一部に開設された開口5に、
ゴム製の0リング6を介して着脱自在に設けられるセラ
ミンク製のベース体である。
4 is an opening 5 formed in a part of the peripheral surface of the block body l,
This is a ceramic base body that is detachably installed via a rubber O-ring 6.

7.8はベース体4によって保持されるチップ状体の2
つの感温体で、これらの感温体7.8は互いに同一構成
で、例えば基体としてシリコン単結晶ウェハを用い、こ
のウェハに薄膜の抵抗体パターンによって感温抵抗体と
ヒータが形成しである。一方の惑星体7は流体Fが流れ
る流路3の流体流動域9に設けられてあり、他方の感温
体8は流体流動域9に連通し流体Fが直接作用しないよ
うに隔壁体10によってシールドされた流体静止域11
に設けられている。
7.8 is 2 of the chip-shaped body held by the base body 4
These temperature sensing elements 7.8 each have the same configuration, for example, a silicon single crystal wafer is used as the base, and the temperature sensing resistor and heater are formed on this wafer by a thin film resistor pattern. . One planetary body 7 is provided in the fluid flow area 9 of the channel 3 through which the fluid F flows, and the other temperature sensing element 8 is connected to the fluid flow area 9 by a partition 10 to prevent the fluid F from directly acting on it. Shielded fluid stationary area 11
It is set in.

12、12は感温体7,8を支持するためのリードフレ
ーム、13・・・は金線より成るリード線、14・・・
は外部接続線である。
12, 12 are lead frames for supporting the temperature sensing elements 7, 8, 13... are lead wires made of gold wire, 14...
is an external connection line.

第3図は上記熱式流量計の電気的接続関係を示す回路図
′で、同図において、15.16はそれぞれ感温体7,
8の感温抵抗体?3.8Sをブリッジ回路17゜18の
それぞれの構成要素として含む定温度制御回路で、画定
温度制御回路15.16は互いに同一特性を有するよう
に同一部品で構成されており、感温体7.8のヒータ7
11.8Hをそれぞれ適宜発熱させることにより、感温
体7,8の温度が互いに常に等しくかつ一定となるよう
に制御するものである。
FIG. 3 is a circuit diagram showing the electrical connection relationship of the thermal flowmeter, in which 15 and 16 are the temperature sensing elements 7 and 16, respectively.
8 temperature sensitive resistor? 3.8S as each component of the bridge circuits 17 and 18, the defined temperature control circuits 15 and 16 are constructed of the same parts so as to have the same characteristics, and the temperature sensing elements 7. 8 heater 7
11.8H, respectively, so that the temperatures of the temperature sensing elements 7 and 8 are always equal and constant.

即ち、一方の定温度制御回路15は、感温抵抗体7Sと
抵抗19.21.23とから構成されるブリッジ回路1
7と、演算増幅器等の制御回路25と、トランジスタ等
のスイッチング素子27と、直流型a29.31とから
構成されている。他方の定温度制御回路16は、感lA
抵抗体8Sと抵抗20.22.24とから構成されるブ
リッジ回路18と、演算増幅器等の制御回路26と、ト
ランジスタ等のスイッチング素子28と、直流電源30
.32とから構成されている。尚、抵抗19〜24は感
温抵抗体?5.8Sに比べて温度係数の十分小さいもの
が用いられる。
That is, one constant temperature control circuit 15 is a bridge circuit 1 composed of a temperature-sensitive resistor 7S and resistors 19, 21, and 23.
7, a control circuit 25 such as an operational amplifier, a switching element 27 such as a transistor, and a DC type a29.31. The other constant temperature control circuit 16
A bridge circuit 18 composed of a resistor 8S and resistors 20, 22, and 24, a control circuit 26 such as an operational amplifier, a switching element 28 such as a transistor, and a DC power supply 30.
.. It is composed of 32. Also, are resistors 19 to 24 temperature-sensitive resistors? A material having a sufficiently smaller temperature coefficient than 5.8S is used.

33、34はそれぞれ感温抵抗体7S、 85と抵抗1
9゜20との接続点で、その電位VAl+  ”AXは
それぞれ制御回路25.26の一方の入力信号として入
力される。 35.36はそれぞれ抵抗21と23.2
2と24の接続点で、その電位■□+VIgはそれぞれ
制御回路25゜26の他方の人力信号として入力される
。制御回路25、26はそれぞれ前記入力信号Va+と
Vllとを比較し、又、入力信号VatとVatとを比
較して、それぞれ差があるとき制御信号S+、Siを出
力する。
33 and 34 are temperature sensitive resistor 7S, 85 and resistor 1, respectively.
At the connection point with 9°20, the potential VAl+"AX is inputted as one input signal of the control circuit 25.26, respectively. 35.36 is connected to the resistor 21 and 23.2, respectively.
At the connection point between 2 and 24, the potential ■□+VIg is inputted as the other human input signal to the control circuits 25 and 26, respectively. The control circuits 25 and 26 respectively compare the input signals Va+ and Vll, and also compare the input signals Vat and Vat, and output control signals S+ and Si when there is a difference, respectively.

スイッチング素子27.28は前記制御信号S+、St
に基づいてスイッチング動作を行う、このスイッチング
動作によって、電源29.30から感温抵抗体7S、 
8Sへの電力供給がオンオフ制御されることとなる。ス
イッチング素子27.28とヒータ711.811との
それぞれの接続点37.38に表れる出力P+、Pgは
、ヒータ7H,8Hにそれぞれ供給されるエネルギを表
す。
The switching elements 27 and 28 receive the control signals S+, St
By this switching operation, the temperature sensitive resistor 7S,
The power supply to 8S will be controlled on and off. The outputs P+ and Pg appearing at the respective connection points 37.38 between the switching element 27.28 and the heater 711.811 represent the energy supplied to the heaters 7H and 8H, respectively.

39は前記出力P、、Ptが入力され、(P+  Pg
)なる演算を行う減算器である。この減算回路39の出
力(P+−Pg)は、流体流動域9に位置する感温体7
と、流体流動域10に位置する感温体8とを常に同一温
度にかつ一定温度にするため各型a29゜30から感温
体7のヒータ7■及び感温体8のヒータ8Hにそれぞれ
供給されるエネルギの差を表しており、同時に流路3を
流れる流体Fの流体流量に比例している。
39 is input with the outputs P, , Pt, and (P+ Pg
) is a subtracter that performs the operation. The output (P+-Pg) of this subtraction circuit 39 is the temperature sensor 7 located in the fluid flow area 9.
In order to keep the temperature and the temperature sensing element 8 located in the fluid flow area 10 at the same and constant temperature, each type a29. It is proportional to the fluid flow rate of the fluid F flowing through the flow path 3 at the same time.

40は前記出力(P、−P、)と、出力P□とが入力さ
れ、(P + −P x)/ P !なる演算を行う除
算器である。この演算器40の出力(P + −P z
)/ P zは流体Fの温度影響が除去された流体Fの
正確な質量流量を示している。
40 receives the output (P, -P,) and the output P□, and (P + -P x)/P! This is a divider that performs the following operation. The output of this arithmetic unit 40 (P + −P z
)/P z indicates the exact mass flow rate of fluid F with temperature effects of fluid F removed.

次に上記構成の熱式流量計の動作について説明する。Next, the operation of the thermal flow meter having the above configuration will be explained.

先ず、流路3に流体Fが流れていないときは、感温抵抗
体7S、 8Sにはそれぞれブリッジ回路17゜18を
介して電源31.32からの電力が与えられ、両感温抵
抗体7S、 8Sは抵抗19.20によってそれぞれ定
められる温度に保持される。そして、前記抵抗19、2
0の温度特性は互いに等しいので、感温抵抗体7S、 
8Sの温度は等しくなり、従って、出力PI+P2は等
しくなる。この結果、演算器40の出力はゼロとなり、
流体Fが流れてないことが判る。
First, when the fluid F is not flowing through the flow path 3, power is applied to the temperature sensitive resistors 7S and 8S from the power sources 31 and 32 via the bridge circuits 17 and 18, respectively, and both the temperature sensitive resistors 7S , 8S are held at a temperature determined by resistors 19 and 20, respectively. And the resistors 19, 2
Since the temperature characteristics of 0 are equal to each other, the temperature sensitive resistor 7S,
The temperatures of 8S will be equal, and therefore the outputs PI+P2 will be equal. As a result, the output of the arithmetic unit 40 becomes zero,
It can be seen that fluid F is not flowing.

次に、流路3に流体Fが流れているときは、流体流動域
9に位置する感温体7は流体Fによって熱を奪われるが
、流体静止域lOに位置する感温体8は流体Fによって
殆ど熱を奪われない、従って、前記両感温体7.8の温
度を相等しくかつ一定にするためにスイッチング素子2
7.28を介して電源29、30からエネルギが与えら
れるが、前述のように感温体7における熱の奪われる量
は感温体におけるそれよりも大きいので、定温度制御回
路15゜16の出力として接続点37.38にそれぞれ
表れる出力P、、P!においては、PI > pgとな
る。前記出力P1.Ptの差(PI  Fりは、流体F
の大きさに比例する。
Next, when the fluid F is flowing in the flow path 3, the temperature sensing element 7 located in the fluid flow area 9 is deprived of heat by the fluid F, but the temperature sensing element 8 located in the fluid stationary area lO is absorbed by the fluid F. Almost no heat is taken away by F. Therefore, the switching element 2
Energy is supplied from the power sources 29 and 30 via the temperature sensor 7.28, but as mentioned above, the amount of heat removed from the temperature sensor 7 is larger than that from the temperature sensor, so the constant temperature control circuit 15 and 16 Outputs P,,P! appear at connection points 37 and 38 as outputs, respectively. , PI > pg. The output P1. The difference in Pt (PI F is the fluid F
is proportional to the size of

そして、減算回路39の出力(P+  Pg)は除算回
路40の一方の入力信号として入力され、前記出力P2
が除算回路40の他方の入力信号として人力され、除算
回路40において(P、−Pt)/Ptなる演算が行わ
れる。該除算回路40の出力(PDPり/Pgは流体F
の温度影響を補償した流体Fの流体流量に比例している
ので、これに定数を乗することにより流路3内の流体F
の流体流量が得られる。
The output (P+Pg) of the subtraction circuit 39 is input as one input signal of the division circuit 40, and the output P2
is manually inputted as the other input signal of the division circuit 40, and the calculation (P, -Pt)/Pt is performed in the division circuit 40. The output of the division circuit 40 (PDP/Pg is the fluid F
Since it is proportional to the fluid flow rate of fluid F that compensates for the temperature influence of
A fluid flow rate of

尚、上記第1図に示す隔壁体10の形状はこれにのみ限
定されるものではなり、流体Fの流量の大小によって適
宜その立ち上がりを大きくして、その先端がベース体4
側に大きく近づくようにしたり<’a量が数十17si
n以上のとき)、その立ち上がりを小さくしてもよい。
Note that the shape of the partition wall body 10 shown in FIG.
The amount of <'a is several tens of 17 si.
n or more), the rise may be made smaller.

第4図は本発明の他の実施例を示し、第3図に示すもの
と異なるところは、定温度制御回路16において、ブリ
フジ回路18を省略して、感熱抵抗体8Sと抵抗20と
の接続点34を制御回路26の一方の入力端子に接続し
、定温度制御回路15の抵抗21.23の接続点35を
制御回路26の他方の入力端子に接続した点である。こ
のように構成した場合の動作については、上記実施例と
同様であるので説明は省略する。
FIG. 4 shows another embodiment of the present invention, which differs from the one shown in FIG. The point 34 is connected to one input terminal of the control circuit 26, and the connection point 35 of the resistors 21 and 23 of the constant temperature control circuit 15 is connected to the other input terminal of the control circuit 26. The operation in the case of this configuration is the same as that in the above embodiment, so a description thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る熱式流量計は、流体
が流れる流路内の流体流動域及び該流体流動域に連通ず
る流体静止域にそれぞれ設けられる感温体のそれぞれを
感温抵抗体とヒータとによって構成し、前記感温抵抗体
をそれぞれ含む2つの定温度制御回路を独立して設け、
該定温度制御回路によって前記両感温体の温度を常に相
等しくかつ一定となるように制御し、両感温体にそれぞ
れ与えられるエネルギの差を、前記流体静止域に設けら
れる感温体に与えられるエネルギによって除した値に基
づいて前記流路内の流体の質量流量を測定するようにし
ているので、ゼロ点の補正が巧みに行われることは勿論
のこと、応答性、特に流体が気体の場合における応答性
を大幅に改善することができる。そして、測定対象であ
る流体の温度変化についてはキャリブレーションが最小
で済み、従って、流体温度の変化に起因する悪影響を除
去することができるので、正確かつ迅速な測定を行うこ
とができる。
As explained above, in the thermal flowmeter according to the present invention, each of the temperature sensing elements provided in the fluid flow area in the flow path through which the fluid flows and the fluid stationary area communicating with the fluid flow area is connected to the temperature sensing resistor. two constant temperature control circuits each comprising a body and a heater and each including the temperature sensitive resistor;
The constant temperature control circuit controls the temperatures of both temperature sensing elements so that they are always equal and constant, and the difference in energy given to both temperature sensing elements is applied to the temperature sensing element provided in the fluid stationary region. Since the mass flow rate of the fluid in the flow path is measured based on the value divided by the given energy, not only is the zero point corrected skillfully, but the response is also improved, especially when the fluid is a gas. It is possible to significantly improve responsiveness in these cases. Further, with respect to temperature changes in the fluid to be measured, calibration is required to a minimum, and therefore, it is possible to eliminate the adverse effects caused by changes in fluid temperature, so that accurate and rapid measurements can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の一実施例を示し、第1図は
要部断面図、第2図は第1図のm−n!iI断面図、第
3図は回路図、第4図は他の実施例に係る回路図、第5
図及び第6図は従来例を示し、第5図は断面図、第6図
は回路図である。 3・・・流路、7,8・・・感温体、7S、 8S・・
・感温抵抗体、7H,8H・・・ヒータ、9・・・流体
流動域、11・・・流体静止域、15.16・・・定温
度制御回路。
1 to 3 show an embodiment of the present invention, FIG. 1 is a sectional view of the main part, and FIG. 2 is taken along line mn of FIG. 1. iI sectional view, FIG. 3 is a circuit diagram, FIG. 4 is a circuit diagram according to another embodiment, and FIG.
6 and 6 show a conventional example, FIG. 5 is a sectional view, and FIG. 6 is a circuit diagram. 3... Channel, 7, 8... Temperature sensing element, 7S, 8S...
- Temperature sensitive resistor, 7H, 8H... Heater, 9... Fluid flow area, 11... Fluid stationary area, 15.16... Constant temperature control circuit.

Claims (1)

【特許請求の範囲】[Claims] 流体が流れる流路内の流体流動域及び該流体流動域に連
通する流体静止域に、それぞれ感温体を設けた熱式流量
計において、前記感温体のそれぞれを感温抵抗体とヒー
タとによって構成し、前記感温抵抗体をそれぞれ含む2
つの定温度制御回路を独立して設け、該定温度制御回路
によって前記両感温体の温度を常に相等しくかつ一定と
なるように制御し、該両感温体にそれぞれ与えられるエ
ネルギの差を、前記流体静止域に設けられる感温体に与
えられるエネルギによって除した値に基づいて前記流路
内の流体の質量流量を測定するようにしたことを特徴と
する熱式流量計。
In a thermal flowmeter in which a temperature sensing element is provided in a fluid flow area in a flow path through which fluid flows and a fluid stationary area communicating with the fluid flow area, each of the temperature sensing elements is replaced with a temperature sensing resistor and a heater. 2, each containing the temperature-sensitive resistor.
Two constant temperature control circuits are provided independently, and the constant temperature control circuit controls the temperature of both temperature sensing elements so that they are always equal and constant, and the difference in the energy given to each of the temperature sensing elements is reduced. . A thermal flow meter, characterized in that the mass flow rate of the fluid in the flow path is measured based on the value divided by the energy given to the temperature sensing element provided in the fluid stationary region.
JP61125313A 1986-05-29 1986-05-29 Thermal flow meter Expired - Lifetime JPH0676898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125313A JPH0676898B2 (en) 1986-05-29 1986-05-29 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125313A JPH0676898B2 (en) 1986-05-29 1986-05-29 Thermal flow meter

Publications (2)

Publication Number Publication Date
JPS62280617A true JPS62280617A (en) 1987-12-05
JPH0676898B2 JPH0676898B2 (en) 1994-09-28

Family

ID=14907013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125313A Expired - Lifetime JPH0676898B2 (en) 1986-05-29 1986-05-29 Thermal flow meter

Country Status (1)

Country Link
JP (1) JPH0676898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121226A (en) * 2001-10-19 2003-04-23 Yamatake Corp Flow sensor
US7399118B2 (en) * 2002-08-22 2008-07-15 Ems-Patent Ag Thermal gas flowmeter comprising a gas quality indicator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121226A (en) * 2001-10-19 2003-04-23 Yamatake Corp Flow sensor
US7399118B2 (en) * 2002-08-22 2008-07-15 Ems-Patent Ag Thermal gas flowmeter comprising a gas quality indicator

Also Published As

Publication number Publication date
JPH0676898B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
CA2496204C (en) Thermal mass flowmeter apparatus and method with temperature correction
JP2631481B2 (en) Mass flow meter and its measurement method
JP2889909B2 (en) Atmosphere meter
JPH0663803B2 (en) Zero compensation method
US4845984A (en) Temperature compensation for a thermal mass flow meter
WO2003029759A1 (en) Flow rate measuring instrument
JPH0625684B2 (en) Fluid flow rate detection sensor
JP2946400B2 (en) Heating resistor temperature control circuit
JPS62280617A (en) Thermal type flow meter
JP2789272B2 (en) Flow meter flow compensation method
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JPH0755522A (en) Method and instrument for measuring flow rate
JPS61128123A (en) Mass flow meter
JPH0718729B2 (en) Heater temperature control circuit
KR100262225B1 (en) A measurement circuit of flow rate
JPS61105422A (en) Flow rate measuring instrument
JPS62182670A (en) Flow velocity measuring instrument
KR0163621B1 (en) Temperature and speed measuring method in moving field using one thermal line sensor
JPS62237321A (en) Thermal type flowmeter
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
RU2018090C1 (en) Mass flowmeter
JP3019009U (en) Mass flow meter
SU546821A1 (en) Thermoanemometer
JPH07295653A (en) Mass flow controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term