JPH0755522A - Method and instrument for measuring flow rate - Google Patents

Method and instrument for measuring flow rate

Info

Publication number
JPH0755522A
JPH0755522A JP5206388A JP20638893A JPH0755522A JP H0755522 A JPH0755522 A JP H0755522A JP 5206388 A JP5206388 A JP 5206388A JP 20638893 A JP20638893 A JP 20638893A JP H0755522 A JPH0755522 A JP H0755522A
Authority
JP
Japan
Prior art keywords
resistor
current
flow rate
voltage
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5206388A
Other languages
Japanese (ja)
Other versions
JP2780911B2 (en
Inventor
Tetsuo Ishibashi
哲男 石橋
Junji Manaka
順二 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Seiki Co Ltd
Original Assignee
Ricoh Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Seiki Co Ltd filed Critical Ricoh Seiki Co Ltd
Priority to JP5206388A priority Critical patent/JP2780911B2/en
Priority to US08/285,666 priority patent/US5551283A/en
Publication of JPH0755522A publication Critical patent/JPH0755522A/en
Application granted granted Critical
Publication of JP2780911B2 publication Critical patent/JP2780911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure the flow rate of a fluid to be measured with high accuracy and high responsiveness without inviting any temperature error nor being affected by the fitting state of a detector. CONSTITUTION:A cavity section 3 is formed in a semiconductor substrate 1 by leaving an insulating film which is made longer in the direction perpendicular to the flowing direction of a fluid to be measured on the section 3 in a micro- bridge state and a single resistor 4 composed of a zigzag metallic film is formed on the micro-bridge 7. The resistor 4 is made to generate heat by making a large current to flow to the resistor 4 and the resistance value of the resistor 4 is detected after making a small current to flow to the resistor 4 and detecting the resistance value of the resistor 4. Then the flow rate of the fluid to be measured is measured from the difference between both resistance values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流量検出器に関し、よ
り詳細には、流体流中に配設され、加熱された抵抗体の
抵抗値が流体の温度と流速とにより変化することを利用
した熱式流量計に適用して好適な流量検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate detector, and more particularly, to the fact that the resistance value of a heated resistor disposed in a fluid flow changes depending on the temperature and the flow velocity of the fluid. The present invention relates to a flow rate detector suitable for application to the above-mentioned thermal type flow meter.

【0002】[0002]

【従来の技術】熱式の流量計は可動部がなく、小形な質
量流量計として多用されており、特に応答性が優れてい
るため、最近、内燃機関の空燃比を最適化するための空
気流量制御用として注目されている。一定電力で加熱さ
れた抵抗体の温度は、加熱電力による発熱量と流体流れ
による放熱量とがつり合う温度となり、放熱量は流体の
流速,定圧比熱および密度の関数となる。熱式流量計
は、この原理に基づいてなされたもので、流体の流れの
中に配設された抵抗体を一定電力で加熱し、該抵抗体の
抵抗値に対し、流体の温度に対応する抵抗値を差し引い
て流体の温度影響を取り除いて流体の質量流量を求めて
いる。
2. Description of the Related Art A thermal type flow meter, which has no moving parts and is widely used as a small mass flow meter, has particularly excellent responsiveness. Therefore, recently, an air flow meter for optimizing an air-fuel ratio of an internal combustion engine is used. It is attracting attention for controlling flow rate. The temperature of the resistor heated by the constant power is a temperature at which the amount of heat generated by the heating power and the amount of heat released by the fluid flow are balanced, and the amount of heat released is a function of the flow velocity of the fluid, the specific heat of constant pressure, and the density. The thermal type flow meter is made on the basis of this principle, and heats a resistor arranged in a fluid flow with a constant electric power, and the resistance value of the resistor corresponds to the temperature of the fluid. The mass flow rate of the fluid is calculated by subtracting the resistance value and removing the temperature effect of the fluid.

【0003】図26(a),(b)は、従来の熱式流量
検出器の構造を示す図、図26(a)は平面図、図26
(b)は図26(a)のB−B′線断面図で、結晶面が
(100)のシリコン単結晶の基板81に、窒化シリコ
ンの絶縁被膜を形成後、マイクロブリッジ82a,82
bおよび82cを残し、異方性エッチングにより空洞部
83を形成し、マイクロブリッジ82a,82bおよび
82cにパーマロイ又は白金系のジクザク状の金属膜を
蒸着して抵抗体84,85,86を形成し、中央部の抵
抗85をヒータとし、両側に抵抗値の等しい同一形状の
抵抗体84,86を配設し、これら抵抗体84,86を
夫々温度センサおよび受熱センサとしたものである。
26 (a) and 26 (b) are views showing the structure of a conventional thermal type flow rate detector, FIG. 26 (a) is a plan view, and FIG.
FIG. 26B is a sectional view taken along the line BB ′ of FIG. 26A, in which a silicon nitride insulating film is formed on a silicon single crystal substrate 81 having a crystal plane of (100), and then the microbridges 82 a and 82 are formed.
A cavity 83 is formed by anisotropic etching while leaving b and 82c, and a permalloy or platinum-based zigzag metal film is deposited on the microbridges 82a, 82b and 82c to form resistors 84, 85 and 86. The central resistor 85 is used as a heater, and resistors 84 and 86 of the same shape having the same resistance value are arranged on both sides, and these resistors 84 and 86 are used as a temperature sensor and a heat receiving sensor, respectively.

【0004】ヒータ85は定電力で加熱されており、こ
のヒータ85の加熱による熱影響を受け、両側の温度セ
ンサ84および受熱センサ86は各々抵抗値が増加す
る。被測定流体、例えば、気体の流れがないときは、温
度センサ84および受熱センサ86の温度上昇による抵
抗値の増加量は等しいが、気体が基板81に沿って白抜
き矢印方向(FLOW方向)に流れたときは、温度セン
サ84は気体流により放熱冷却され抵抗値が減少し、反
対に受熱センサ86はヒータ85の熱を受けて加熱され
抵抗値が増加する。温度センサ84と受熱センサ86の
抵抗値の差が気体の質量流量の関数となる。
The heater 85 is heated at a constant power, and is affected by the heat of the heater 85, and the resistance values of the temperature sensor 84 and the heat receiving sensor 86 on both sides increase. When there is no flow of the fluid to be measured, for example, gas, the temperature sensor 84 and the heat receiving sensor 86 have the same amount of increase in resistance value due to the temperature rise, but the gas moves along the substrate 81 in the direction of the white arrow (FLOW direction). When flowing, the temperature sensor 84 is radiatively cooled by the gas flow and its resistance value is reduced, while the heat receiving sensor 86 is heated by the heat of the heater 85 and heated to increase its resistance value. The difference between the resistance values of the temperature sensor 84 and the heat receiving sensor 86 is a function of the mass flow rate of gas.

【0005】図27は、特開平4−72523号公報に
開示されたフローセンサの斜視図で、このフローセンサ
は、半導体基板91の中央部に異方性エッチングにより
左右に開口する開口92,93を有する空洞部94を形
成し、該空洞部94の上部にブリッジ状に空間的に隔離
された薄膜状のマイクロブリッジ95を形成し、該マイ
クロブリッジ95上に、薄膜のヒータ96と該ヒータ9
6を両側から挟む測温抵抗体97,98を配配するとと
もに、半導体基板91の上流側角部に薄膜の周囲温度測
定用の測温抵抗体99を配設したものである。なお、上
記各抵抗体の上面は絶縁被膜で覆われている。
FIG. 27 is a perspective view of a flow sensor disclosed in Japanese Unexamined Patent Publication No. 4-72523. The flow sensor has openings 92 and 93 which are opened left and right in a central portion of a semiconductor substrate 91 by anisotropic etching. And a thin film microbridge 95 spatially isolated in a bridge shape is formed on the upper part of the hollow portion 94, and a thin film heater 96 and the heater 9 are formed on the microbridge 95.
The temperature measuring resistors 97 and 98 sandwiching 6 from both sides are arranged, and the temperature measuring resistor 99 for measuring the ambient temperature of the thin film is arranged at the upstream corner of the semiconductor substrate 91. The upper surface of each resistor is covered with an insulating film.

【0006】図27に示したフローセンサは、空洞部9
4上面に形成されたマイクロブリッジ95にヒータ96
と該ヒータ96を挟むように測温抵抗体97,98が形
成されており、周囲測温抵抗体99の抵抗値を基準とし
て、ヒータ96が一定温度に加熱され、気体が流れたと
きの測温抵抗体97と98との放熱と加熱による抵抗値
の変化を電圧値として求めて、被測定流体の流速又は流
量を算出するものである。
The flow sensor shown in FIG. 27 has a cavity 9
4 A heater 96 is attached to the micro bridge 95 formed on the upper surface.
Resistance temperature detectors 97 and 98 are formed so as to sandwich the heater 96, and the resistance value of the ambient temperature resistance detector 99 is used as a reference to measure the temperature when the heater 96 is heated to a constant temperature and gas flows. The flow rate or flow rate of the fluid to be measured is calculated by obtaining the change in resistance value due to heat radiation and heating of the temperature resistors 97 and 98 as a voltage value.

【0007】[0007]

【発明が解決しようとする課題】上述の如く、従来の熱
式の質量流量計は、抵抗体からなるヒータ(発熱体)で
発生する熱の伝導を発熱体と所定距離隔てて配設された
測温用の抵抗体(受熱体)により検知する方式がとられ
ている。従って、発熱体および該発熱体と同じ寸法・比
熱・熱容量を有する受熱体を必ず一対以上必要とし、こ
のため、以下に述べる問題点があった。
As described above, in the conventional thermal mass flowmeter, the conduction of heat generated by the heater (heating element) made of a resistor is arranged at a predetermined distance from the heating element. A method of detecting with a temperature measuring resistor (heat receiving body) is adopted. Therefore, a pair of heat-generating bodies and heat-receiving bodies having the same size, specific heat and heat capacity as those of the heat-generating bodies are always required, which causes the following problems.

【0008】〔1〕発熱体と受熱体の抵抗値バラツキに
ついて: (1)発熱体自身の温度バラツキすなわち発熱体自身の
抵抗値バラツキ、および受熱体自身の温度バラツキすな
わち受熱体自身の抵抗値バラツキに夫々対応して、電気
回路で高精度に調整する必要がある。 (2)発熱体と受熱体の温度バランス、すなわち、抵抗
値のバランスの組み合わせが高精度であることが必要で
あるが、一般的に、発熱体と受熱体とは、1枚の基板上
に半導体集積回路の微細加工プロセスを用いて組み合わ
せされているため、比較的大まかには精度が良く組み合
わされている。しかし、抵抗値のバランスが悪いものは
発熱体と受熱体の双方がムダになってしまう。なお、従
来から用いられているコイル方式の構造では、別々の発
熱体・受熱体どうしを組み合わせるので、バランスのよ
いもの同志を選択して組み合せることができ、従って、
このコイル方式の方が前述のように予め一体的に組み合
されているものよりムダが少い。
[1] Variation in resistance value between heating element and heat receiving element: (1) Variation in temperature of heating element itself, that is, variation in resistance value of the heating element itself, and variation in temperature of heat receiving element itself, that is, variation in resistance value of the heating element itself. It is necessary to adjust with high precision by an electric circuit corresponding to each. (2) It is necessary that the temperature balance between the heating element and the heat receiving element, that is, the combination of the balance of the resistance values, is highly accurate. However, generally, the heating element and the heat receiving element are provided on one substrate. Since they are combined by using the fine processing process of the semiconductor integrated circuit, they are combined with relatively high accuracy. However, if the resistance value is not well balanced, both the heating element and the heat receiving element will be useless. In the conventional coil-type structure, different heating elements and heat receiving elements are combined, so it is possible to select and combine well-balanced ones.
This coil method is less wasteful than the one which is integrally combined in advance as described above.

【0009】(3)発熱体と受熱体の位置や距離の設計
が難しく、精度上に限界がある。 (4)発熱体と受熱体の間に距離があるため、微少流量
の検出に対しては抵抗差の正確な検出ができない。 (5)発熱体と受熱体それぞれの温度分布精度が高い必
要がある。温度分布にバラツキがあると、検出出力信号
に影響するので、個々のセンサに応じて回路調整等が必
要である。 (6)発熱体や受熱体の数が多いほど、基板のサイズや
取り出し配線数が増大する。これを被測定流体の流れの
中に設置すると、流れ自体を妨げる結果となり、正確な
測定値が得られないし、コストアップをもたらす。しか
も、微少流量検出精度が低くなる。 (7)発熱体・受熱体数が多いと、消費電力が多くな
る。 (8)発熱体と受熱体を垂直配置し、受熱体を上方位
置,発熱体を下方位置とし、気体の流れを下→上にする
と、流れが止っていても、発熱体のおこす上昇流によっ
て受熱体に出力が発生するので、取りつけ姿勢などを配
慮する必要があり、取り付け場所が限られる。
(3) It is difficult to design the positions and distances between the heat generating element and the heat receiving element, which limits accuracy. (4) Since there is a distance between the heat generating element and the heat receiving element, the resistance difference cannot be accurately detected when detecting a minute flow rate. (5) The temperature distribution accuracy of each of the heating element and the heat receiving element needs to be high. If the temperature distribution has a variation, it affects the detection output signal, so that circuit adjustment or the like is necessary according to each sensor. (6) As the number of heating elements and heat receiving elements increases, the size of the substrate and the number of extraction wirings increase. If this is installed in the flow of the fluid to be measured, the flow itself is obstructed, an accurate measured value cannot be obtained, and the cost is increased. In addition, the accuracy of detecting the minute flow rate becomes low. (7) If the number of heating elements / heat receiving elements is large, the power consumption increases. (8) If the heat generating element and the heat receiving element are arranged vertically, the heat receiving element is in the upper position and the heat generating element is in the lower position, and the gas flow is from bottom to top, even if the flow is stopped, due to the upward flow caused by the heat generating element. Output is generated in the heat receiver, so it is necessary to consider the mounting posture, etc., and the installation location is limited.

【0010】〔2〕気体流量を検出する場合の周囲温度
補償について: (1)マイクロブリッジ3本の抵抗体を1組とし、流れ
に対して先頭の抵抗体で気体の温度を検出し、中央の発
熱体と後部の受熱体で流量を検出し、流量検出の温度変
動分を先頭の抵抗体の温度情報で補正する場合(図17
の例)は、上記〔1〕の発熱体と受熱体の抵抗値のバラ
ツキに関して述べた欠点(1)〜(8)をさらに悪化さ
せてしまう。 (2)半導体基板に周囲温度検出用の抵抗体パターンを
配設した場合(図18の例)、周囲温度、すなわち気体
温度が急激に変化しても、半導体基板の熱容量が大きい
ので、周囲温度検出用の抵抗体の抵抗値は、半導体基板
の温度変化に従ってゆっくりと応答、変化するため、測
定時の被測定気体の正確な温度を検出していない結果と
なり、高精度の流量検出は不能である。
[2] About ambient temperature compensation when detecting gas flow rate: (1) One set of three microbridge resistors is used, the temperature of the gas is detected by the leading resistor with respect to the flow, and the center is used. When the flow rate is detected by the heating element and the heat receiving element of the rear part, and the temperature variation of the flow rate detection is corrected by the temperature information of the leading resistor (FIG. 17).
The example) further aggravates the disadvantages (1) to (8) described above regarding the variation in the resistance values of the heat generating element and the heat receiving element in [1]. (2) When the resistor pattern for detecting the ambient temperature is arranged on the semiconductor substrate (example in FIG. 18), even if the ambient temperature, that is, the gas temperature changes suddenly, the heat capacity of the semiconductor substrate is large. Since the resistance value of the detection resistor slowly responds and changes according to the temperature change of the semiconductor substrate, the accurate temperature of the gas to be measured at the time of measurement is not detected, and highly accurate flow rate detection is impossible. is there.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)被測定流体中に単一の抵抗体を挿
入し、該抵抗体に該抵抗体を加熱しない程度の小電流を
流して該抵抗体の抵抗値を測定し、次いで、該抵抗体に
大電流を流して該抵抗体を加熱し、該加熱時の抵抗値を
測定し、該加熱時の抵抗値から前記加熱しない時の抵抗
値を演算して差し引いて前記被測定流体の流量を測定す
ること、或いは、(2)被測定流体中に単一の抵抗体を
挿入し、該抵抗体に漸増する電流を流し、該抵抗体が該
電流によって加熱されない程度の小電流時における抵抗
値と、該抵抗体が加熱される大電流時における抵抗値と
を測定し、大電流時の抵抗値から小電流時の抵抗値を演
算して差し引いて前記測定流体の流量を測定すること、
或いは、(3)基板上に穿設された空洞部と、該空洞部
の一部上面を橋架する絶縁薄膜と、該絶縁薄膜上に配設
された単一の抵抗体と、該抵抗体に該抵抗体を加熱しな
い程度の小電流を流して又は小電圧を印加して該抵抗体
の抵抗値を検出する手段と、該抵抗体に大電流を流して
又は大電圧を印加して該抵抗体を高温加熱し、該高温加
熱時の抵抗値を検出する手段と、該抵抗体の大電流時の
抵抗値から小電流時の抵抗値を演算して減算する手段を
有し、該減算値に基づいて前記被測定流体の流量を検知
すること、更には、(4)前記(3)において、前記抵
抗体に小電流及び該小電流に続いて大電流を流す流量計
測期間と、該抵抗体に電流を流さない計測休止期間とを
繰り返して有し、前記計測休止期間が前記抵抗体の温度
が被測定流体の温度に戻るのに要する時間以上であるこ
と、更には、(5)前記(3)又は(4)において、前
記流量計測期間に前記抵抗体に印加する電圧又は電流
を、低波高値の電圧又は電流パルスと、該低波高値の電
圧又は電流パルスの直後に出力される高波高値の電圧又
は電流パルスとしたこと、更には、(6)前記(3)又
は(4)において、前記抵抗体に印加する電圧又は電流
を鋸歯波電圧又は電流としたこと、或いは、(7)被測
定流体中に2個の抵抗体を挿入し、一方の抵抗体には該
抵抗体を加熱しない程度の小電流又は小電圧を、他方の
抵抗体には該抵抗体を加熱する程度の大電流又は大電圧
を同時に印加し、両抵抗体の抵抗値を同時に測定し、両
抵抗値を演算して差を求め、この差から前記被測定流体
の流量を測定すること、或いは、(8)基板上に穿設さ
れた空洞部と、該空洞部の一部上面を橋架する絶縁薄膜
と、該絶縁薄膜上に配設された2つの抵抗体と、一方の
抵抗体に該抵抗体を加熱しない程度の小電流又は小電圧
を、他方の抵抗体に該抵抗体を加熱する程度の大電流又
は大電圧を同時に印加する手段と、両抵抗体の抵抗値を
演算して減算する手段とを有し、該減算値に基づいて前
記被測定流体の流量を検知すること、或いは、(9)基
板上に穿設された空洞部と、該空洞部の一部上面を橋架
する2つの絶縁薄膜と、該絶縁薄膜の夫々に配設された
抵抗体と、一方の抵抗体に該抵抗体を加熱しない程度の
小電流又は小電圧を、他方の抵抗体に該抵抗体を加熱す
る程度の大電流又は大電圧を同時に印加する手段と、両
抵抗体の抵抗値を演算して減算する手段とを有し、該減
算値に基づいて前記被測定流体の流量を検知すること、
更には、(10)前記(8)又は(9)において、前記
2つの抵抗体を同時駆動するタイミングを与えるクロッ
クパルス発生回路と、前記クロックパルスに同期して前
記抵抗体の一方に小電流又は小電圧を印加する小電力パ
ルス発生回路と、他方の抵抗体に大電流又は大電圧を印
加する大電力パルス発生回路と、前記小電力パルスを印
加した抵抗体の抵抗値と大電力パルスを印加した抵抗体
の抵抗値とを比較、演算する手段とを有し、その比較結
果に基づいて前記被測流体の流量を測定すること、更に
は、(11)前記(8)又は(9)において、前記クロ
ックパルスに同期して前記一方の抵抗体に小電力パルス
及び大電力パルスを交互に繰り返して印加し、他方の抵
抗体の大電力パルス及び小電流パルスを交互に繰り返し
て印加するようにしたことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention (1) inserts a single resistor into a fluid to be measured and does not heat the resistor to the resistor. A small current is passed to measure the resistance value of the resistor, then a large current is passed to the resistor to heat the resistor, the resistance value at the time of heating is measured, and the resistance value at the time of heating is calculated from The resistance value when not heated is calculated and subtracted to measure the flow rate of the fluid to be measured, or (2) a single resistor is inserted into the fluid to be measured and the current gradually increases in the resistor. And a resistance value at a small current such that the resistor is not heated by the current and a resistance value at a large current at which the resistor is heated are measured. Measuring the flow rate of the measurement fluid by calculating and subtracting the resistance value of
Alternatively, (3) a cavity formed on the substrate, an insulating thin film bridging a partial upper surface of the cavity, a single resistor provided on the insulating thin film, and a resistor A means for detecting a resistance value of the resistor by applying a small current or a small voltage so as not to heat the resistor, and a resistor for supplying a large current or a large voltage to the resistor. A means for heating the body at a high temperature and detecting a resistance value at the time of the high temperature heating; and a means for calculating and subtracting the resistance value at a small current from the resistance value at a large current of the resistor, the subtracted value Detecting the flow rate of the fluid to be measured, further comprising (4) in (3), a flow rate measurement period in which a small current and a large current subsequent to the small current flow in the resistor; The measurement pause period in which no electric current is applied to the body is repeatedly provided, and the measurement pause period is the temperature of the resistor as the temperature of the fluid to be measured. Or more, the voltage or current applied to the resistor during the flow rate measurement period in (5) above (3) or (4) is a low peak value voltage or current. A pulse and a voltage or current pulse having a high peak value output immediately after the voltage or current pulse having a low peak value, and (6) applying to the resistor in (3) or (4) above. The voltage or current to be applied is a sawtooth voltage or current, or (7) two resistors are inserted in the fluid to be measured, and one of the resistors has a small current or a current that does not heat the resistor. A small voltage is simultaneously applied to the other resistor with a large current or large voltage for heating the resistor, the resistance values of both resistors are measured at the same time, the two resistance values are calculated to obtain the difference, The flow rate of the fluid to be measured is measured from this difference, or (8 A cavity formed on the substrate, an insulating thin film bridging a part of the upper surface of the cavity, two resistors provided on the insulating thin film, and one resistor heating the resistor. Means for simultaneously applying to the other resistor a large current or large voltage for heating the resistor, and a means for calculating and subtracting the resistance values of both resistors. And detecting the flow rate of the fluid to be measured based on the subtracted value, or (9) two insulating thin films bridging a cavity formed on the substrate and a partial upper surface of the cavity. And a resistor provided in each of the insulating thin films, and a small current or a small voltage that does not heat the resistor to one resistor and a large amount that heats the resistor to the other resistor. A means for simultaneously applying a current or a large voltage and a means for calculating and subtracting the resistance values of both resistors are provided. Detecting the flow rate of the fluid to be measured based on a value,
Further, (10) in (8) or (9), a clock pulse generating circuit that gives a timing for driving the two resistors at the same time, and a small current flowing in one of the resistors in synchronization with the clock pulse or A small power pulse generating circuit for applying a small voltage, a large power pulse generating circuit for applying a large current or a large voltage to the other resistor, and a resistance value of the resistor to which the small power pulse is applied and a large power pulse Means for comparing and calculating the resistance value of the resistor, and measuring the flow rate of the fluid to be measured based on the comparison result, and (11) in (8) or (9) above. , A small power pulse and a large power pulse are alternately and repeatedly applied to the one resistor in synchronization with the clock pulse, and a large power pulse and a small current pulse of the other resistor are alternately and repeatedly applied. It is characterized in that the.

【0012】[0012]

【作用】被測定流体が流れる流れの中に抵抗体を配設
し、この抵抗体に小電流又は小電圧を印加してその抵抗
値より周囲温度を検出し、次いで、大電流又は大電圧を
印加して加熱し、その抵抗値より周囲温度と被測定流体
の流量とを検出し、次いで、両抵抗値の差を演算して求
めて被測定流体の流量を測定する。
A resistor is arranged in the flow of the fluid to be measured, a small current or a small voltage is applied to the resistor to detect the ambient temperature from the resistance value, and then a large current or a large voltage is applied. By applying and heating, the ambient temperature and the flow rate of the fluid to be measured are detected from the resistance value, and then the flow rate of the fluid to be measured is measured by calculating the difference between both resistance values.

【0013】図1(a),(b)は、本発明による流量
検出器の一例を説明するための構造図で、図1(a)は
平面図、図1(b)は、図1(a)のB−B′線断面図
で、図中、1は基板、2,10は絶縁被膜、3は空洞
部、4は抵抗体、5,6は端子、7はマイクロブリッ
ジ、8,9は支持部である。
1 (a) and 1 (b) are structural views for explaining an example of a flow rate detector according to the present invention. FIG. 1 (a) is a plan view and FIG. 1 (b) is shown in FIG. In the sectional view taken along the line BB ′ of a), in the figure, 1 is a substrate, 2 and 10 are insulating films, 3 is a cavity, 4 is a resistor, 5 and 6 are terminals, 7 is a microbridge, and 8 and 9 are. Is a support.

【0014】図1(a),(b)において、基板1は、
結晶面が(100)の四角板状のシリコン単結晶板で、
表面には窒化シリコンの絶縁被膜2が形成されている。
この基板1の白抜き矢印Q方向に直角な対角線上に所定
幅の絶縁被膜2のマイクロブリッジ7を残して異方性エ
ッジングを施こし、白抜き矢印Q方向の対角線上に結晶
面(100)と平行な所定深さの空洞部3を形成する。
マイクロブリッジ7の上面には白金又はパーマロイ(例
えば、Ni:80%、Fe:20%)をジクザク状に形
成して薄膜状の抵抗体4を蒸着し、端子5,6を配設す
る。更に、薄膜状の抵抗体4の上部面に窒化シリコンの
絶縁被膜10を形成する。
In FIGS. 1A and 1B, the substrate 1 is
It is a silicon single crystal plate in the shape of a square plate whose crystal plane is (100),
An insulating film 2 of silicon nitride is formed on the surface.
Anisotropic edging is applied to the substrate 1 on the diagonal line perpendicular to the white arrow Q direction while leaving the microbridge 7 of the insulating film 2 having a predetermined width, and the crystal plane (100) is formed on the diagonal line of the white arrow Q direction. A cavity 3 having a predetermined depth parallel to the above is formed.
Platinum or permalloy (for example, Ni: 80%, Fe: 20%) is formed in a zigzag shape on the upper surface of the microbridge 7, and the thin film resistor 4 is vapor-deposited, and the terminals 5 and 6 are arranged. Further, an insulating film 10 of silicon nitride is formed on the upper surface of the thin film resistor 4.

【0015】図2(a),(b)は、本発明による流量
検出器の動作原理を説明するための図で、図2(a)
は、図1(a)において、30℃の流体が白抜矢印Q方
向に流れたとき、抵抗体4に電流を流して該抵抗体4を
加熱したときの該抵抗体4の両端間に表われる電圧特性
1,A2を示し、流量特性A1は流量が0リッタ/時、
流量特性A2は流量が2リッタ/時の場合のもので、図
2(b)は、流れのないつまり流量が零の場合の抵抗体
4の温度特性を示し、温度特性B1は流体温度が20℃
の場合、温度特性B2,B3は各々流体温度が30℃,4
0℃の場合のものである。
2 (a) and 2 (b) are views for explaining the operating principle of the flow rate detector according to the present invention.
1A, when a fluid at 30 ° C. flows in the direction of the white arrow Q, a current is passed through the resistor 4 to heat the resistor 4 and the contact between both ends of the resistor 4 is shown. The voltage characteristics A 1 and A 2 are shown. The flow rate characteristic A 1 is that the flow rate is 0 liter / hour,
The flow rate characteristic A 2 is for a flow rate of 2 liters / hour. FIG. 2B shows the temperature characteristic of the resistor 4 when there is no flow, that is, when the flow rate is zero, and the temperature characteristic B 1 is the fluid temperature. Is 20 ° C
In the case of, the temperature characteristics B 2 and B 3 are 30 ° C and 4 ° C respectively when the fluid temperature is 30 ° C.
This is for 0 ° C.

【0016】図2(a)に示すように、抵抗体4に、例
えば、2mA以下(抵抗体4を加熱しない程度)の小電
流を流して該抵抗体4の抵抗値を測定すると、抵抗体4
は、この測定電流によってはほとんど加熱されないの
で、抵抗体4間の出力電圧は、流体の温度によって変化
するが、流量が変化しても変化しない。すなわち、流量
が異なる流量特性A1,A2の曲線は、この低電流範囲で
は流量に無関係であり、流体温度のみに関係することを
示している。
As shown in FIG. 2A, when a resistance value of the resistor 4 is measured by passing a small current of, for example, 2 mA or less (to the extent that the resistor 4 is not heated) to the resistor 4, the resistance value of the resistor 4 is measured. Four
Is hardly heated by this measured current, the output voltage across the resistor 4 changes depending on the temperature of the fluid, but does not change even if the flow rate changes. That is, the curves of the flow rate characteristics A 1 and A 2 having different flow rates show that they are irrelevant to the flow rate in this low current range and only to the fluid temperature.

【0017】しかし、抵抗体4に流す電流を大きくする
と、例えば、8mAの大電流とすると、抵抗体4が加熱
されるため、流体が流れていると、その分抵抗値の増大
が少なくなり、流量特性曲線A1,A2とが離間し、流量
に依存した抵抗値を示す。すなわち、8mAで高温加熱
した場合、流量特性曲線A2では、出力電圧は約3V、
1では出力電圧は4Vとなり、流量が大きい程放熱量
が大きく、その抵抗値の増大が小さいことを示してい
る。
However, when the current flowing through the resistor 4 is increased, for example, when a large current of 8 mA is applied, the resistor 4 is heated. Therefore, when the fluid is flowing, the increase in the resistance value is reduced accordingly. The flow rate characteristic curves A 1 and A 2 are separated from each other and show a resistance value depending on the flow rate. That is, when heated at a high temperature of 8 mA, the output voltage is about 3 V in the flow characteristic curve A 2 .
At A 1 , the output voltage is 4 V, and the larger the flow rate is, the larger the heat radiation amount is and the smaller the increase in the resistance value is.

【0018】一方、抵抗体4を流れのない流体中に配設
した場合は、図2(b)に示す温度特性曲線のように、
抵抗体4に小電流(抵抗体が自己加熱しない程度の小電
流)を流して該抵抗体4の抵抗値を測定した場合、該抵
抗体4の抵抗値は、流体温度(すなわち、抵抗体4の温
度)が高い程抵抗値は高くなり、流体温度に対応して出
力電圧も高くなる。すなわち、このときの抵抗体4は、
温度検出素子としての特性を示す。
On the other hand, when the resistor 4 is arranged in a fluid that does not flow, as shown in the temperature characteristic curve shown in FIG.
When the resistance value of the resistor 4 is measured by passing a small current (a small current that does not cause the resistor to self-heat) to the resistor 4, the resistance value of the resistor 4 is the fluid temperature (that is, the resistor 4). The higher the temperature), the higher the resistance value, and the higher the output voltage corresponding to the fluid temperature. That is, the resistor 4 at this time is
The characteristic as a temperature detection element is shown.

【0019】上述のように、図2(a),(b)に示す
特性曲線から、マイクロブリッジ状に配設された一つの
抵抗体を、低温加熱して周囲温度すなわち流体温度を検
出し、次いで、高温加熱して流体温度と流体の流速に応
じた量を検出し、高温加熱したときの抵抗体の抵抗値
(出力電圧)から低温加熱したときの抵抗値(出力電
圧)を減算することにより流体の流量を求めることがで
きる。
As described above, from the characteristic curves shown in FIGS. 2 (a) and 2 (b), one resistor arranged in the shape of a microbridge is heated at a low temperature to detect the ambient temperature, that is, the fluid temperature, Then, the amount of heat depending on the fluid temperature and the flow velocity of the fluid is detected by heating at high temperature, and the resistance value (output voltage) at low temperature heating is subtracted from the resistance value (output voltage) of the resistor at high temperature heating. The flow rate of the fluid can be calculated by

【0020】図3(a),(b)は、本発明による流量
検出器の、他の実施例を説明するための図で、図3
(a)は平面図、図3(b)は図3(a)のB−B′線
断面図を示し、図中、11は基板、12,20は絶縁被
膜、13は空洞部、14は抵抗体、15,16は端子、
18は片持はり状絶縁被膜、19は開放端である。
3 (a) and 3 (b) are views for explaining another embodiment of the flow rate detector according to the present invention.
3A is a plan view, FIG. 3B is a sectional view taken along line BB ′ of FIG. 3A, in which 11 is a substrate, 12 and 20 are insulating coatings, 13 is a cavity, and 14 is Resistors, 15 and 16 are terminals,
Reference numeral 18 is a cantilever-shaped insulating coating, and 19 is an open end.

【0021】図3(a),(b)に示した流量検出素子
は、四角状の空洞部13を四角状の基板11に辺が平行
となるような異方性エッチングを施し、開放端19を有
する片持はり状の絶縁被膜18を空洞部13の上部面に
形成して、更に、片持はり状絶縁被膜18上に端子1
5,16を有する薄膜のジクザク状の抵抗体14を形成
して、更に、絶縁被膜20で絶縁処理したものである。
In the flow rate detecting element shown in FIGS. 3A and 3B, the square cavity 13 is anisotropically etched so that the sides of the square substrate 11 are parallel to each other, and the open end 19 is formed. A cantilever beam-shaped insulating coating film 18 having a groove is formed on the upper surface of the cavity 13, and the terminal 1 is formed on the cantilever beam-shaped insulating coating film 18.
A thin film zigzag resistor 14 having 5, 5 is formed and further insulation-treated with an insulating film 20.

【0022】図3(a),(b)に示した流量検出器
は、抵抗体14が空洞部13の上部面に片持はり状に配
設され、被測定流体が白抜矢印(Q)方向に四角形の基
板11の辺に平行して流れる他は、図1(a),(b)
に示した流量検出器と同じである。
In the flow rate detector shown in FIGS. 3 (a) and 3 (b), the resistor 14 is arranged on the upper surface of the cavity 13 in a cantilever shape, and the fluid to be measured is indicated by a white arrow (Q). 1 (a) and 1 (b) except for flowing in parallel with the sides of the rectangular substrate 11 in the direction.
It is the same as the flow rate detector shown in.

【0023】図4(a),(b)は、本発明による流量
検出器の駆動回路を説明するための図で、図4(a)は
定電流駆動回路、図4(b)は定電圧駆動回路であり、
図中、21は定電流電源、22は定電圧電源、23は検
出素子(図1に示した抵抗体4、又は、図3に示した抵
抗体14に相当)である。
FIGS. 4 (a) and 4 (b) are views for explaining the drive circuit of the flow rate detector according to the present invention. FIG. 4 (a) is a constant current drive circuit, and FIG. 4 (b) is a constant voltage drive circuit. Drive circuit,
In the figure, 21 is a constant current power supply, 22 is a constant voltage power supply, and 23 is a detection element (corresponding to the resistor 4 shown in FIG. 1 or the resistor 14 shown in FIG. 3).

【0024】図4(a)の定電流駆動回路では、定電流
電源21と検出素子23とは、a接点、b接点、c接点
を有するスイッチSWを介して接続され、検出素子23
の両端の出力電圧Voutを検出する。a接点に切換えら
れたときは、検出素子23は、抵抗Rと並列接続され、
低温加熱駆動され、b接点に切換えられたときは、高温
加熱駆動され、c接点に切換えられたときは、回路が開
路され、加熱が停止される。
In the constant current drive circuit of FIG. 4A, the constant current power source 21 and the detection element 23 are connected via a switch SW having a contact point, b contact point and c contact point, and the detection element 23 is connected.
The output voltage Vout at both ends of is detected. When switched to the a-contact, the detection element 23 is connected in parallel with the resistor R,
When it is driven by low temperature heating and is switched to the b contact, it is driven at high temperature and driven when it is switched to the c contact, the circuit is opened and the heating is stopped.

【0025】図4(b)の定電圧駆動回路では、定電圧
電源22と基準抵抗R0と検出素子23とがa接点、b
接点、c接点を有するスイッチSWを介して直列接続さ
れ、基準抵抗R0の両端電圧Voutが出力される。a接点
には抵抗Rもしくは同電位相当のツェナーダイオードが
直列接続され低温加熱駆動回路を形成し、b接点に切換
えられたときは抵抗なしで直接接続され、高温加熱駆動
され回路を形成し、c接点に切換られた時は開路され、
加熱が停止される。
In the constant voltage drive circuit of FIG. 4B, the constant voltage power source 22, the reference resistor R 0 and the detecting element 23 are a-contacts, and b.
They are connected in series via a switch SW having a contact and a c contact, and the voltage Vout across the reference resistor R 0 is output. A resistor R or a Zener diode corresponding to the same potential is connected in series to the a-contact to form a low-temperature heating drive circuit, and when switched to the b-contact, it is directly connected without a resistor and driven to high-temperature heating to form a circuit. When it is switched to the contact, it is opened,
Heating is stopped.

【0026】図5(a),(b)は、本発明による流量
検出器をパルス駆動する場合の動作説明をするための図
で、図5(a)はパルス電流駆動波形、図5(b)は図
5(a)で駆動したときの出力電圧波形を示す。
FIGS. 5A and 5B are diagrams for explaining the operation when the flow rate detector according to the present invention is pulse-driven. FIG. 5A is a pulse current drive waveform, and FIG. ) Shows an output voltage waveform when driven in FIG.

【0027】図5(a)は、図4(a)の定電流駆動回
路の基点をdとするスイッチSWをa接点、b接点、c
接点に所定時間間隔をもって切換えたときの時間と検出
素子23に供給される電流との関係を示し、期間a−d
は、低温加熱する期間で2mAの小電流が供給される期
間、これに続くb−dの期間は、高温加熱する期間で8
mAの大電流が供給される期間、次の期間c−dは、開
路された期間で加熱休止期間である。図5(b)は、検
出素子23の出力電圧を示す図で、P,Q点は出力電圧
が安定した時点、つまり測定タイミング時点を示してい
る。
In FIG. 5A, the switch SW whose base point of the constant current drive circuit of FIG. 4A is d is a contact, b contact, and c.
The relationship between the time when the contacts are switched at a predetermined time interval and the current supplied to the detecting element 23 is shown, and
Is a period in which a small current of 2 mA is supplied in the low temperature heating period, and the following b-d period is 8 in the high temperature heating period.
A period in which a large current of mA is supplied, and the following periods cd are open periods and heating rest periods. FIG. 5B is a diagram showing the output voltage of the detection element 23, and points P and Q show the time when the output voltage becomes stable, that is, the measurement timing.

【0028】図6(a),(b),(c),(d)は、本
発明による流量検出器の動作原理を被測定流体の温度が
変化した場合、及び、流量が変化した場合に分けて説明
するための図で、図6(a)は時間軸上の流体温度変
化、図6(b)は時間軸上の流量変化、図6(c)は印
加電流波形、図6(d)は上記流体温度変化および流量
変化に対応した検出出力電圧波形を示す。
FIGS. 6A, 6B, 6C and 6D show the operating principle of the flow rate detector according to the present invention when the temperature of the fluid to be measured changes and when the flow rate changes. 6 (a) is a diagram for separately explaining, FIG. 6 (a) is a fluid temperature change on the time axis, FIG. 6 (b) is a flow rate change on the time axis, FIG. 6 (c) is an applied current waveform, and FIG. ) Indicates a detected output voltage waveform corresponding to the change in fluid temperature and the change in flow rate.

【0029】検出素子23に供給する電流は、図6
(c)に示すように、2mAの小電流に続く8mAの大
電流から成るパルスが所定休止時間をもって供給される
パルス電流で、図示例の場合、このパルス電流が時間t
0〜t1,t1〜t2,t2〜t3の間にそれぞれ1回出力さ
れる。一方、流体温度は、図6(a)に示すように、一
定温度の30℃から、時間t1〜t2の期間に、の2
0℃、又は、の40℃に変化し、流量は、図6(b)
に示すように、一定流量の2リッタ/時から、時間t
2〜t3の期間に、の0リッタ/時、又は、の4リッ
タ/時に変化するものとする。従って、時間t0〜t1
期間では流体温度、流量共に変化せず、時間t1〜t2
期間では流体温度のみ変化し、時間t2〜t3の期間では
流量のみ変化している。
The current supplied to the detecting element 23 is as shown in FIG.
As shown in (c), a pulse consisting of a small current of 2 mA and a large current of 8 mA is supplied with a predetermined rest time, and in the case of the illustrated example, this pulse current is the time t.
0 ~t 1, t 1 ~t respectively between 2, t 2 ~t 3 is output once. On the other hand, as shown in FIG. 6 (a), the fluid temperature is 2 from the constant temperature of 30 ° C. to the period of time t 1 to t 2.
The flow rate changes to 0 ° C or 40 ° C, and the flow rate is as shown in FIG.
As shown in FIG.
A period of 2 ~t 3, 0 liters / hour, or is intended to change 4 liters / hr of. Therefore, the fluid temperature during a period of time t 0 ~t 1, does not change the flow rate both changed only fluid temperature during a period of time t 1 ~t 2, it has changed only flow during the period of time t 2 ~t 3 .

【0030】この結果、検出出力電圧波形は、図6
(d)に示すように、時間t0〜t1の期間では流体温
度、流量一定に対応する出力電圧は,となり、時間
1〜t2の期間では、これに流体温度変化が加わり、出
力電圧は,,となり、大電流駆動時の出力電圧か
ら小電流駆動時の出力電圧を減算した減算値はいずれも
同じで一定となり、温度変化によって検出電圧の差に変
化がないことが分る。また、時間t2〜t3の期間では、
出力電圧は流量に応じて,,となるが、小電流駆
動時の出力電圧は、流体温度に変化がないので、流量が
変っても同じであり、大電流駆動時の出力電圧は、流量
の放熱による影響を受けて変化するので、大電流駆動時
の出力電圧から小電流駆動時の出力電圧を減算すると、
流量に応じた電圧が検出されることが分る。実際には、
被測定流体は、温度も流量も変化するので、t1〜t2
の温度変化と、t2〜t3間の流量変化が組み合されたも
のとなり、大電流時における検出電圧(被測定流体の温
度変化分及び流量変化分)から低電流時の検出電圧(被
測定流体の温度変化分)を差し引けば、被測定流体の流
量変化分を検出することができる。
As a result, the detected output voltage waveform is shown in FIG.
As shown in (d), the output voltage corresponding to the fluid temperature and the constant flow rate becomes during the period of time t 0 to t 1 , and during the period of time t 1 to t 2 , the fluid temperature change is added to The voltage is, and the subtraction value obtained by subtracting the output voltage at the time of driving the small current from the output voltage at the time of driving the large current is the same and constant, and it can be seen that there is no change in the difference in the detected voltage due to the temperature change. Further, in the period of time t 2 to t 3 ,
The output voltage becomes, according to the flow rate, but the output voltage at the time of small current drive is the same even if the flow rate changes because the fluid temperature does not change, and the output voltage at the time of large current drive is It changes due to the influence of heat dissipation, so if you subtract the output voltage when driving a small current from the output voltage when driving a large current,
It can be seen that the voltage corresponding to the flow rate is detected. actually,
Fluid to be measured, the temperature also flow also changes, t 1 and the temperature change between ~t 2, it is assumed that the flow rate changes between t 2 ~t 3 is combined, the detection voltage (measured at a large current By subtracting the detection voltage (change in temperature of the fluid to be measured) at low current from the change in fluid temperature and the change in flow rate, the change in flow rate of the fluid to be measured can be detected.

【0031】図7(a),(b)は、本発明による流量
計の駆動電流波形および出力電圧波形の他の例を示す図
で、時間t1からt2までの所定時間幅内で、図7(a)
に示すように、時間に比例する三角波(鋸歯状)の電流
で駆動したとき、図7(b)に示すように時間遅れを伴
なう出力電圧が検出されるが、図5(b)の計測タイミ
ングP,Qと同様、抵抗体の温度が安定した計測タイミ
ングP,Qにおいて、小電流駆動時と大電流駆動時の抵
抗体の抵抗値を測定するようにすれば、前述の例と全く
同様にして流量を測定することができる。而して、この
ように、三角形の定電流源で駆動することにより、図4
の抵抗R,R0におけるように、抵抗R,R0の特性に影
響されることもなく、駆動は一個だけの電源でよく、し
かも高精度にでき、計測に当っては、計測タイミング
P,Qを定めておけばよい。
FIGS. 7 (a) and 7 (b) are diagrams showing other examples of the drive current waveform and output voltage waveform of the flowmeter according to the present invention. Within a predetermined time width from time t 1 to t 2 , Figure 7 (a)
As shown in FIG. 5A, when driven by a triangular wave (sawtooth) current that is proportional to time, an output voltage with a time delay is detected as shown in FIG. 7B. Similar to the measurement timings P and Q, if the resistance value of the resistor is measured during the small current driving and the large current driving at the measurement timings P and Q at which the temperature of the resistor is stable, it is completely different from the above example. The flow rate can be measured in the same manner. Thus, by driving with a triangular constant current source,
Unlike the resistors R and R 0 of FIG. 1, the driving is performed with only one power source without being affected by the characteristics of the resistors R and R 0 , and the measurement can be performed with high accuracy. You just need to set Q.

【0032】図8(a),(b)は、それぞれ本発明に
よる流量計の検出素子を駆動する他の電流波形を示す図
で、図8(a)は、電流変化が時間と共に変化率が小さ
くなる凸状に湾曲した近似三角波状の漸増電流波形であ
り、図8(b)は電流変化が時間と共に変化率が大きく
なる凹状に湾曲した近似三角波状の漸増電流波形であ
り、安定した電流源であれば、図7(a)の三角波電流
駆動の場合と全く同じようにして用いることができる。
FIGS. 8 (a) and 8 (b) are diagrams showing other current waveforms for driving the detection element of the flowmeter according to the present invention, respectively. FIG. 8 (a) shows that the change rate of the current changes with time. FIG. 8 (b) shows a gradually increasing current waveform having an approximate triangular waveform that is curved in a convex shape that is small, and FIG. 8B is an increasing current waveform that is an approximately triangular waveform that is curved in a concave shape in which the rate of change of the current increases with time. If it is a source, it can be used in exactly the same manner as the case of the triangular wave current drive of FIG.

【0033】図9は、本発明による流量計の駆動回路の
一例を示すブロック図で、図中、24は一定の電流をセ
ンサに供給する回路(定電流回路)、25は係数設定回
路、26はホールド回路、27は減算回路、28は出力
端子である。増幅回路24には、検出素子23と一端が
接地された基準抵抗Rとの直列抵抗が負荷され、基準抵
抗Rの電圧は一定の電流をセンサに供給する回路(定電
流回路)24の反転入力端に帰還されており、非反転入
力端にはa,bおよびc接点を有するスイッチSW1
接続される。スイッチSW1のa接点には、基準電圧V
REF1,b接点にはVREF2,c接点は接地され、基準電
圧VREF1およびVREF2は、 VREF1=2R(mV) (1) VREF2=8R(mV) (2) が設定されている。
FIG. 9 is a block diagram showing an example of the drive circuit of the flowmeter according to the present invention. In the figure, 24 is a circuit for supplying a constant current to the sensor (constant current circuit), 25 is a coefficient setting circuit, and 26 is a coefficient setting circuit. Is a hold circuit, 27 is a subtraction circuit, and 28 is an output terminal. The amplifier circuit 24 is loaded with a series resistance of a detection element 23 and a reference resistance R whose one end is grounded, and the voltage of the reference resistance R is an inverting input of a circuit (constant current circuit) 24 that supplies a constant current to the sensor. The switch SW 1 having a, b and c contacts is connected to the non-inverting input terminal. The reference voltage V is applied to the a contact of the switch SW 1.
V REF 2, c contact is grounded to REF 1, b contact, and reference voltages V REF 1 and V REF 2 are V REF 1 = 2R (mV) (1) V REF 2 = 8R (mV) (2) Is set.

【0034】更に、一定の電流をセンサに供給する回路
(定電流回路)24の出力端にはa,b接点を有するス
イッチSW2が接続され、a接点には、低温加熱時(抵
抗体を加熱しない程度の小電流を流した時)の流量を演
算する時の周囲温度に換算するための係数Kを設定す
る、例えば、Kに応じて増幅度可変な係数設定回路25
が接続され、b接点には、減算回路27の一方の入力端
に接続され、高温加熱時の大電流を流したときの出力電
圧VDを入力する。係数設定回路25と減算回路27と
の間には、a接点およびc接点を有するスイッチSW3
およびホールド回路26が接続されている。スイッチS
3のa接点はホールド回路26に接続されている。
Further, a switch SW 2 having a and b contacts is connected to the output end of a circuit (constant current circuit) 24 for supplying a constant current to the sensor, and the a contact has low temperature heating (resistor is A coefficient K for converting the ambient temperature when calculating the flow rate when a small current that does not heat is applied) is set, for example, a coefficient setting circuit 25 with variable amplification degree according to K
Is connected to the b-contact, which is connected to one input end of the subtraction circuit 27 and inputs the output voltage V D when a large current is applied during high temperature heating. A switch SW 3 having an a contact and a c contact is provided between the coefficient setting circuit 25 and the subtraction circuit 27.
And the hold circuit 26 is connected. Switch S
The a contact of W 3 is connected to the hold circuit 26.

【0035】以上の如く構成された駆動回路のスイッチ
SW1,SW2およびSW3は連動しており、切換により
スイッチSW1,SW2,SW3の各々のa,b,c接点
が同時に切換えられる。a接点に切換えたとき、増幅回
路24の反転入力端に接続された基準抵抗Rには基準電
圧VREF1に等しい電圧が印加され検出素子23には2
mAの定電流が流れる。同様にb接点に切換えたとき、
基準抵抗Rには基準電圧VREF2に等しい電圧が印加さ
れ検出素子23には8mAの定電流が流れる。
The switches SW 1 , SW 2 and SW 3 of the drive circuit configured as described above are interlocked, and the a, b and c contacts of each of the switches SW 1 , SW 2 and SW 3 are simultaneously switched by switching. To be When switched to the a-contact, a voltage equal to the reference voltage V REF 1 is applied to the reference resistor R connected to the inverting input terminal of the amplifier circuit 24, and the detection element 23 receives 2
A constant current of mA flows. Similarly, when switching to b contact,
A voltage equal to the reference voltage V REF 2 is applied to the reference resistor R, and a constant current of 8 mA flows through the detection element 23.

【0036】図10は、図9に示した駆動回路の各部に
おける波形図であり、以下、図9と図10とにより駆動
回路の動作を説明する。スイッチSW1(SW2,SW3
も同期駆動)は、図10(a),(b)の電圧波形の駆
動電圧パルスにより時間t1〜t2および時間t2〜t3
期間で切換えられ、切換に応じて検出素子23には、図
10(c)isに示す駆動電流2mAおよび8mAが流
れる。a接点に切換えられたときスイッチSW2のa接
点には、周囲温度に比例した図10(d)に示す電圧V
sが出力される。電圧Vsは係数設定回路25に入力し
予め設定された係数Kが乗算され、図10(e)に示す
電圧V′s(=KVs)が出力される。Kは、スイッチ
SW2がa接点に切換えられたときに出力される電圧V
sが、周囲温度に正しく比例した値でないため、この電
圧Vsを周囲温度と対応するように補正するための係数
で、 K=(VD−流量変化分)/Vs (3) で与えられる。ホールド回路26は、図10(f)に示
すように、電圧V′sと等しいV″s(=V′s)を出
力する。減算回路27には電圧VDとV″sが入力して
図10(h)に示す流量に比例した電圧Vが端子28に
出力される。すなわち、 V=VD−V″s (4) が得られる。
FIG. 10 is a waveform diagram in each part of the drive circuit shown in FIG. 9, and the operation of the drive circuit will be described below with reference to FIGS. 9 and 10. Switch SW 1 (SW 2 , SW 3
Also driven synchronization) is, FIG. 10 (a), the switched at a period of the driving voltage pulse by a time t 1 ~t 2 and time t 2 ~t 3 voltage waveform (b), the detection element 23 in accordance with the switching Drive currents of 2 mA and 8 mA shown in FIG. When switched to the a-contact, the voltage V shown in FIG. 10 (d) proportional to the ambient temperature is applied to the a-contact of the switch SW 2 .
s is output. The voltage Vs is input to the coefficient setting circuit 25 and multiplied by a preset coefficient K, and the voltage V's (= KVs) shown in FIG. 10 (e) is output. K is the voltage V output when the switch SW 2 is switched to the a contact.
s is, because it is not correctly proportional value to the ambient temperature, a factor for correcting so as to correspond to the voltage Vs and the ambient temperature, K = - is given by (V D flow variation) / Vs (3). As shown in FIG. 10F, the hold circuit 26 outputs V ″ s (= V ′s) equal to the voltage V ′s. The subtraction circuit 27 receives the voltages V D and V ″ s. A voltage V proportional to the flow rate shown in FIG. 10 (h) is output to the terminal 28. That is, V = V D −V ″ s (4) is obtained.

【0037】図11は、本発明による流量計の、他の実
施例を説明するための駆動回路ブロック図であり、図
中、29は電圧検出回路、30は電流検出回路、31は
割算回路で、その他、図9と同じ作用をする部分には図
9と同一の参照番号を付している。図11に示した駆動
回路は、検出素子23の抵抗変化から流量を検出するた
めの駆動回路である。すなわち、検出素子23を小電流
で駆動したときと大電流で駆動したとき、この何れの期
間においても電圧検出器29により検出素子23の両端
の電圧を検知して割算回路31に入力し、一方、抵抗値
が既知の基準抵抗Rの両端の電圧を電流検出器30によ
り検出して割算回路31に入力し、割算回路31で検出
素子23の抵抗値を演算する。スイッチSW2以下の回
路は、図9に示した駆動回路と同様の原理に基づいて小
電流パルス駆動時の出力電圧を大電流パルス駆動時にお
ける出力電圧から差し引いて流量演算がなされる。
FIG. 11 is a drive circuit block diagram for explaining another embodiment of the flowmeter according to the present invention, in which 29 is a voltage detection circuit, 30 is a current detection circuit, and 31 is a division circuit. In addition, the same reference numerals as those in FIG. 9 are attached to the other portions having the same operations as those in FIG. The drive circuit shown in FIG. 11 is a drive circuit for detecting the flow rate from the resistance change of the detection element 23. That is, when the detection element 23 is driven with a small current and when it is driven with a large current, the voltage across the detection element 23 is detected by the voltage detector 29 and input to the division circuit 31 in any period. On the other hand, the voltage across the reference resistor R having a known resistance value is detected by the current detector 30 and input to the division circuit 31, and the division circuit 31 calculates the resistance value of the detection element 23. The circuits below the switch SW 2 perform flow rate calculation by subtracting the output voltage during the small current pulse driving from the output voltage during the large current pulse driving based on the same principle as the driving circuit shown in FIG.

【0038】図12(a),(b),(c),(d),
(e)は、本発明による流量計の駆動動作を説明するタ
イミングチャートで、図12(a)は、図5(a)に示
した駆動パルスに相当する駆動電流パルス、図12
(b)は、図7(a)に示した駆動電流に相当する鋸歯
状波駆動電流波形、図12(c)はクロックパルス、図
12(d)は計測ON/OFF信号、図12(e)はリ
セット信号を示す。
12 (a), (b), (c), (d),
12E is a timing chart for explaining the driving operation of the flowmeter according to the present invention. FIG. 12A is a driving current pulse corresponding to the driving pulse shown in FIG.
12B is a sawtooth wave drive current waveform corresponding to the drive current shown in FIG. 7A, FIG. 12C is a clock pulse, FIG. 12D is a measurement ON / OFF signal, and FIG. ) Indicates a reset signal.

【0039】図5(b),図7(b)の計測タイミング
P,Qは、出力電圧が安定した時点での電圧値計測タイ
ミングを定めているが、低温駆動時の計測タイミングt
aおよび高温駆動時の計測タイミングtbは検出素子2
3を加熱駆動するタイミングt0が定まれば一義的に定
められ、図12(a)のパルス状駆動波形又は図12
(b)の鋸歯状駆動波形とA−A線とが変わるa点まで
の時間taおよびB−B線と変わるb点までの時間t
bで、それぞれの計測タイミングP,Qが定まる。
The measurement timings P and Q in FIGS. 5B and 7B define the voltage value measurement timing when the output voltage stabilizes.
a and the measurement timing tb at the time of high temperature driving are the detection element 2
12 is uniquely determined if the timing t 0 for heating and driving No. 3 is determined, and the pulsed drive waveform of FIG.
(B) The time t a to the point a at which the sawtooth drive waveform and the line AA change and the time t to the point b at which the line BB changes.
At b , the respective measurement timings P and Q are determined.

【0040】また、駆動時間t0〜t1および駆動休止時
間t1〜t2は、図12(d)の計測ON/OFF信号で
定められ、駆動が完了する時間t1で、図12(e)の
リセット信号が出力される。しかし、これらの時間
a,tb,t1,t2は図12(c)クロックパルスの数
を計測することにより定めることができる。
Further, the driving time t 0 to t 1 and the driving rest time t 1 to t 2 are determined by the measurement ON / OFF signal of FIG. 12D, and the driving completion time t 1 is shown in FIG. The reset signal of e) is output. However, these times t a, t b, t 1 , t 2 may be determined by measuring the number shown in FIG. 12 (c) clock pulse.

【0041】図13は、本発明に係る計測タイミング発
生回路の一例を示すブロック図で、図中、32はクロッ
ク発生回路、33a,33b,33cはカウンタ,回路
34基準電圧(駆動電流)発生回路である。
FIG. 13 is a block diagram showing an example of a measurement timing generation circuit according to the present invention. In the figure, 32 is a clock generation circuit, 33a, 33b and 33c are counters, and a circuit 34 is a reference voltage (driving current) generation circuit. Is.

【0042】クロック発生回路32からは図12(c)
に示すクロックパルスが発生され、カウンタ回路33a
では、時間taに対応する予め設定されたパルス数に達
したとき計測タイミングパルスaが出力され、同様に、
カウンタ回路33bからは、時間tbに対応するパルス
数に達したとき計測タイミングパルスbが出力される。
また、カウンタ回路33cからは、計測ON/OFF信
号の駆動時間t1および駆動休止時間t2に対応するパル
スを出力し、時間t1でのパルスによりカウンタ回路3
3a,33bをリセットする信号を出力し、時間t2
のパルスによりカウンタ回路33a,33bのカウンタ
ゲートを開路し、同時に基準電圧発生回路34を起動し
て検出素子を駆動する基準電圧(駆動電流)Eを出力す
る。
From the clock generation circuit 32, FIG.
The clock pulse shown in FIG.
Then, when the preset number of pulses corresponding to the time ta is reached, the measurement timing pulse a is output, and similarly,
The counter circuit 33b outputs a measurement timing pulse b when the number of pulses corresponding to the time t b is reached.
Further, the counter circuit 33c outputs a pulse corresponding to the drive time t 1 and the drive pause time t 2 of the measurement ON / OFF signal, and the counter circuit 3 outputs the pulse at the time t 1.
3a and 33b are reset, a pulse at the time t 2 opens the counter gates of the counter circuits 33a and 33b, and at the same time, the reference voltage generating circuit 34 is activated to drive the detection element. ) Output E.

【0043】図14は、前述のリセット信号を発生する
回路の例、図15は、図14のリセットパルス発生回路
のタイムチャートを示す図で、D−F・F(遅延フリッ
プフロップ)35のD入力端に図15(b)に示す計測
ON/OFF信号(カウンタ33cの出力信号)が入力
されると、1クロックパルス遅れてON/OFF信号に
対応する図15(c)に示す信号が出力される。図15
(b)の反転信号(反転回路36の出力)とF・F35
の出力とのアンド出力(アンド回路37の出力)として
図15(d)に示すクロックパルス幅のリセット信号が
出力される。
FIG. 14 is an example of a circuit for generating the above-mentioned reset signal, and FIG. 15 is a diagram showing a time chart of the reset pulse generating circuit of FIG. When the measurement ON / OFF signal (output signal of the counter 33c) shown in FIG. 15 (b) is input to the input end, the signal shown in FIG. 15 (c) corresponding to the ON / OFF signal is output with a delay of one clock pulse. To be done. Figure 15
Inversion signal of (b) (output of the inversion circuit 36) and F · F35
15D is output as an AND output (output of the AND circuit 37) with the clock pulse width shown in FIG. 15D.

【0044】図16は、本発明に係る検出素子を駆動す
る鋸歯状波電流駆動回路の一例を示すブロック回路で、
基準電圧Eの入力を受ける抵抗R0と、該抵抗R0と帰還
コンデンサC0およびOPアンプ38とからなる積分回
路リセット信号により帰還コンデンサC0をデスチャー
ジするスイッチ39を有し、リセット信号により定めら
れる期間内で時間tに比例する鋸歯状電圧V1が出力さ
れる。 V1=(E/COO)t (5) 電圧V1は基準抵抗RSと同一な入力抵抗Raを有するO
Pアンプ40からなる定電流回路に入力して、電圧V1
に比例した鋸歯状の定電流iが検出素子に流れる。すな
わち(5)から
FIG. 16 is a block circuit showing an example of a sawtooth wave current drive circuit for driving the detection element according to the present invention.
A resistor R 0 for receiving the input of the reference voltage E, and a switch 39 for discharging the feedback capacitor C 0 by the integration circuit reset signal composed of the resistor R 0 , the feedback capacitor C 0 and the OP amplifier 38 are provided. A sawtooth voltage V 1 proportional to the time t is output within the defined period. V 1 = (E / CO R O ) t (5) The voltage V 1 has an input resistance R a that is the same as the reference resistance R S.
The voltage V 1 is input to the constant current circuit composed of the P amplifier 40.
A sawtooth-shaped constant current i proportional to the current flows through the detection element. That is, from (5)

【0045】[0045]

【数1】 [Equation 1]

【0046】が得られる。図17は、本発明に係る検出
素子の鋸歯状波電流駆動による流量出力回路の一実施例
を説明するためのブロック回路図であり、図中、41,
42は増幅回路、43は係数設定回路、44,45はホ
ールド回路、46は減算回路である。検出素子23に
は、図16で示した鋸歯状定電流iが流れ、該検出素子
23の両端電圧は、並列接続された増幅回路41および
42に入力される。増幅回路41は低電流駆動時の出力
電圧Vsを測定するもので係数設定回路43とホールド
回路44とが直列接続されている。一方、増幅回路42
は高電流駆動時の出力電圧VDを測定するもので、ホー
ルド回路45が接続されている。
Is obtained. FIG. 17 is a block circuit diagram for explaining an embodiment of a flow rate output circuit by the sawtooth wave current drive of the detection element according to the present invention.
42 is an amplifier circuit, 43 is a coefficient setting circuit, 44 and 45 are hold circuits, and 46 is a subtraction circuit. The sawtooth constant current i shown in FIG. 16 flows through the detection element 23, and the voltage across the detection element 23 is input to the amplifier circuits 41 and 42 connected in parallel. The amplifier circuit 41 measures the output voltage V s during low current driving, and a coefficient setting circuit 43 and a hold circuit 44 are connected in series. On the other hand, the amplifier circuit 42
Is for measuring the output voltage V D at the time of driving at a high current, and the hold circuit 45 is connected to the output voltage V D.

【0047】ホールド回路44は、小電流駆動時の出力
電圧Vsに係数Kを乗算後の補正電圧V’sを計測タイミ
ングパルスaによりホールドする。一方、ホールド回路
45は、大電流駆動時の出力電圧VDを計測タイミング
パルスbによりホールドする。ホールド回路44にホー
ルドされた小電流駆動時の出力電圧VS”(=VS’)と
ホールド回路45にホールドされた大電流駆動時の出力
電圧VDとは減算回路46で減算され流量に比例した電
圧Vが出力される。尚、低温度の小電流駆動電流を2m
A,高温時の大電流駆動電流8mAとする(6)式に従
ってt=Taのとき2mA,t=tbのとき8mAとなる
ように回路定数CO,RO,RSおよびEを定めればよ
い。
The hold circuit 44 is held by the measuring timing pulse a correction voltage V 's after multiplied by a coefficient K to the output voltage V s of the time of small current drive. On the other hand, the hold circuit 45 holds the output voltage V D at the time of driving a large current by the measurement timing pulse b. The output voltage V S ″ (= V S ') held in the hold circuit 44 during the small current drive and the output voltage V D held in the hold circuit 45 during the large current drive are subtracted by the subtraction circuit 46 to obtain the flow rate. A proportional voltage V is output, and a low-temperature small current drive current of 2 m
Set A, and the large current drive current 8mA at high temperature (6) 2 mA when t = T a according to equation, t = t b circuit constants C O such that 8mA when, R O, the R S and E Just do it.

【0048】図18は、本発明に係る検出素子の鋸歯状
波電流駆動部による流量出力回路の、他の実施例を説明
するためのブロック図で、図中、47は基準電圧発生回
路、48は増幅回路、49はA/Dコンバータ,50は
CPU(中央演算処理回路)であり、図中、図16と同
じ動作をする部分には図16と同一の参照番号を付して
ある。図18に示した流量出力回路は、タイミングパル
ス、すなわち、計測ON/OFF信号,計測タイミング
aおよびtbリセット信号はCPU50のクロックを利
用している。また、CPU50は、記憶機能を有するの
で、低温時および高温時の出力電圧をホールドする特別
のホールド回路は不必要である。従って、検出素子23
の出力電圧は、増幅回路48で所定電圧に増幅後、A/
Dコンバータ49でディジタル変換され、変換された検
出電圧のディジタル値をCPU50による計測タイミン
グtaおよびtbで読み取り記憶し、更に、係数設定を行
い、減算処理して簡易に流量を求めることができる。
FIG. 18 is a block diagram for explaining another embodiment of the flow rate output circuit by the sawtooth wave current drive unit of the detection element according to the present invention. In the figure, 47 is a reference voltage generation circuit and 48 is a reference voltage generation circuit. Is an amplifier circuit, 49 is an A / D converter, and 50 is a CPU (central processing unit). In the figure, the same reference numerals as those in FIG. Flow rate output circuit shown in FIG. 18, a timing pulse, i.e., measuring ON / OFF signals, measurement timing t a and t b reset signal utilizes the CPU50 clock. Further, since the CPU 50 has a memory function, a special hold circuit for holding the output voltage at low temperature and high temperature is unnecessary. Therefore, the detection element 23
Of the output voltage of A /
The digital value of the detected voltage that has been digitally converted by the D converter 49 is read and stored at the measurement timings t a and t b by the CPU 50, and further coefficient setting and subtraction processing can be performed to easily obtain the flow rate. .

【0049】図19は、本発明に係る検出素子を電圧パ
ルス駆動した場合の流量出力回路の実施例を説明するた
めの図で、図中、51aは基準電圧発生回路1、51b
は基準電圧発生回路2、52は定電圧回路であり、その
他、図18と同じ作用する部分には、図18と同一の参
照番号を付している。51aにて示した基準電圧発生回
路1は、検出素子23に低電圧であるVREF1を印加す
る定電圧回路、51bにて示した基準電圧発生回路2
は、検出素子23に高電圧であるVREF2を印加する定
電圧回路で、各々の定電圧回路は、CPU50の端子P
01から出力されるタイミングパルスにより駆動されるa
接点、b接点および接地されたc接点を有するスイッチ
SW1のa接点およびb接点に接続され、スイッチSW1
は、定電圧回路52の非反転入力に接続される。
FIG. 19 is a diagram for explaining an embodiment of a flow rate output circuit when the detection element according to the present invention is driven by a voltage pulse. In the figure, 51a is a reference voltage generation circuit 1, 51b.
The reference voltage generating circuits 2 and 52 are constant voltage circuits, and other parts having the same functions as those in FIG. 18 are designated by the same reference numerals as those in FIG. The reference voltage generation circuit 1 indicated by 51a is a constant voltage circuit for applying a low voltage V REF 1 to the detection element 23, and the reference voltage generation circuit 2 indicated by 51b.
Is a constant voltage circuit for applying a high voltage V REF 2 to the detection element 23. Each constant voltage circuit is a terminal P of the CPU 50.
Driven by the timing pulse output from 01 a
A switch SW 1 having a contact, a b contact and a grounded c contact connected to the a contact and the b contact of the switch SW 1
Is connected to the non-inverting input of the constant voltage circuit 52.

【0050】定電圧回路52は、基準抵抗Rsと他端が
接地された検出素子23との直列抵抗を負荷し接続点は
反転入力に接続される。この回路構成の定電圧回路52
において検出素子23間の電圧VsはスイッチSW1
接点に印加される各々の電圧と等しい電圧となる。すな
わち、スイッチSW1が a接点のときVs=VREF1 b接点のときVs=VREF2 c接点のときVs=0 の一定電圧が出力される。
The constant voltage circuit 52 loads the series resistance of the reference resistance Rs and the detection element 23 whose other end is grounded, and the connection point is connected to the inverting input. Constant voltage circuit 52 of this circuit configuration
In, the voltage Vs across the detection element 23 becomes equal to each voltage applied to the contact of the switch SW 1 . That is, when the switch SW 1 has the a-contact, Vs = V REF 1 when the b-contact is Vs = V REF 2 When the c-contact has a constant voltage of Vs = 0.

【0051】このように抵抗値がRsの検出素子23の
電圧Vs=一定で、基準抵抗Rsを流れる電流isは、
is=Vs/Rsとなり検出素子23には抵抗Rsに応
じた電流が流れる。すなわち、抵抗Rsが温度または流
度により変化すると電流isもそれに応じて変化し、基
準抵抗Rsを流れる電流isを電圧Vr(=is・R
s)として増幅回路48で検出する。
As described above, the current is flowing through the reference resistance Rs when the voltage Vs of the detection element 23 having a resistance value Rs = constant is
Since is = Vs / Rs, a current corresponding to the resistance Rs flows through the detection element 23. That is, when the resistance Rs changes due to temperature or flow rate, the current is also changes accordingly, and the current is flowing through the reference resistance Rs is changed to the voltage Vr (= is · R).
s) is detected by the amplifier circuit 48.

【0052】図20は、図19の動作説明をするための
タイムチャートであり、例えば、VREF1=0.5V,V
REF2=4.5Vとすると、スイッチSW1がa接点に接
続された時間t1の期間ではVs=0.5V、b接点に接
続された時間t2の期間ではVs=4.5Vとなり、c接
点に接続された時間t3の期間は駆動停止期間となり、
図5aに示した駆動パルスと同様な駆動パルスが得られ
る。すなわち、SW1がa接点に接続された高温加熱は
定電流2mA駆動に相当し、SW2がb接点に接続され
た低温加熱は、定電流8mA駆動の場合に相当する。
FIG. 20 is a time chart for explaining the operation of FIG. 19, for example, V REF 1 = 0.5V, V
If REF 2 = 4.5V, Vs = 0.5V during the period of time t 1 when the switch SW 1 is connected to the contact a, and Vs = 4.5V during the period of time t 2 when the switch SW 1 is connected to the contact b. The period of time t 3 connected to the c contact is the drive stop period,
A drive pulse similar to the drive pulse shown in FIG. 5a is obtained. That is, the high temperature heating in which SW 1 is connected to the a-contact corresponds to constant current 2 mA driving, and the low temperature heating in which SW 2 is connected to the b-contact corresponds to constant current 8 mA driving.

【0053】図21は、本発明による流量検出器の、他
の実施例を説明するための平面図で、図中、61は基
板、62は絶縁被膜、63は空洞部、64は加熱用抵抗
体、65は検出用抵抗体、66はマイクロブリッジで、
この流量検出器は、空洞部63を有する半導体の基板6
1の上面に、流体の流れ(Flow)方向と直角な絶縁被膜
からなるマイクロブリッジ66上にジクザク状の加熱用
抵抗体64と、該加熱用抵抗体64の内側に併置された
ジクザク状の温度検出用抵抗体65とを有し、2つの抵
抗体、すなわち、加熱用抵抗体64と温度検出用抵抗体
65とを同時に用いて測定するようにしたものである。
FIG. 21 is a plan view for explaining another embodiment of the flow rate detector according to the present invention. In the figure, 61 is a substrate, 62 is an insulating film, 63 is a cavity, and 64 is a heating resistor. Body, 65 is a detection resistor, 66 is a microbridge,
This flow rate detector includes a semiconductor substrate 6 having a cavity 63.
On the upper surface of 1, a zigzag heating resistor 64 is formed on a microbridge 66 made of an insulating film perpendicular to the flow direction of the fluid, and a zigzag temperature is arranged inside the heating resistor 64. The detection resistor 65 is provided, and two resistors, that is, the heating resistor 64 and the temperature detection resistor 65 are used at the same time for measurement.

【0054】図22は、図21に示した流量計の電気回
路図で、この場合、B−C間は温度検出用抵抗体65で
あるので、このB−C端子間に定電流を流し、該B−C
間の電圧出力Voutを得ることによって、流量を測定す
ることもできる。また、B−C間の電圧出力Voutを流
量の変化に応じて一定に保つように抵抗体65に流れる
電流を制御し、この制御量を流量に換算することによっ
ても流量を測定することができる。
FIG. 22 is an electric circuit diagram of the flow meter shown in FIG. 21. In this case, since the temperature detecting resistor 65 is provided between B and C, a constant current is passed between the B and C terminals, The BC
The flow rate can also be measured by obtaining the voltage output Vout in between. The flow rate can also be measured by controlling the current flowing through the resistor 65 so that the voltage output Vout between B and C is kept constant according to the change in the flow rate, and converting this control amount into the flow rate. .

【0055】図23は、本発明による流量計の、他の実
施例を説明するための斜視図であり、図中、70はシリ
コン基板、71,72は空洞部、73,74は酸化膜基
板、75,76は抵抗体で、この例も、2つの抵抗体7
5,76を同時に用いて測定するようにしたものであ
る。
FIG. 23 is a perspective view for explaining another embodiment of the flowmeter according to the present invention, in which 70 is a silicon substrate, 71 and 72 are hollow portions, and 73 and 74 are oxide film substrates. , 75 and 76 are resistors, and in this example, two resistors 7
The measurement is performed by using 5,76 at the same time.

【0056】而して、図1(a)に示した流速検出素子
は、前述のようにマイクロブリッジ構造を有する抵抗体
4である検出素子を1個有し、1個の検出素子を連続し
て、例えば、50ms毎に低温加熱および高温加熱を行う
ものであった。現実にはこのような微小時間内に急激に
周囲環境が変化することはないが、理想的には検出素子
の低温,高温加熱を同時に行って、抵抗値の差を検出で
きればよい。しかし、図1に示した構造の検出器では、
同一場所で同一時間に低高温加熱することは不可能であ
る。
Thus, the flow velocity detecting element shown in FIG. 1A has one detecting element which is the resistor 4 having the microbridge structure as described above, and one detecting element is connected continuously. For example, low temperature heating and high temperature heating are performed every 50 ms. In reality, the surrounding environment does not suddenly change within such a minute time, but ideally, it is sufficient if the detection element can be heated at low temperature and high temperature at the same time to detect the difference in resistance value. However, in the detector having the structure shown in FIG.
It is impossible to heat at low temperature and high temperature in the same place at the same time.

【0057】図24(a)〜(d)は、図21、図23
に示した検出器を用いて流量を求める場合のタイムチャ
ートである。図24(a)は、クロック回路(図示せ
ず)より等しいインターバルをもって等時間間隔に発信
されるクロックパルスa1,a2,a3…を示す。図24
(b)は、クロックパルスa1,a2,a3…に同期して
端子C,B間の抵抗体65(76)を加熱する低電流値
のパルスb1,b2,b3で、このパルス電流により抵抗
体65(76)を低温加熱し、温度に比例した抵抗値を
検出する。
FIGS. 24 (a) to 24 (d) show FIGS.
6 is a time chart when the flow rate is obtained using the detector shown in FIG. FIG. 24 (a) shows clock pulses a 1 , a 2 , a 3 ... Which are transmitted from a clock circuit (not shown) at equal time intervals. Figure 24
(B) is a pulse b 1 , b 2 , b 3 of a low current value for heating the resistor 65 (76) between the terminals C and B in synchronization with the clock pulses a 1 , a 2 , a 3 ... The resistor 65 (76) is heated to a low temperature by this pulse current, and the resistance value proportional to the temperature is detected.

【0058】同時に、クロックパルスa1,a2,a3
に同期して端子B−A間の抵抗体64(75)を加熱す
る高電流値のパルスc1,c2,c3で、このパルス電流
により抵抗体64(75)を高温加熱し、温度および流
速に比例した抵抗値を検出する。
At the same time, clock pulses a 1 , a 2 , a 3 ...
Synchronously to heat the resistor 64 between the terminals B-A (75) to a pulse c 1, c 2, c 3 of a high current value, the resistor 64 (75) heated to a high temperature by the pulsed current, temperature And the resistance value proportional to the flow velocity is detected.

【0059】図24(d)は、クロックパルスa1
2,a3…に同期して流速演算回路(図示せず)により
高温加熱した抵抗体64(75)の抵抗値から低温加熱
した抵抗体65(7,6)の抵抗値を差し引いたもの
で、このパルスd1,d2,d3は、流速に比例した波高
値を有する。
FIG. 24D shows clock pulses a 1 ,
A value obtained by subtracting the resistance value of the resistor 65 (7, 6) heated at a low temperature from the resistance value of the resistor 64 (75) heated at a high temperature by a flow velocity calculation circuit (not shown) in synchronization with a 2 , a 3 ... Then, the pulses d 1 , d 2 and d 3 have a peak value proportional to the flow velocity.

【0060】図25(a),(b),(c)は、図23に
示した流速センサを用いて流速を求める場合のタイムチ
ャートを示す図で、図25(a)に示したクロックパル
スa1,a2,a3…も、図24(a)に示したクロック
パルスa1,a2,a3…と同じインターバルをもち、抵
抗体75,76をクロックパルスa1,a2,a3…に同
期して駆動する。
FIGS. 25A, 25B, and 25C are time charts when the flow velocity is obtained using the flow velocity sensor shown in FIG. 23. The clock pulse shown in FIG. a 1 , a 2 , a 3 ... Also have the same intervals as the clock pulses a 1 , a 2 , a 3 ... Shown in FIG. 24 (a), and the resistors 75, 76 are supplied with the clock pulses a 1 , a 2 ,. Driven in synchronization with a 3 .

【0061】図25のタイムチャートの駆動方法は、図
24に示した駆動方法をさらに改良したもので、低温側
抵抗体75と76を交互に高低温駆動させ、例えば、一
方の抵抗体75を高温駆動した時は、他方の抵抗体75
を低温駆動させ、又は、その逆を交互に繰り返すように
したものである。
The driving method shown in the time chart of FIG. 25 is a further improvement of the driving method shown in FIG. 24. The low temperature side resistors 75 and 76 are driven alternately at high and low temperatures, for example, one resistor 75 is driven. When driven at high temperature, the other resistor 75
Is driven at low temperature, or vice versa.

【0062】即ち、図25(a)のクロックパルス(a
1)に同期した端子B−C間の抵抗体76を電流パルス
1で低温加熱したときは、端子B−A間の抵抗体75
を電流パルスc1で高温加熱する。クロックパルスa1
タイミングでは、温・流速をあらわすc1パルスから、
温度のみをあらわすb1パルス差を求め、次のクロック
パルスa2のタイミングでは、b2パルスの高電流パルス
駆動時とC2パルスの低電流駆動時に差に基づいて流速
を検出する。
That is, the clock pulse (a
When the resistor 76 between the terminals B and C synchronized with 1 ) is heated at a low temperature by the current pulse b 1 , the resistor 75 between the terminals B and A is
Is heated to a high temperature with a current pulse c 1 . At the timing of the clock pulse a 1 , from the c 1 pulse representing the temperature / flow velocity,
The b 1 pulse difference representing only the temperature is obtained, and at the timing of the next clock pulse a 2 , the flow velocity is detected based on the difference between the high current pulse driving of the b 2 pulse and the low current driving of the C 2 pulse.

【0063】[0063]

【効果】以上の説明から明らかなように、本発明によれ
ば、以下の効果がある。 (1)従来は、発熱体・受熱体を距離をおいた(位置を
はなした)配置としたので、流れが伝わる時間より短い
流量変化を高精度に検出することができなかったが、本
発明の流量検出器は早い流量変化に対応して流量検出が
できる。 (2)検出素子の熱応答性が優れているので、温度補償
の時間追従性は従来方式よりも速い。 (3)従来例では温度検出は2ケ所ないし3ケ所で行わ
れることになるので、それぞれ周囲温度が異なると、温
度補正してもムダであったが、本発明によると、周囲の
温度分布が急峻であるような設置環境において、1ケ所
(1個)ですべてを測定するので温度補正が正しく行わ
れる。 (4)2個ないし3個のマイクロブリッジがあると流れ
の上流側の抵抗体が流れを乱したり、流れ抵抗になった
りして精密な測定が難かしいが、1個であると流れを乱
すことが少く、精度が向上する。 (5)検出素子は1個であり、抵抗値や温度立上り等個
々のバラツキがあっても、従来のように組み合わせて使
用するのではないので歩留り良い。 (6)自己検出(温度補償)方式なので微少流量測定の
ような配置関係に大きく依存する要素がなく良好な精度
が得られる。 (7)個々に発熱体自身の温度分布バラツキがあって
も、あまり影響なく歩留りが良い。 (8)検出素子が1個ですむので、基板サイズがコンパ
クトであり流れの防げとならない。配線も2〜4本であ
り従来例よりはるかに少なく、同様にサイズが小さくて
コストも安く、サイズがコンパクトであることにより微
小領域の流量分布が測定できる。 (9)消費電力が小さくなる。 (10)取付姿勢位置によらず設置が自由である。
As is apparent from the above description, the present invention has the following effects. (1) In the past, since the heating element and the heat receiving element were arranged at a distance (separated from each other), it was not possible to detect a flow rate change shorter than the time during which the flow travels with high accuracy. The flow rate detector of the invention can detect a flow rate in response to a rapid flow rate change. (2) Since the thermal response of the detection element is excellent, the time followability of temperature compensation is faster than that of the conventional method. (3) In the conventional example, since temperature detection is performed at two or three places, if the ambient temperature is different, it would be wasteful to correct the temperature. However, according to the present invention, the ambient temperature distribution is In a steep installation environment, all of the measurements are made at one location (one piece), so the temperature is corrected correctly. (4) If there are two or three microbridges, the resistor on the upstream side of the flow disturbs the flow or becomes flow resistance, which makes precise measurement difficult, but if there is only one microbridge Less disruptive, improving accuracy. (5) The number of detection elements is one, and even if there are individual variations such as resistance values and temperature rises, they are not used in combination as in the conventional case, and therefore the yield is good. (6) Since it is a self-detection (temperature compensation) method, there is no element that greatly depends on the positional relationship, such as minute flow rate measurement, and good accuracy can be obtained. (7) Even if there are variations in the temperature distribution of the heating elements themselves, the yield is good without much effect. (8) Since only one detection element is required, the board size is compact and flow cannot be prevented. The number of wires is 2 to 4, which is much smaller than that of the conventional example. Similarly, the size is small and the cost is low, and the size is compact, so that the flow rate distribution in a minute region can be measured. (9) Power consumption is reduced. (10) Installation is free regardless of the mounting posture position.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による流量検出器の一実施例を説明す
るための構造図である。
FIG. 1 is a structural diagram for explaining an embodiment of a flow rate detector according to the present invention.

【図2】 本発明による流量検出器の動作原理を説明す
るための図である。
FIG. 2 is a diagram for explaining the operating principle of the flow rate detector according to the present invention.

【図3】 本発明による流量検出器の他の実施例を説明
するための図である。
FIG. 3 is a diagram for explaining another embodiment of the flow rate detector according to the present invention.

【図4】 本発明による流量検出器の駆動回路の例を説
明するための図である。
FIG. 4 is a diagram for explaining an example of a drive circuit of a flow rate detector according to the present invention.

【図5】 本発明による流量検出器の駆動電流波形及び
出力電圧波形の一例を説明するための図である。
FIG. 5 is a diagram for explaining an example of a drive current waveform and an output voltage waveform of the flow rate detector according to the present invention.

【図6】 本発明による流量検出器の流体流量及び流体
温度が変化したときの動作を説明するための図である。
FIG. 6 is a diagram for explaining the operation of the flow rate detector according to the present invention when the fluid flow rate and the fluid temperature change.

【図7】 本発明による流量計の駆動電流波形および出
力電圧波形の他の例を示す図である。
FIG. 7 is a diagram showing another example of a drive current waveform and an output voltage waveform of the flowmeter according to the present invention.

【図8】 本発明による流量計の駆動電流波形の他の例
を示す図である。
FIG. 8 is a diagram showing another example of the drive current waveform of the flowmeter according to the present invention.

【図9】 本発明による流量計の駆動回路の一例を示す
ブロック図である。
FIG. 9 is a block diagram showing an example of a drive circuit of a flow meter according to the present invention.

【図10】 図9に示した駆動回路の各部における波形
図である。
FIG. 10 is a waveform diagram in each part of the drive circuit shown in FIG.

【図11】 本発明による流量計の他の実施例を説明す
るための駆動回路ブロック図である。
FIG. 11 is a drive circuit block diagram for explaining another embodiment of the flowmeter according to the present invention.

【図12】 本発明による流量計の計測タイミングを説
明するタイミングチャートである。
FIG. 12 is a timing chart explaining the measurement timing of the flowmeter according to the present invention.

【図13】 図12に示した計測タイミングを実行する
ための電気回路の一例を示すブロック図である。
13 is a block diagram showing an example of an electric circuit for executing the measurement timing shown in FIG.

【図14】 図13に示した回路に用いて好適なリセッ
ト回路の例を示す図である。
14 is a diagram showing an example of a reset circuit suitable for use in the circuit shown in FIG.

【図15】 図14のリセット回路のタイムチャートで
ある。
FIG. 15 is a time chart of the reset circuit of FIG.

【図16】 本発明に係る検出素子の鋸歯状波電流駆動
回路の一例を示すブロック図である。
FIG. 16 is a block diagram showing an example of a sawtooth wave current drive circuit for a detection element according to the present invention.

【図17】 本発明に係る検出素子の鋸歯状波電流駆動
による流量出力回路の一実施例を説明するためのブロッ
ク回路図である。
FIG. 17 is a block circuit diagram for explaining an embodiment of a flow rate output circuit by driving a detection element according to the present invention with sawtooth wave current.

【図18】 本発明に係る検出素子の鋸歯状波電流駆動
による流量出力回路の他の実施例を説明するためのブロ
ック図である。
FIG. 18 is a block diagram for explaining another embodiment of the flow rate output circuit by the saw-tooth wave current drive of the detection element according to the present invention.

【図19】 本発明に係る検出素子を電圧パルス駆動し
た場合の流量出力回路の実施例を説明するための図であ
る。
FIG. 19 is a diagram for explaining an embodiment of a flow rate output circuit when the detection element according to the present invention is driven by a voltage pulse.

【図20】 図19の動作説明をするためのタイムチャ
ートの一例を示す図である。
20 is a diagram showing an example of a time chart for explaining the operation of FIG.

【図21】 本発明による流量検出器の他の実施例を説
明するための平面図である。
FIG. 21 is a plan view for explaining another embodiment of the flow rate detector according to the present invention.

【図22】 図21に示した流量検出器の流量計測方法
の例を説明するための電気回路図である。
22 is an electric circuit diagram for explaining an example of a flow rate measuring method of the flow rate detector shown in FIG.

【図23】 本発明による流量計の他の実施例を説明す
るための斜視図である。
FIG. 23 is a perspective view for explaining another embodiment of the flow meter according to the present invention.

【図24】 図21、図23に示した流量計を用いて流
量測定する場合のタイムチャートである。
FIG. 24 is a time chart when a flow rate is measured using the flowmeter shown in FIGS. 21 and 23.

【図25】 図23に示した流量計を用いて流量測定す
る場合の他のタイムチャートである。
FIG. 25 is another time chart in the case of measuring the flow rate using the flowmeter shown in FIG.

【図26】 従来の流量計の構造を示す部分断面図であ
る。
FIG. 26 is a partial cross-sectional view showing the structure of a conventional flowmeter.

【図27】 従来の流量計の他の構造を示す図である。FIG. 27 is a view showing another structure of the conventional flowmeter.

【符号の説明】[Explanation of symbols]

1…基板、2,10…絶縁度膜、3…空洞部、4…抵抗
体、5,6…端子、7…マイクロブリッジ、8,9…支
持部、11…基板、12…絶縁被膜、13…空洞部、1
4…抵抗体、15,16…端子、18,20…絶縁被
膜、21…定電流源、22…定電圧源、23…検出素
子、24…増幅回路、25…係数設定回路、26…ホー
ルド回路、27…減算回路、28…出力端子、29…電
圧検出器、30…電流検出器、31…割算回路、32…
クロック発生回路、33a,33b,33c…カウン
タ、34…基準電圧発生回路、35…フリップフロッ
プ、36…反転回路、37…アンド回路、38…OPア
ンプ、39…スイッチ、40…OPアンプ、41,42
…増幅回路、43…定数設定回路、44,45…ホール
ド回路、46…減算回路、47…基準電圧発生回路、4
8…増幅回路、49…A/D、50…CPU、61…基
板、62…絶縁被膜、63…空洞部、64…加熱用抵抗
体、65…検出用抵抗体、66…マイクロブリッジ、7
0…シリコン基板、71,72…空洞部、73,74…
酸化膜基板、75,76…抵抗体。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2, 10 ... Insulation film, 3 ... Cavity, 4 ... Resistor, 5, 6 ... Terminal, 7 ... Microbridge, 8, 9 ... Supporting part, 11 ... Substrate, 12 ... Insulating coating, 13 … Cavity, 1
4 ... Resistor, 15, 16 ... Terminal, 18, 20 ... Insulating film, 21 ... Constant current source, 22 ... Constant voltage source, 23 ... Detecting element, 24 ... Amplifying circuit, 25 ... Coefficient setting circuit, 26 ... Hold circuit , 27 ... Subtraction circuit, 28 ... Output terminal, 29 ... Voltage detector, 30 ... Current detector, 31 ... Division circuit, 32 ...
Clock generation circuit, 33a, 33b, 33c ... Counter, 34 ... Reference voltage generation circuit, 35 ... Flip-flop, 36 ... Inversion circuit, 37 ... AND circuit, 38 ... OP amplifier, 39 ... Switch, 40 ... OP amplifier, 41, 42
... Amplification circuit, 43 ... Constant setting circuit, 44, 45 ... Hold circuit, 46 ... Subtraction circuit, 47 ... Reference voltage generation circuit, 4
8 ... Amplifier circuit, 49 ... A / D, 50 ... CPU, 61 ... Substrate, 62 ... Insulating coating, 63 ... Cavity, 64 ... Heating resistor, 65 ... Detection resistor, 66 ... Microbridge, 7
0 ... Silicon substrate, 71, 72 ... Cavity, 73, 74 ...
Oxide film substrate, 75, 76 ... Resistor.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体中に単一の抵抗体を挿入し、
該抵抗体に該抵抗体を加熱しない程度の小電流を流して
該抵抗体の抵抗値を測定し、次いで、該抵抗体に大電流
を流して該抵抗体を加熱し、該加熱時の抵抗値を測定
し、該加熱時の抵抗値から前記加熱しない時の抵抗値を
演算して差し引いて前記被測定流体の流量を測定するこ
とを特徴とする流量測定方法。
1. A single resistor is inserted in a fluid to be measured,
A small current that does not heat the resistor is applied to the resistor to measure the resistance value of the resistor, and then a large current is applied to the resistor to heat the resistor, and the resistance during heating is measured. A flow rate measuring method comprising: measuring a value, calculating the resistance value when not heating and subtracting the resistance value from the resistance value when heating to measure the flow rate of the fluid to be measured.
【請求項2】 被測定流体中に単一の抵抗体を挿入し、
該抵抗体に漸増する電流を流し、該抵抗体が該電流によ
って加熱されない程度の小電流時における抵抗値と、該
抵抗体が加熱される大電流時における抵抗値とを測定
し、大電流時の抵抗値から小電流時の抵抗値を演算して
差し引いて前記測定流体の流量を測定することを特徴と
する流量測定方法。
2. A single resistor is inserted in the fluid to be measured,
A gradually increasing current is passed through the resistor, and the resistance value at a small current such that the resistor is not heated by the current and the resistance value at a large current at which the resistor is heated are measured, The flow rate measuring method is characterized in that the flow rate of the measurement fluid is measured by calculating and subtracting the resistance value at the time of small current from the resistance value of 1.
【請求項3】 基板上に穿設された空洞部と、該空洞部
の一部上面を橋架する絶縁薄膜と、該絶縁薄膜上に配設
された単一の抵抗体と、該抵抗体に該抵抗体を加熱しな
い程度の小電流を流して又は小電圧を印加して該抵抗体
の抵抗値を検出する手段と、該抵抗体に大電流を流して
又は大電圧を印加して該抵抗体を高温加熱し、該高温加
熱時の抵抗値を検出する手段と、該抵抗体の大電流時の
抵抗値から小電流時の抵抗値を演算して減算する手段を
有し、該減算値に基づいて前記被測定流体の流量を検知
することを特徴とする流量測定装置。
3. A cavity formed on a substrate, an insulating thin film bridging a part of the upper surface of the cavity, a single resistor provided on the insulating thin film, and a resistor. A means for detecting a resistance value of the resistor by applying a small current or a small voltage so as not to heat the resistor, and a resistor for supplying a large current or a large voltage to the resistor. A means for heating the body at a high temperature and detecting a resistance value at the time of the high temperature heating; and a means for calculating and subtracting the resistance value at a small current from the resistance value at a large current of the resistor, the subtracted value A flow rate measuring device for detecting the flow rate of the fluid to be measured based on the above.
【請求項4】 前記抵抗体に小電流及び該小電流に続い
て大電流を流す流量計測期間と、該抵抗体に電流を流さ
ない計測休止期間とを繰り返して有し、前記計測休止期
間が前記抵抗体の温度が被測定流体の温度に戻るのに要
する時間以上であることを特徴とする請求項3に記載の
流量測定装置。
4. A flow measurement period during which a small current flows through the resistor and a large current follows the small current, and a measurement pause period during which no current flows through the resistor are repeatedly provided, and the measurement pause period includes The flow rate measuring device according to claim 3, wherein the temperature of the resistor is equal to or longer than the time required to return to the temperature of the fluid to be measured.
【請求項5】 前記流量計測期間に前記抵抗体に印加す
る電圧又は電流を、低波高値の電圧又は電流パルスと、
該低波高値の電圧又は電流パルスの直後に出力される高
波高値の電圧又は電流パルスとしたことを特徴とする請
求項3又は4に記載の流量測定装置。
5. The voltage or current applied to the resistor during the flow rate measurement period is a voltage or current pulse having a low peak value,
The flow rate measuring device according to claim 3 or 4, wherein the voltage or current pulse of high peak value is output immediately after the voltage or current pulse of low peak value.
【請求項6】 前記抵抗体に印加する電圧又は電流を鋸
歯波電圧又は電流としたことを特徴とする請求項3又は
4に記載の流量測定装置。
6. The flow rate measuring device according to claim 3, wherein the voltage or current applied to the resistor is a sawtooth voltage or current.
【請求項7】 被測定流体中に2個の抵抗体を挿入し、
一方の抵抗体には該抵抗体を加熱しない程度の小電流又
は小電圧を、他方の抵抗体には該抵抗体を加熱する程度
の大電流又は大電圧を同時に印加し、両抵抗体の抵抗値
を同時に測定し、両抵抗値を演算して差を求め、この差
から前記被測定流体の流量を測定することを特徴とする
流量測定方法。
7. Two resistors are inserted in the fluid to be measured,
A small current or a small voltage that does not heat the resistor is applied to one resistor, and a large current or a large voltage that heats the resistor is applied to the other resistor at the same time. A flow rate measuring method characterized in that the values are measured at the same time, both resistance values are calculated to obtain a difference, and the flow rate of the fluid to be measured is measured from the difference.
【請求項8】 基板上に穿設された空洞部と、該空洞部
の一部上面を橋架する絶縁薄膜と、該絶縁薄膜上に配設
された2つの抵抗体と、一方の抵抗体に該抵抗体を加熱
しない程度の小電流又は小電圧を、他方の抵抗体に該抵
抗体を加熱する程度の大電流又は大電圧を同時に印加す
る手段と、両抵抗体の抵抗値を演算して減算する手段と
を有し、該減算値に基づいて前記被測定流体の流量を検
知することを特徴とする流量測定装置。
8. A cavity formed on a substrate, an insulating thin film bridging a partial upper surface of the cavity, two resistors provided on the insulating thin film, and one of the resistors. A means for simultaneously applying a small current or a small voltage that does not heat the resistor and a large current or a large voltage that heats the resistor to the other resistor, and calculates the resistance values of both resistors. A means for subtracting, and detecting the flow rate of the fluid to be measured based on the subtracted value.
【請求項9】 基板上に穿設された空洞部と、該空洞部
の一部上面を橋架する2つの絶縁薄膜と、該絶縁薄膜の
夫々に配設された抵抗体と、一方の抵抗体に該抵抗体を
加熱しない程度の小電流又は小電圧を、他方の抵抗体に
該抵抗体を加熱する程度の大電流又は大電圧を同時に印
加する手段と、両抵抗体の抵抗値を演算して減算する手
段とを有し、該減算値に基づいて前記被測定流体の流量
を検知することを特徴とする流量測定装置。
9. A cavity formed on a substrate, two insulating thin films bridging a part of the upper surface of the cavity, resistors provided in each of the insulating thin films, and one resistor. A means for simultaneously applying a small current or a small voltage that does not heat the resistor and a large current or a large voltage that heats the resistor to the other resistor, and the resistance values of both resistors are calculated. And a means for performing subtraction, and detects the flow rate of the fluid to be measured based on the subtracted value.
【請求項10】 前記2つの抵抗体を同時駆動するタイ
ミングを与えるクロックパルス発生回路と、前記クロッ
クパルスに同期して前記抵抗体の一方に小電流又は小電
圧を印加する小電力パルス発生回路と、他方の抵抗体に
大電流又は大電圧を印加する大電力パルス発生回路と、
前記小電力パルスを印加した抵抗体の抵抗値と大電力パ
ルスを印加した抵抗体の抵抗値とを比較、演算する手段
とを有し、その比較結果に基づいて前記被測流体の流量
を測定することを特徴とする請求項8又は9に記載の流
量測定装置。
10. A clock pulse generation circuit that gives a timing to drive the two resistors at the same time, and a small power pulse generation circuit that applies a small current or a small voltage to one of the resistors in synchronization with the clock pulse. , A high power pulse generation circuit for applying a large current or a large voltage to the other resistor,
And a means for comparing and calculating the resistance value of the resistor applied with the small power pulse and the resistance value of the resistor applied with the high power pulse, and measuring the flow rate of the fluid to be measured based on the comparison result. The flow rate measuring device according to claim 8 or 9, wherein:
【請求項11】 前記クロックパルスに同期して前記一
方の抵抗体に小電力パルス及び大電力パルスを交互に繰
り返して印加し、他方の抵抗体の大電力パルス及び小電
流パルスを交互に繰り返して印加するようにしたことを
特徴とする請求項8又は9に記載の流量測定装置。
11. A small power pulse and a large power pulse are alternately and repeatedly applied to the one resistor in synchronization with the clock pulse, and a large power pulse and a small current pulse of the other resistor are alternately repeated. The flow rate measuring device according to claim 8 or 9, wherein the flow rate measuring device is applied.
JP5206388A 1993-08-10 1993-08-20 Flow measurement method and device Expired - Fee Related JP2780911B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5206388A JP2780911B2 (en) 1993-08-20 1993-08-20 Flow measurement method and device
US08/285,666 US5551283A (en) 1993-08-10 1994-08-03 Atmosphere measuring device and flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5206388A JP2780911B2 (en) 1993-08-20 1993-08-20 Flow measurement method and device

Publications (2)

Publication Number Publication Date
JPH0755522A true JPH0755522A (en) 1995-03-03
JP2780911B2 JP2780911B2 (en) 1998-07-30

Family

ID=16522524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5206388A Expired - Fee Related JP2780911B2 (en) 1993-08-10 1993-08-20 Flow measurement method and device

Country Status (1)

Country Link
JP (1) JP2780911B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034992A (en) * 1995-03-29 1996-10-24 랄프 홀거 베렌스. 위르겐 프리드만 Measurer of flow sensor and manufacturing method thereof
JPH10318813A (en) * 1997-05-15 1998-12-04 Omron Corp Device for measuring flow rate
JP2002116826A (en) * 2000-10-11 2002-04-19 Mikuni Corp Constant current source circuit
JP2007192629A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Heater control circuit and apparatus for measuring thermal conductivity
JP2015219123A (en) * 2014-05-19 2015-12-07 アズビル株式会社 Sensor with two functions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360416B2 (en) 2005-07-07 2008-04-22 Ricoh Company, Ltd. Non-contact condensation detecting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034992A (en) * 1995-03-29 1996-10-24 랄프 홀거 베렌스. 위르겐 프리드만 Measurer of flow sensor and manufacturing method thereof
JPH10318813A (en) * 1997-05-15 1998-12-04 Omron Corp Device for measuring flow rate
JP2002116826A (en) * 2000-10-11 2002-04-19 Mikuni Corp Constant current source circuit
JP2007192629A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Heater control circuit and apparatus for measuring thermal conductivity
JP2015219123A (en) * 2014-05-19 2015-12-07 アズビル株式会社 Sensor with two functions

Also Published As

Publication number Publication date
JP2780911B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
KR100488213B1 (en) Thermal Air Flow Meter
US5551283A (en) Atmosphere measuring device and flow sensor
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JP2889909B2 (en) Atmosphere meter
JP2631481B2 (en) Mass flow meter and its measurement method
EP2154489A1 (en) Heat flowmeter
JPH0798323A (en) Measuring device and operating method thereof
WO2001031299A1 (en) Flowmeter
EP0698786A1 (en) Atmosphere measuring device and flow sensor
Leclercq et al. Apparatus for simultaneous temperature and heat‐flow measurements under transient conditions
JP2780911B2 (en) Flow measurement method and device
JP2003065820A (en) Flow-measuring instrument
CN113125028B (en) Airflow measuring circuit and airflow sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JP2003322658A (en) Flow velocity sensor
US9631965B2 (en) Offset compensation for flow sensing devices
JP2946400B2 (en) Heating resistor temperature control circuit
JP3381831B2 (en) Flow velocity sensor and flow velocity measurement method
JP2789272B2 (en) Flow meter flow compensation method
JPH06265565A (en) Current speed detector for gas
JP2008508517A (en) How to operate a heat loss pressure sensor with resistance
JP3053486B2 (en) Fluidic gas meter
JP3596596B2 (en) Flow measurement device
JP2879256B2 (en) Thermal flow meter
JP2002310762A (en) Flow sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees