JPS61128123A - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JPS61128123A
JPS61128123A JP59249861A JP24986184A JPS61128123A JP S61128123 A JPS61128123 A JP S61128123A JP 59249861 A JP59249861 A JP 59249861A JP 24986184 A JP24986184 A JP 24986184A JP S61128123 A JPS61128123 A JP S61128123A
Authority
JP
Japan
Prior art keywords
coils
temperature
fluid
heat
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59249861A
Other languages
Japanese (ja)
Other versions
JPH0449893B2 (en
Inventor
Osamu Akebe
明部 治
Yoritaka Isoda
磯田 頼孝
Hirofumi Ono
弘文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S Tec Inc
Original Assignee
S Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S Tec Inc filed Critical S Tec Inc
Priority to JP59249861A priority Critical patent/JPS61128123A/en
Publication of JPS61128123A publication Critical patent/JPS61128123A/en
Publication of JPH0449893B2 publication Critical patent/JPH0449893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To accelerate response speed by eliminating zero-point variation, by installing heat-sensitive coils changing their resistance value according to liquid temperature on upper and lower reach of a pipe passing the fluid, controlling temperature of both coils and detecting a difference of given energies. CONSTITUTION:A pipe 1 allows passage of fluid G, such as gas, etc. in the direction of an arrow. Two points set apart by a proper distance in the pipe 1, heat-sensitive coils Ru, Rd are placed, these coils Ru, Rd being of temperature sensitive resistance wires of high temperature coefficient, such as those of Fe, Ni-alloys, etc. Constant temperature circuits Tu, Td are provided with coils Ru, Rd respectively, made of the same component parts and coils Ru, Rd are so made that they are always alike and held at the constant temperature. Thus, a difference of energies supplied to the circuits Tu, Td from the DC power sources 40, 40' is detected and a signal proportional to a mass flow rate flowing in the pipe 1 is obtained by an output current K of an output circuit 50. Thus, the mass flow rate of rapid response can be measured by eliminating variation of zero points.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、導管中を流れる流体の質量流量を測定する質
、爪流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a claw flowmeter for measuring the mass flow rate of a fluid flowing in a conduit.

〈従来の技術〉 前記質量流量計として、例えば導管の上流側と下流側に
それぞれ温度係数の大なる感熱コイルを配し、各感熱コ
イルに供給する電流値を一定に保持し、流体が流れるこ
とによって変化する感熱部分の温度分布を検出すること
により/i1Em測定を行なうもの(例えば、特公昭5
6−23094号公114j)や、流体温度を調節する
ことにより通過流体を条件づけ、流体が通過する時の熱
交換作用において流体の温度を異なる温度値に変更し、
これら温度調節と温度変更段階のうちの少なくとも一方
の段階で費されたエネルギーを表示するようにして流量
測定を行なうもの(例えば、特開昭59−18423号
公報)がある。
<Prior art> As the mass flowmeter, for example, heat-sensitive coils with large temperature coefficients are arranged on the upstream and downstream sides of a conduit, and the current value supplied to each heat-sensitive coil is held constant to allow fluid to flow. A device that performs /i1Em measurement by detecting the temperature distribution of the heat-sensitive part that changes depending on the temperature (for example,
6-23094 Publication No. 114j), the passing fluid is conditioned by adjusting the fluid temperature, and the temperature of the fluid is changed to a different temperature value in the heat exchange action when the fluid passes,
There is a method (for example, Japanese Unexamined Patent Publication No. 18423/1983) that measures the flow rate by displaying the energy expended in at least one of the temperature adjustment and temperature change steps.

しかしながら、前者は温度分布が変化する速さが導管や
その被覆物の熱容量の影響をうけるためEi性に欠ける
欠点がある。また、後者は、応答速度は前者に比べると
良好であるが、動作噸理が熱線流速計と同一であるため
、周囲温度の変化や流体の熱容量の虚い等によってゼロ
点が変朝し易いという欠点があり、この欠点をなくすた
め温調回路を設けても回路構成が複雑になる割にはその
実効が上がりにくいという間屓点がある。
However, the former has the disadvantage of lacking Ei properties because the speed at which the temperature distribution changes is affected by the heat capacity of the conduit and its covering. In addition, although the latter has a better response speed than the former, the operating principle is the same as that of a hot wire anemometer, so the zero point is likely to change due to changes in ambient temperature or the lack of heat capacity of the fluid. Even if a temperature control circuit is provided to eliminate this drawback, there is a point where it is difficult to increase its effectiveness despite the complexity of the circuit configuration.

〈発明が解決しようとする問題点〉 本発明は、上述の事柄に留意してなされたもので、ゼロ
点が変動せず、しかも応答速度が早い質量流檄計を提供
することを目的とする。
<Problems to be Solved by the Invention> The present invention has been made with the above-mentioned considerations in mind, and an object of the present invention is to provide a mass flowmeter whose zero point does not fluctuate and whose response speed is fast. .

〈問題点を解決するための手段〉 上述の目的を達成するため、本発明では、流体が流れる
導管の上流側と下流側に前記流体の温度に応じて抵抗値
が変化する感熱コイルを設け、更に、前記感熱コイルを
それぞれ含む定温度回路を独立して設け、該定温度回路
によって両感熱コイルの温度を常に相等しくかつ一定と
なるように制御し、両感熱コイルに与えられるエネルギ
の差を検出することにより、前記導管中の流体の質量流
量を測定するようにしている。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the present invention provides heat-sensitive coils whose resistance value changes depending on the temperature of the fluid on the upstream and downstream sides of the conduit through which the fluid flows, Further, a constant temperature circuit including each of the heat-sensitive coils is provided independently, and the temperature of both heat-sensitive coils is controlled to be always equal and constant by the constant-temperature circuit, and the difference in energy given to both heat-sensitive coils is reduced. The sensing measures the mass flow rate of fluid in the conduit.

く作用ン 一ヒ述の構成に詔いては、導管内に流体が流れていない
ときは、上流側と下流側の感熱コイルを同一温度に保持
するためのエネルギは相等しいから、周囲温度の変化や
導管内の流体の相逮1こよるゼロ点の杉警は相殺される
。また、導管内に流体が流れでいるときは、上流側の感
熱コイルは流体に熱を奪われる。この結果、流体は加熱
され湿質上昇するが、前記感熱コイルを所定温度に保持
するには、ガスが流れていないときに比べて犬なるエネ
ルギが必要となる。一方、下流側の感熱コイルは前記加
熱された流体から熱を受けることにより、該感熱コイル
を所定温度に保持するには、ガスが流れていない状憩に
比べて小なるエネルギでよいことになる。このとき生ず
る前記両コイルに供給されるエネルギの差は、そのとき
の流体の質量流量に比例しているから、前記エネルギの
差を検出することにより質量流量を測定できるのである
According to the configuration described above, when no fluid is flowing in the conduit, the energy needed to maintain the upstream and downstream thermal coils at the same temperature is equal, so changes in ambient temperature The interference of the fluid in the conduit and the zero point are canceled out by each other. Furthermore, when fluid flows in the conduit, heat is taken away from the upstream thermosensitive coil by the fluid. As a result, the fluid is heated and becomes wetter, but in order to maintain the heat-sensitive coil at a predetermined temperature, more energy is required than when no gas is flowing. On the other hand, since the heat-sensitive coil on the downstream side receives heat from the heated fluid, less energy is required to maintain the heat-sensitive coil at a predetermined temperature compared to when no gas is flowing. . Since the difference in energy supplied to both coils that occurs at this time is proportional to the mass flow rate of the fluid at that time, the mass flow rate can be measured by detecting the difference in energy.

〈実施例〉 以下、本発明の一実施例を図面に基づいて説明する。<Example> Hereinafter, one embodiment of the present invention will be described based on the drawings.

図面は質量流量計の一構成例を示し、1はガス等の流体
Gが流れる導管で、矢印方向に流体Gが流nる。Ru 
* Rdは導管l上の適当に離れた2点にそれぞれ設け
られる感熱コイル(以下、第1コイルRu、第2コイル
Rd という)で、鉄・ニッケル合金等温度係数の大な
る温度感応抵抗線より成る。これは導管l中を流れる流
体Gの流量が1Occ/min  であり、そのわずか
な変位をも検知するためである。
The drawing shows an example of the configuration of a mass flowmeter, and numeral 1 denotes a conduit through which a fluid G such as gas flows, and the fluid G flows in the direction of the arrow. Ru
* Rd is a heat-sensitive coil (hereinafter referred to as the first coil Ru and second coil Rd) installed at two appropriately spaced points on the conduit l, and is made from a temperature-sensitive resistance wire with a large temperature coefficient such as an iron-nickel alloy. Become. This is because the flow rate of the fluid G flowing through the conduit 1 is 1 Occ/min, and even the slightest displacement thereof can be detected.

Tu 、 Tdは第1コイルRu 、第2コイルRd 
をそれぞれ含む定温度回路(以下、第1定温度回路Tu
 、第2定温度回路Td という)で、両定温度回w!
rTu 、 Tdは同一部品より収り、第1コイルRu
1第2コイルRdが常に相等しくかつ一定温度になるよ
うにするものである。(なお図では、第2定温度回路T
d剣の構成部材の符号にはダッシュを付す。)ここでは
第1定温度回路Tuの構成についてのみ説明する。即ち
、第1定温度回路Tuはブリッジ回路ioと、制御回路
20とスイッチング素子30と直流電源40とから構成
されており、ブリッジ回Bt oは第1コイルRuと、
この第1コイルRuの温度設定用抵抗11と、ブリッジ
抵抗12.13とより成る。前記抵抗11.12.13
は第1コイルTuに比べて温度係佐が十分小さいものが
用いられる。Au  (第2定温度回1i1GTdでは
Ad)、Bはそれぞれ1g1コイルRu 、 Ru  
と抵抗11、ブリッジ抵抗12と13の接続点で、その
電位vA、vBは制御回路20に入力される。
Tu and Td are the first coil Ru and the second coil Rd
Constant temperature circuits (hereinafter referred to as first constant temperature circuits Tu
, the second constant temperature circuit Td), both constant temperature circuits w!
rTu and Td are included in the same part, and the first coil Ru
The first and second coils Rd are always kept at the same and constant temperature. (In the figure, the second constant temperature circuit T
A dash is added to the numbers of the components of the d-sword. ) Here, only the configuration of the first constant temperature circuit Tu will be explained. That is, the first constant temperature circuit Tu is composed of a bridge circuit io, a control circuit 20, a switching element 30, and a DC power supply 40, and the bridge circuit Bto is composed of a first coil Ru,
It consists of a temperature setting resistor 11 of this first coil Ru and bridge resistors 12 and 13. Said resistor 11.12.13
A coil whose temperature coefficient is sufficiently smaller than that of the first coil Tu is used. Au (Ad in the second constant temperature circuit 1i1GTd) and B are 1g1 coil Ru and Ru, respectively.
At the connection point between the resistor 11 and the bridge resistors 12 and 13, the potentials vA and vB are input to the control circuit 20.

前記制御回路20は、例えば演算増幅器21と発振防止
用のコンデンサ22とから収り、前記演算増幅器21は
前記電位vAとvBとを比較して両者に差があるとき信
号Pを出力する。
The control circuit 20 includes, for example, an operational amplifier 21 and an oscillation prevention capacitor 22, and the operational amplifier 21 compares the potentials vA and vB and outputs a signal P when there is a difference between them.

スイッチング素子30は例えばトランジスタよりなり、
前記信号Pに基づいてスイッチング制御を行なう。
The switching element 30 is made of a transistor, for example,
Switching control is performed based on the signal P.

次に、50は第1定温度回路Tuの接続点Auの電位V
、と、第2定温度回路Tdの接続点Adの電位V、をそ
れぞれ入力とし、両者の差を出力する出力回路で、演算
増幅器51と、入力インピーダンスを大きくするための
インビーダノス回路52とより成る。この出力回路50
の出力信号には、第1コイルRu 、第2コイルRdを
同一温度かつ一定温度)こするため各軍#40.40’
から前記両コイルRu 、 Rdにそれぞれ供給される
エネルギの差を表わすとともに、この出力信号にの大き
さは4管1中を流れる流体Gの質量流量に比例している
Next, 50 is the potential V of the connection point Au of the first constant temperature circuit Tu.
, and the potential V at the connection point Ad of the second constant temperature circuit Td, respectively, and output the difference between the two, and the output circuit is composed of an operational amplifier 51 and an invidanos circuit 52 for increasing the input impedance. . This output circuit 50
In order to rub the first coil Ru and the second coil Rd at the same temperature and at a constant temperature, the output signal of
The magnitude of this output signal is proportional to the mass flow rate of the fluid G flowing through the four pipes 1.

E述のように構成した質量流量計において、導管1内に
流体Gが流れていないときは、第1コイルRu、IW2
コイルRdにはブリッジ回路10を介して直流’aff
fi、 40 +  40’からのエネルギが与えらn
、るだけであり、両コイルRu、Rdは抵抗11.11
′によってそれぞれ定められる温度に保持される。そし
て、第1定温度回路Tu 、嘉2定温度回路Tdの抵抗
11.11’の特性は等しいから、前記両コイルRu 
+ Rdの温度は相等しくなる。このため、点Auの電
位V、と、点Adの電位V、とは組等しく、出力回路5
0からの出力信号には零となり、流体Gが流れてないこ
とを示す。
In the mass flowmeter configured as described in E, when the fluid G is not flowing in the conduit 1, the first coil Ru, IW2
Direct current 'aff is applied to the coil Rd via the bridge circuit 10.
The energy from fi, 40 + 40' is given n
, and both coils Ru and Rd have resistances of 11.11
′ is maintained at a temperature determined by ’ respectively. Since the characteristics of the resistors 11 and 11' of the first constant temperature circuit Tu and the second constant temperature circuit Td are the same, both the coils Ru
+ The temperatures of Rd become equal. Therefore, the potential V at the point Au and the potential V at the point Ad are equal to each other, and the output circuit 5
The output signal from 0 becomes zero, indicating that the fluid G is not flowing.

次に、導管1内に流体Gが流れているときは、31コイ
ルRuは流体Gによって熱を套われ、逆に嘉2コイルR
dは流体Gから熱を与えられる。
Next, when fluid G is flowing in conduit 1, coil 31 is heated by fluid G, and conversely, coil 2 is heated by coil R.
d is given heat by the fluid G.

このため、%tコイルRuを所定温度に保持するため直
流電源40からのエネルギ供給が大となり、その結果、
点Auの電位が上昇する。龍方、第2コイルRdを所定
温度に保持する場合において、流体Gから熱を与えられ
た分だけ直流電源40′からのエネルギが少なくて済み
、その結果、点Adの電位は下がる。このため、出力回
路50に入力される電圧VI、v2に差が生じ、出力信
号にとしてV、 −V2が得られる。そして、前記V、
 −V、は導管1内を流れる流体Gの質量流量に比例し
たものであるから、これに定故を乗することにより流体
の質量流量が得られる。
Therefore, in order to maintain the %t coil Ru at a predetermined temperature, the energy supply from the DC power supply 40 becomes large, and as a result,
The potential at point Au increases. In the case where the second coil Rd is maintained at a predetermined temperature, the energy from the DC power supply 40' is reduced by the amount of heat given from the fluid G, and as a result, the potential at the point Ad decreases. Therefore, a difference occurs between the voltages VI and v2 input to the output circuit 50, and V and -V2 are obtained as output signals. And said V,
Since -V is proportional to the mass flow rate of the fluid G flowing in the conduit 1, the mass flow rate of the fluid can be obtained by multiplying this by the constant factor.

〈発明の効果〉 以上説明したように、本発明においては、温度分布の変
化を検出せず、導管の二点に設けた感熱コイルの温度を
常に相等しくかつ一定となるように制御してそのとき両
コイルに与えられるエネルギの差を検出するものである
から、導管等の外的要因に左右されないため、S零速度
が早いとともに、周囲温度の変化や41!P中の流体種
によるゼロ点変動は相殺され、精度の高い質量流量計が
得られる。又、複雑な温調回路等を要しないため、構成
が1m113化され安価となる。
<Effects of the Invention> As explained above, in the present invention, changes in temperature distribution are not detected, and the temperature of the heat-sensitive coils provided at two points on the conduit is always controlled to be equal and constant. Since it detects the difference in the energy given to both coils at the time, it is not affected by external factors such as conduits, so the S zero speed is fast and it is not affected by changes in ambient temperature or 41! Zero point fluctuations due to the fluid type in P are canceled out, resulting in a highly accurate mass flowmeter. In addition, since a complicated temperature control circuit or the like is not required, the structure can be reduced to 1 m 113, and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る質微流域計の概略構成図である。 1 ・−411v、 Ru 、 Rd−感熱コイル、T
u 、 Td・・・定扇度回路、G−・・ガス 自発手続補正書 昭和59年12月22日 昭和59年 特 許 瞑第249861号2、発明の名
称  質量流量計 3、 補正をする者 事件との関係 特許出願人 l     パ    マナ    オ氏  名(名称
)代表者  堀   場   雅   夫本代理人
The drawing is a schematic configuration diagram of a quality microflow meter according to the present invention. 1 ・-411v, Ru, Rd-thermal coil, T
u, Td...Constant fan degree circuit, G-...Gas voluntary procedure amendment December 22, 1980 Patent No. 249861 2, Title of invention Mass flow meter 3, Person making the amendment Relationship to the case Patent applicant Mr. Pa Manao Name Representative Masao Horiba Principal agent

Claims (1)

【特許請求の範囲】[Claims] 流体が流れる導管の上流側と下流側に前記流体の温度に
応じて抵抗値が変化する感熱コイルを設け、更に、前記
感熱コイルをそれぞれ含む定温度回路を独立して設け、
該定温度回路によって両感熱コイルの温度を常に相等し
くかつ一定となるように制御し、両感熱コイルに与えら
れるエネルギの差を検出することにより前記導管中の流
体の質量流量を測定するようにしたことを特徴とする質
量流量計。
Heat-sensitive coils whose resistance value changes depending on the temperature of the fluid are provided on the upstream and downstream sides of the conduit through which the fluid flows, and further, constant temperature circuits each containing the heat-sensitive coils are independently provided,
The constant temperature circuit controls the temperatures of both heat-sensitive coils so that they are always equal and constant, and the mass flow rate of the fluid in the conduit is measured by detecting the difference in energy applied to both heat-sensitive coils. A mass flow meter characterized by:
JP59249861A 1984-11-27 1984-11-27 Mass flow meter Granted JPS61128123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249861A JPS61128123A (en) 1984-11-27 1984-11-27 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249861A JPS61128123A (en) 1984-11-27 1984-11-27 Mass flow meter

Publications (2)

Publication Number Publication Date
JPS61128123A true JPS61128123A (en) 1986-06-16
JPH0449893B2 JPH0449893B2 (en) 1992-08-12

Family

ID=17199278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249861A Granted JPS61128123A (en) 1984-11-27 1984-11-27 Mass flow meter

Country Status (1)

Country Link
JP (1) JPS61128123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150817A (en) * 1987-12-08 1989-06-13 Rintetsuku:Kk Mass flow meter
US4843881A (en) * 1987-12-24 1989-07-04 Aalborg Instruments & Controls Fluid flow sensor system
JPH01311231A (en) * 1988-06-09 1989-12-15 Stec Kk Mass flowmeter
JPH01318925A (en) * 1988-06-20 1989-12-25 Tadahiro Omi Mass flow controller
US5447173A (en) * 1993-07-23 1995-09-05 Hitachi Metals, Ltd. Mass flow controller, operating method and electromagnetic valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149752A (en) * 1974-10-25 1976-04-30 Okura Denki Co Ltd NETSUSHI KIRYURYOKEI
JPS5623094A (en) * 1979-08-03 1981-03-04 Toshiba Electric Equip Corp Remote control unit
JPS5858417A (en) * 1981-09-10 1983-04-07 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPS59136620A (en) * 1982-12-30 1984-08-06 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Measuring device for flow rate of fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149752A (en) * 1974-10-25 1976-04-30 Okura Denki Co Ltd NETSUSHI KIRYURYOKEI
JPS5623094A (en) * 1979-08-03 1981-03-04 Toshiba Electric Equip Corp Remote control unit
JPS5858417A (en) * 1981-09-10 1983-04-07 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPS59136620A (en) * 1982-12-30 1984-08-06 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Measuring device for flow rate of fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150817A (en) * 1987-12-08 1989-06-13 Rintetsuku:Kk Mass flow meter
US4984460A (en) * 1987-12-08 1991-01-15 Lintec Co., Ltd. Mass flowmeter
US4843881A (en) * 1987-12-24 1989-07-04 Aalborg Instruments & Controls Fluid flow sensor system
JPH01311231A (en) * 1988-06-09 1989-12-15 Stec Kk Mass flowmeter
JPH01318925A (en) * 1988-06-20 1989-12-25 Tadahiro Omi Mass flow controller
US5447173A (en) * 1993-07-23 1995-09-05 Hitachi Metals, Ltd. Mass flow controller, operating method and electromagnetic valve
US5711342A (en) * 1993-07-23 1998-01-27 Hitachi Metals, Ltd. Mass flow controller, operating method and electromagnetic valve

Also Published As

Publication number Publication date
JPH0449893B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
US4464932A (en) Thermal mass flowmetering
KR100326479B1 (en) Differential current thermal mass flow transducer
JPS5858417A (en) Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPS61128123A (en) Mass flow meter
JP2875919B2 (en) Mass flow meter
JP3019009U (en) Mass flow meter
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JP2965464B2 (en) Flowmeter
JP2929356B2 (en) Flowmeter
JP4368432B2 (en) Mass flow sensor and mass flow meter and mass flow controller using the same
KR0163621B1 (en) Temperature and speed measuring method in moving field using one thermal line sensor
JP2949527B2 (en) Mass flow meter
JP2879256B2 (en) Thermal flow meter
JPH01227016A (en) Mass flowmeter
KR100262225B1 (en) A measurement circuit of flow rate
JP3373981B2 (en) Thermal flow meter
JPS59136619A (en) Vortex flowmeter
JPH0523605B2 (en)
JPH06160139A (en) Mass flow meter
JPH0735590A (en) Mass flowmeter
JPS5848818A (en) Measuring device for gas flow rate
JPH0434315A (en) Heater controller for flowmeter
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit