JPS62182670A - Flow velocity measuring instrument - Google Patents

Flow velocity measuring instrument

Info

Publication number
JPS62182670A
JPS62182670A JP61024683A JP2468386A JPS62182670A JP S62182670 A JPS62182670 A JP S62182670A JP 61024683 A JP61024683 A JP 61024683A JP 2468386 A JP2468386 A JP 2468386A JP S62182670 A JPS62182670 A JP S62182670A
Authority
JP
Japan
Prior art keywords
voltage
thermistor
temperature
flow velocity
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61024683A
Other languages
Japanese (ja)
Inventor
Saburo Okada
岡田 三郎
Kazunori Yoshida
和典 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TENPAALE KOGYO KK
National Institute of Advanced Industrial Science and Technology AIST
Tempearl Industrial Co Ltd
Original Assignee
TENPAALE KOGYO KK
Agency of Industrial Science and Technology
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TENPAALE KOGYO KK, Agency of Industrial Science and Technology, Tempearl Industrial Co Ltd filed Critical TENPAALE KOGYO KK
Priority to JP61024683A priority Critical patent/JPS62182670A/en
Publication of JPS62182670A publication Critical patent/JPS62182670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To accurately measure a flow velocity without being affected by the change in temperature by making the resistance value of a flow velocity measuring thermistor equivalent to a heating temperature obtained by an arithmetic unit and rendering the difference between a fluid temperature and the heating temperature constant independent of the fluid temperature. CONSTITUTION:The voltage across a resistor R1 obtained by applying a voltage to a flow velocity measuring thermistor TH is inputted to a divider D1 via a voltage dividing circuit DVC and the output of the divider D1 is fed back to a wideband amplifier AP. On the other hand, a fluid temperature detected by a temperature measuring element PT is inputted to an arithmetic unit X. The unit X inputs the resistance value of the thermistor TH at a heating temperature wherein a temperature difference determined in advance is added to the fluid temperature to the other terminal of the amplifier API as voltage signals. As a result, the difference between the fluid temperature and the heating temperature becomes constant independent of the fluid temperature. Measuring signals divided by the voltage divider DVC and passed through a multiplier MLT are inputted to the arithmetic unit X and converted to an actual flow velocity value to be outputted outside.

Description

【発明の詳細な説明】 本発明は、−10℃から+70°Cの大きな温度変化を
生ずる流体中で、その温度変化を自動的かつ高精度に補
償し、さらに流速値を直読できるように変換出力する流
速測定装置に間するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention automatically and highly accurately compensates for temperature changes in a fluid that causes large temperature changes from -10°C to +70°C, and also converts flow velocity values so that they can be directly read. It is connected to the output flow rate measuring device.

サーミスタは温度変化に対する抵抗変化が他の抵抗体に
比べて著しく大きいので、流速計のセンサーとして用い
られる。すなわち、サーミスタに電流を流すと、ある電
流値以下でジュール熱によって自己、加熱をおこし、電
流の増加に比例してサーミスタ自体の温度が上昇し、サ
ーミスタの温度抵抗特性に従って抵抗値は小さくなる。
A thermistor is used as a current sensor because its resistance change with respect to temperature changes is significantly larger than that of other resistors. That is, when a current is passed through a thermistor, it will self-heat due to Joule heat below a certain current value, the temperature of the thermistor itself will rise in proportion to the increase in current, and the resistance value will decrease according to the temperature resistance characteristics of the thermistor.

そして、加熱したサーミスタを測定流体中に入れると、
その流れによって冷却され、抵抗値は流速に比例して大
きくなる。
Then, when the heated thermistor is placed in the measuring fluid,
It is cooled by the flow, and the resistance value increases in proportion to the flow velocity.

ここで、流速測定用サーミスタの消lII電力W、その
加熱温度Tと流体温度TIIとの温度差T−Tθ及び測
定流体の流速Vとの間には次に示す関係が知られている
Here, the following relationship is known between the power W of the flow rate measuring thermistor, the temperature difference T-Tθ between its heating temperature T and the fluid temperature TII, and the flow rate V of the measuring fluid.

W =  V  ・ I              
 ・・・・番・・(1)W=K  (v)  ・ (T
   Ts  )  ”・・・・(2)、’、K  (
v)  =P/  (T   T 11 )  ””(
3)ここで、■:サーミスタへの印加電圧 I:サーミスタを流れる電流 K(v):サーミスタの形状等によって決まる放熱係数
で流速Vの関数 したがって、流速測定用サーミスタの加熱温度が流体温
度と一定の温度差をもつようにサーミスタに流れる電流
を制御することによって、流速の間数であるところの放
熱係数K(v)は、サーミスタの消費電力に比例した出
力として得られるので、これより流速が求められる。
W=V・I
...No. (1) W=K (v) ・ (T
Ts ) ”...(2),',K (
v) =P/ (T T 11 ) ””(
3) Here, ■: Voltage applied to the thermistor I: Current flowing through the thermistor K (v): Heat radiation coefficient determined by the shape of the thermistor, etc. A function of the flow velocity V. Therefore, the heating temperature of the thermistor for flow velocity measurement is constant with the fluid temperature. By controlling the current flowing through the thermistor so as to have a temperature difference of Desired.

このような流速計として、従来、次のような方式が知ら
れている。
Conventionally, the following methods are known as such current meters.

(1)抵抗値が等しい2個の抵抗を上辺に、流速測定用
サーミスタと電界効果トランジスタを下辺に接続したブ
リッジ回路において、流体の温度測定用サーミスタの出
力を増幅度及びオフセット調整して得られた基準電圧を
電界効果トランジスタのゲートに接続することによって
ソースとドレイン間の抵抗値を変化させ、流速測定用サ
ーミスタの加熱温度を制御すると同時に、流速測定用サ
ーミスタの消費電力から流速を求める方式。
(1) In a bridge circuit in which two resistors with equal resistance values are connected to the upper side and a thermistor for measuring the flow velocity and a field effect transistor are connected to the lower side, the output of the thermistor for measuring the fluid temperature is obtained by adjusting the amplification degree and offset. This method changes the resistance value between the source and drain by connecting a reference voltage to the gate of the field effect transistor, controls the heating temperature of the thermistor for measuring flow velocity, and at the same time determines the flow velocity from the power consumption of the thermistor for measuring flow velocity.

(2)流速測定用サーミスタと抵抗を直列に接続し、抵
抗の両端の電圧を掛算器と割算器で流速測定用サーミス
タの消費電力及び抵抗値に比例する電圧に変換し、割算
器の出力を、流体の温度測定用サーミスタの出力を増幅
度及びオフセット調整して得られた基準電圧と比較して
、それらを等しくするため流速測定用サーミスタに流れ
る電流を制御する帰還回路を接続すると同時に、掛算器
の出力から流速を求める方式、(特公昭 59−4しか
しながら、これらの方式では次に示す欠点を有する。
(2) Connect the thermistor for flow velocity measurement and a resistor in series, convert the voltage across the resistor to a voltage proportional to the power consumption and resistance value of the thermistor for flow velocity measurement using a multiplier and a divider, and The output is compared with the reference voltage obtained by adjusting the amplification and offset of the output of the thermistor for measuring the temperature of the fluid, and in order to equalize them, a feedback circuit is connected to control the current flowing to the thermistor for measuring the flow velocity. , a method for determining the flow velocity from the output of a multiplier (Japanese Patent Publication No. 59-4) However, these methods have the following drawbacks.

上記(りの場合、(2)の場合ともに、流速測定用サー
ミスタの加熱温度と流体温度との温度差を一定にするた
めに、温度測定用サーミスタの出力から基準電圧を作り
出している。ここで、基準電圧なる電圧は温度測定用サ
ーミスタの抵抗値に比例した電圧ではなく、流体温度に
一定の温度を加えたときめ流速測定用サーミスタの抵抗
値に比例した電圧である必要がある。しかるに、従来の
方式では、温度測定用サーミスタの抵抗値に比例した出
力の増幅度及びオフセット調整だけで流速測定用サーミ
スタを一定温度加熱したときの抵抗値に比例した出力に
合わそうとしていた。
In both cases (2) and (2) above, a reference voltage is generated from the output of the temperature measuring thermistor in order to keep the temperature difference between the heating temperature of the flow rate measuring thermistor and the fluid temperature constant.Here, The reference voltage is not a voltage proportional to the resistance value of the thermistor for temperature measurement, but must be a voltage proportional to the resistance value of the thermistor for flow rate measurement when a certain temperature is added to the fluid temperature. In the method described above, an attempt was made to match the output proportional to the resistance value when the flow velocity measuring thermistor is heated to a constant temperature by simply adjusting the amplification degree and offset of the output proportional to the resistance value of the temperature measuring thermistor.

このとき、流体温度Tと、そのときの流速測定用サーミ
スタの抵抗[RH1温度測定用サーミスタの抵抗11 
Rcの間係は以下の式で表わされる。
At this time, the fluid temperature T and the resistance of the thermistor for measuring the flow velocity at that time [RH1 resistance 11 of the thermistor for temperature measurement]
The relationship between Rc is expressed by the following formula.

Rc=RIIexp [:B (1/T−1/TL1)
 ]・・・・・・・(4) Rs=RIIexp [B (1/ (T+DT)  
1/Ts) ]・・・・・・・(5) ここで、Re:温度TL1での(t−ミスタの抵抗値B
 :サーミスタのB定数 DT:加熱温度 上式かられかるようにRcはRHと比例関係をもたない
ため、増幅度とオフセット調整だけではすべての温度て
RcとRHを等しくすることは困難であり、一定の、し
かも狭い温度範囲でRcとRHを近づけることができる
にすぎない。しかも、増幅度とオフセットの調整は2点
ないしは3点の温度でRcとRHが一致するように調整
するため、その2点ないしは3点の間では誤差が生じて
しまい、この誤差は温度範囲を広げれば広げるほど大A
くなる。また、温度範囲を広げると流速測定用サーミス
タの抵抗値の変化幅が大きくなって掛算器や1す算器の
動作入力範囲を超える場合がでてくると同時に、超えな
いまでも動作限界付近では誤差が大きくなる場合がある
。したがって、従来の方式では、流体温度が一定の定常
状態をもち、温度変化が小さい場合においては高精度の
流速測定が可能であるが、流体温度の変化が大きい場合
には、温度変化に応じて調整をやり直す必要があり、広
い温度範囲で自動的に高精度の流速測定を行なうことは
不可能である。
Rc=RIIexp [:B (1/T-1/TL1)
]・・・・・・(4) Rs=RIIexp [B (1/(T+DT)
1/Ts) ]・・・・・・(5) Here, Re: (t-resistance value of mister B at temperature TL1)
:Thermistor's B constant DT:Heating temperature As can be seen from the above equation, Rc has no proportional relationship with RH, so it is difficult to make Rc and RH equal at all temperatures just by adjusting the amplification degree and offset. , Rc and RH can only be made close to each other within a fixed and narrow temperature range. Moreover, since the amplification degree and offset are adjusted so that Rc and RH match at two or three temperature points, an error occurs between the two or three points, and this error extends over the temperature range. The more you spread it out, the bigger A
It becomes. In addition, when the temperature range is widened, the range of change in the resistance value of the thermistor for flow rate measurement becomes larger, and it may exceed the operating input range of the multiplier or 1-subtracter. The error may become large. Therefore, with the conventional method, it is possible to measure the flow velocity with high accuracy when the fluid temperature is in a constant steady state and the temperature change is small, but when the fluid temperature is in a large change, it is possible to measure the flow velocity with high accuracy. Adjustments must be made again, and it is impossible to automatically measure flow velocity with high accuracy over a wide temperature range.

加えて、従来の方式では流速測定用サーミスタの消費電
力に比例した電圧をそのまま出力として用いているが、
前述した (3)式からもわかるように、サーミスタの
消費電力に比例した出力電圧は流速の間数であるところ
の放熱係数と比例するのであって、実際の流速と出力電
圧との関係は非線形となる。したがって、流速値を直読
するためには、出力電圧−流速換算表を用いて表から流
速を読み取る、出力をアナログ指針式の電圧計にして不
均等目盛りにして用いる、あるいは、外部に出力電圧の
りニアライズをするための演算回路を設けるなどの方法
を用いる必要がある。
In addition, in the conventional method, the voltage proportional to the power consumption of the thermistor for flow velocity measurement is directly used as the output.
As can be seen from equation (3) above, the output voltage that is proportional to the thermistor's power consumption is proportional to the heat radiation coefficient, which is a function of the flow rate, and the relationship between the actual flow rate and output voltage is nonlinear. becomes. Therefore, in order to directly read the flow velocity value, you can use an output voltage-flow velocity conversion table and read the flow velocity from the table, use the output as an analog pointer-type voltmeter with uneven scales, or use an external device to measure the output voltage. It is necessary to use a method such as providing an arithmetic circuit for nearization.

本発明は、上述した従来の方式では困難であった、−1
0℃から70℃に及ぶ広い温度範囲での高精度な流速測
定を自動的に行ない、かつ、流速値を直接表示あるいは
外部に電圧出力する流速測定装置を提供しようとするも
のであり、流速測定用サーミスタの抵抗値に比例した電
圧と温度測定装置の出力との比較によって構成されてい
る流速測定用サーミスタに流れる電流を変化させる帰還
回路において、温度測定装置の出力を、あらかじめサー
ミスタの温度−抵抗特性を記憶させた演算装置を使い、
流体温度に加熱温度を加えたときのサーミスタの抵抗値
に比例した出力に変換して帰還回路に用いることと、帰
還回路中の割算器及び出力回路中の掛算器の入力端子を
調整する分圧回路に定電圧源を組み合わせて用いること
によって、流速測定用サーミスタをあらゆる温度で、常
に流体温度と一定の温度差をもつような制御を行なうこ
とができ、広い温度範囲で高精度の流速測定を可能なら
しめると同時に、流速測定用サーミスタの消費電力に比
例した電圧を同じ演算装置でリニアライズすることによ
って、流速測定値を直読することができることをその特
徴としている。
The present invention achieves -1, which was difficult with the conventional method described above.
The purpose of this project is to provide a flow rate measurement device that automatically measures flow velocity with high accuracy over a wide temperature range from 0°C to 70°C, and that directly displays the flow velocity value or outputs it as a voltage to the outside. In the feedback circuit that changes the current flowing through the thermistor for flow rate measurement, which is constructed by comparing the voltage proportional to the resistance value of the thermistor with the output of the temperature measurement device, Using a calculation device with characteristics memorized,
It converts into an output proportional to the resistance value of the thermistor when heating temperature is added to the fluid temperature and uses it in the feedback circuit, and it also adjusts the input terminals of the divider in the feedback circuit and the multiplier in the output circuit. By using a pressure circuit in combination with a constant voltage source, it is possible to control the flow velocity measurement thermistor so that it always has a constant temperature difference from the fluid temperature at any temperature, allowing highly accurate flow velocity measurement over a wide temperature range. At the same time, by linearizing the voltage proportional to the power consumption of the flow velocity measuring thermistor using the same arithmetic unit, the flow velocity measurement value can be directly read.

以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図は流速測定装置全体の構成図である。流速測定用
サーミスタTHは、温度係数の小さい抵抗R1と定電圧
源OFSと直列に接続され、R1の両端の電圧VIV2
は、バッファアンプAP3、AP4を介して分圧回路D
VCに接続される。
FIG. 1 is a block diagram of the entire flow rate measuring device. The thermistor TH for flow velocity measurement is connected in series with a resistor R1 with a small temperature coefficient and a constant voltage source OFS, and the voltage VIV2 across R1 is
is the voltage dividing circuit D via buffer amplifiers AP3 and AP4.
Connected to VC.

分圧回路DVCと定電圧源OFSの働きにより、Vlと
V2は動作温度範囲内のいずれの温度においても、割算
器DIV、掛算器MLTの入力電圧範囲を超えないよう
に分圧される。割算器DIVの出力VDは広帯域増幅器
APIの入力となり、増幅器AP2とともに、流速測定
用サーミスタTHを流れる電流を制御する帰還回路を形
成する。
By the functions of the voltage dividing circuit DVC and the constant voltage source OFS, Vl and V2 are divided so as not to exceed the input voltage ranges of the divider DIV and multiplier MLT at any temperature within the operating temperature range. The output VD of the divider DIV becomes an input to a wideband amplifier API, and together with the amplifier AP2, forms a feedback circuit that controls the current flowing through the thermistor TH for measuring the flow rate.

広帯域増幅WAPIのもう一方の入力は、白金薄膜抵抗
体PTと抵抗電圧変換器RVの出力を演算装置Xで処理
した出力vSが接続される。掛算器MLTの出力VMは
演算装置Xに入力され、演算 ゛処理された後に出力v
Oとして表示または電圧出力される。また、演算装#L
Xは第二図に示すように、マルチプレクサMP、A−D
変換器AD、マイクロコンピュータCPU、記憶装置R
OM 、表示装置DSP、D−A変換器DAから成る。
The other input of the broadband amplification WAPI is connected to the output vS obtained by processing the outputs of the platinum thin film resistor PT and the resistance voltage converter RV by the arithmetic unit X. The output VM of the multiplier MLT is input to the arithmetic unit X, and after being processed, the output v
Displayed as O or output as voltage. Also, arithmetic unit #L
X is the multiplexer MP, A-D, as shown in Figure 2.
Converter AD, microcomputer CPU, storage device R
It consists of an OM, a display device DSP, and a DA converter DA.

次に、流速測定装置の作用について説明する。Next, the operation of the flow rate measuring device will be explained.

流速の測定に際し、流速測定用サーミスタTH及び白金
薄膜抵抗体PTを測定流体中に入れ、抵抗R】及び流速
測定用サーミスタTHに電圧を印加すると、抵抗R1及
び流速測定用サーミスタTHに電流が流れ、流速測定用
サーミスタTHは自己加熱して、抵抗R1の両端にはV
l、V2なろ電圧が発生する。Vl、V2は、それぞれ
バッファアンプAP3、AP4を介して分圧回路DVC
に接続され、割算器DIV、掛算器MLTの入力条件に
合うように、すなわち、流体の温度変化によって流速測
定用サーミスタTHの抵抗値が大きく変化しても、割算
器DIV、掛算器MLTの動作入力電圧2範囲を超える
ことのないように分圧される。ここで、定電圧ROFS
は一定の電圧を加える働きをするもので、vl、■2を
分圧回路DVCで分圧する際に回路のグランドを基準に
しないで、定電圧源OFSの出力電圧を基準にして分圧
することにより、分圧回路DVCだけでは調整しきれな
いような広い温度範囲で割算器DTV、掛算器MLTの
入力条件を合わせることができる。
When measuring the flow rate, when the flow rate measurement thermistor TH and the platinum thin film resistor PT are placed in the measurement fluid and a voltage is applied to the resistance R and the flow rate measurement thermistor TH, a current flows through the resistance R1 and the flow rate measurement thermistor TH. , the thermistor TH for flow rate measurement self-heats, and V is applied to both ends of the resistor R1.
1, V2 voltage is generated. Vl and V2 are connected to the voltage dividing circuit DVC via buffer amplifiers AP3 and AP4, respectively.
In order to meet the input conditions of the divider DIV and multiplier MLT, that is, even if the resistance value of the thermistor TH for flow velocity measurement changes greatly due to changes in fluid temperature, the divider DIV and multiplier MLT The voltage is divided so as not to exceed the operating input voltage range of 2. Here, constant voltage ROFS
acts to apply a constant voltage, and when dividing vl, ■2 with the voltage divider circuit DVC, the output voltage of the constant voltage source OFS is used as a reference instead of the ground of the circuit as a reference. , the input conditions of the divider DTV and the multiplier MLT can be matched over a wide temperature range that cannot be adjusted by the voltage divider circuit DVC alone.

定電圧ff0Fsの電圧値は、流体の温度範囲や割算器
DIV、掛算器MLTの動作入力電圧範囲によって変わ
ってくるので、それぞれに合うように調整する必要があ
る。割算器DIVの出力電圧VDは広帯域増幅器API
の一方の入力となり、演算装置Xの出力電圧vSと比較
されて、両方の電圧が等しくなるように流速測定用サー
ミスタT Hを流れる電流を制御する帰還回路を構成す
る。ここで、演算装置Xの出力電圧Vsは、流体の7H
度を測定する白金薄膜抵抗体PTの抵抗嬢を抵抗電圧変
換器RVで電圧信号に変換し、さらにマルチプレクサM
Pを通った後、A−D変換器ADでディジタル信号化さ
れ、記憶装置ROMに記憶された流速測定用サーミスタ
THの温度−抵抗特性によって、流体の温度T@にあら
かじめ設定した温度差を加えた加熱温度Tのときの流速
測定用サーミスタTHの抵抗値をマイクロコンピュータ
CPUで計算し、D−A変換器DAで電圧信号化して出
力したものである。したがって、演算装aXの出力電圧
vSと割算器DrVの出力電圧VDとを比較して両方の
電圧が等しくなるように流速測定用サーミスタTHに流
れる電流を制御することは、流速測定用サーミスタTH
の抵抗値を演算装置Xの内部で計算された加熱温度Tに
一致させることに他ならない。ゆえに、流体温度Tgと
加熱温度Tの温度差T −T @は流体温度にかかわら
ず常に一定となる。前述した (3)式からもあきらが
なように、流速測定用サーミスタの加熱温度Tと流体温
度T@の温度差T−Tθが一定の場合には、流速測定用
サーミスタの消費電力Wは流速の関数であるところの放
熱係数に比例する。そこで、実際の流速を直読できるよ
うにするために、掛算器MLTの出力電圧VMを演算装
置Xに入力し、マルチプレクサMPで白金薄膜抵抗体P
Tと抵抗電圧変換器RVからの入力と区別された後に、
A−D変喚器ADでディジタル信号化し、マイクロコン
ピュータCPUでリニアライズを行なう。リニアライズ
された結果は表示装置DSPで直接表示されると同時に
、D−A変換器DAで電圧信号化されて、vSとは別に
流速に比例した電圧■oとして出力される。
The voltage value of the constant voltage ff0Fs changes depending on the temperature range of the fluid and the operating input voltage range of the divider DIV and the multiplier MLT, so it is necessary to adjust it to suit each of them. The output voltage VD of the divider DIV is the wideband amplifier API
, and is compared with the output voltage vS of the arithmetic unit X, forming a feedback circuit that controls the current flowing through the thermistor TH for flow velocity measurement so that both voltages become equal. Here, the output voltage Vs of the arithmetic device X is 7H of the fluid.
The resistance of the platinum thin film resistor PT for measuring the temperature is converted into a voltage signal by the resistance voltage converter RV, and then the multiplexer M
After passing through P, the fluid is converted into a digital signal by the A-D converter AD, and a preset temperature difference is added to the fluid temperature T@ according to the temperature-resistance characteristics of the thermistor TH for measuring the flow velocity, which is stored in the storage device ROM. The resistance value of the flow velocity measuring thermistor TH at the heating temperature T is calculated by the microcomputer CPU, converted into a voltage signal by the DA converter DA, and output. Therefore, to compare the output voltage vS of the arithmetic unit aX and the output voltage VD of the divider DrV and control the current flowing through the thermistor TH for flow velocity measurement so that both voltages are equal, the thermistor TH for flow velocity measurement
This is nothing more than making the resistance value of 2 coincide with the heating temperature T calculated inside the arithmetic device X. Therefore, the temperature difference T −T @ between the fluid temperature Tg and the heating temperature T is always constant regardless of the fluid temperature. As is clear from equation (3) above, when the temperature difference T-Tθ between the heating temperature T of the thermistor for flow velocity measurement and the fluid temperature T@ is constant, the power consumption W of the thermistor for flow velocity measurement is proportional to the flow velocity. It is proportional to the heat dissipation coefficient, which is a function of . Therefore, in order to be able to directly read the actual flow velocity, the output voltage VM of the multiplier MLT is input to the arithmetic unit X, and the platinum thin film resistor P is input to the multiplexer MP.
After being distinguished from the input from T and the resistive voltage converter RV,
The A-D converter AD converts it into a digital signal, and the microcomputer CPU linearizes it. The linearized result is directly displayed on the display device DSP, and at the same time is converted into a voltage signal by the DA converter DA, and is output as a voltage o proportional to the flow velocity separately from vS.

このように、本発明の流速測定装置によれば、流体温度
が変化した場合にも広い温度範囲において自動的に温度
補償が行なわれるため、−10℃から70℃というよう
な非常に広い温度範囲においても、温度変化の影響を受
けない高精度の流速測定を行なうことができる。また、
流速測定用サーミスタの加熱温度の設定がソフトウェア
のみて可能なため、直接に、かつ、簡単に行なえる。さ
らに、流速測定用サーミスタとして、抵抗値や温度係数
の大きく異なったものを用いた場合でも、ソフトウェア
のみの変更で容易に使用可能なうえ、温度測定装置とし
て白金薄膜抵抗体やサーミスタなど各種の温度検出素子
を用いることも可能である。また、流速を直読するため
に必要な出力電圧のりニアライズを装置内部で行なうこ
とができるため、従来の方式のように、出力電圧−流速
換算表や外付けのリニアライス回路を必要とせず、直接
流速値を表示、あるいは電圧で出力させることができる
。また、流速測定用サーミスタに直列に接続した定電圧
源を可変電圧源に置き換えた一ヒで周囲温度に応して電
圧値を変えろことによって、より広い温度範囲での使用
や、動作入力端子範囲が狭い掛算器や割算器を使用する
ことも可能となる。
As described above, according to the flow rate measurement device of the present invention, temperature compensation is automatically performed in a wide temperature range even when the fluid temperature changes, so it can be used in a very wide temperature range from -10°C to 70°C. Even in this case, highly accurate flow velocity measurements that are unaffected by temperature changes can be performed. Also,
The heating temperature of the thermistor for flow rate measurement can be set using software, so it can be done directly and easily. Furthermore, even if a thermistor with significantly different resistance or temperature coefficient is used as a flow velocity measurement thermistor, it can be easily used by simply changing the software. It is also possible to use detection elements. In addition, since the output voltage linearization required to directly read the flow velocity can be performed inside the device, there is no need for an output voltage-flow velocity conversion table or an external linearization circuit as in conventional methods. The flow velocity value can be displayed or output as a voltage. In addition, by replacing the constant voltage source connected in series with the thermistor for flow rate measurement with a variable voltage source, the voltage value can be changed according to the ambient temperature, allowing use in a wider temperature range and increasing the operating input terminal range. It is also possible to use multipliers and dividers with a narrow width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す回路構成図である。 R1・・・・抵抗、TH・・・・流速測定用サーミスタ
、DVC・・・・分圧回路 DIV・・・・割算器 MLT・・・・掛算器 PT・・・・白金薄膜抵抗体 RV・・・・抵抗電圧変換器 X・・・・演算装置 API・・・・広帯域増幅器 AP2・・・・増幅器 AP3.AP4・・・・バッファアンプ第2図は第1図
中にXで示した演算g置の部分の回路構成図である。 MP・・・・マルチプレクサ AD・・・・A−D変換器 DSP・・・・表示装置 CPU・・Φ・マイクロコンピュータ ROM・・・・記t!装置 DA・・・・D−A変換器。
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. R1...Resistor, TH...Thermistor for flow rate measurement, DVC...Voltage divider circuit DIV...Divider MLT...Multiplier PT...Platinum thin film resistor RV ...Resistance voltage converter X...Arithmetic unit API...Broadband amplifier AP2...Amplifier AP3. AP4...buffer amplifier FIG. 2 is a circuit diagram of the portion at the calculation position g indicated by X in FIG. 1. MP...Multiplexer AD...A-D converter DSP...Display device CPU...Φ/Microcomputer ROM...Note t! Device DA...D-A converter.

Claims (2)

【特許請求の範囲】[Claims] (1)温度係数の小さい抵抗と流速測定用サーミスタと
定電圧源とを直列に接続してなるサーミスタの加熱回路
に、上記抵抗の両端電圧と上記定電圧源の出力電圧とを
分圧回路を通した後にサーミスタの抵抗値に比例する電
圧を出力する割算器に入力し、上記割算器の出力電圧と
基準電圧とを比較して、それらを等しくするようにサー
ミスタに流れる電流を制御する帰還回路を接続した流速
測定装置において、別の温度測定器で流体温度を測定し
、流体温度に比例する電圧をA−D変換器によりディジ
タル変換して演算装置に入力し、あらかじめ記憶させて
おいたサーミスタの温度抵抗特性からサーミスタの加熱
温度と測定流体との温度差を常に一定に保つためのサー
ミスタの抵抗値を計算し、D−A変換器により、その抵
抗値に比例する電圧を上記帰還回路の基準電圧のかわり
に印加し、その電圧と割算器の出力電圧とを一致させる
ようにサーミスタに流す電流を制御するように構成した
温度補償回路と、上記抵抗の両端電圧と上記定電圧源の
出力電圧とを分圧回路を通した後に掛算器に入力するこ
とによって得られる、サーミスタの消費電力に比例する
電圧であるところの掛算器の出力電圧を、実際の流速値
に変換して外部に出力する出力回路を有することを特徴
とする流速測定装置。
(1) A voltage dividing circuit is added to the thermistor heating circuit, which is formed by connecting a resistor with a small temperature coefficient, a thermistor for flow rate measurement, and a constant voltage source in series, and the voltage across the resistor and the output voltage of the constant voltage source. After passing through the voltage, input it to a divider that outputs a voltage proportional to the resistance value of the thermistor, compare the output voltage of the divider with a reference voltage, and control the current flowing through the thermistor to make them equal. In the flow velocity measuring device connected to the feedback circuit, the fluid temperature is measured with another temperature measuring device, and the voltage proportional to the fluid temperature is converted into digital data by an A-D converter, inputted to the calculation device, and stored in advance. The resistance value of the thermistor is calculated to keep the difference between the heating temperature of the thermistor and the temperature of the measured fluid constant from the temperature resistance characteristics of the thermistor, and a voltage proportional to the resistance value is fed back to the above using a DA converter. A temperature compensation circuit that is applied in place of the reference voltage of the circuit and configured to control the current flowing through the thermistor so that the voltage matches the output voltage of the divider, and the voltage across the resistor and the constant voltage. The output voltage of the multiplier, which is a voltage proportional to the power consumption of the thermistor obtained by passing the output voltage of the source through a voltage dividing circuit and inputting it to a multiplier, is converted into an actual flow velocity value. A flow velocity measuring device characterized by having an output circuit for outputting to the outside.
(2)前記出力回路は前記掛算器から出力される前記サ
ーミスタの消費電力量に比例する電圧を前記A−D変換
器でディジタル変換して演算装置に入力し、あらかじめ
記憶させておいた換算式を用いて流速値に変換して外部
に出力する出力回路であることを特徴とする特許請求の
範囲第1項記載の流速測定装置。
(2) The output circuit digitally converts the voltage proportional to the power consumption of the thermistor output from the multiplier using the A-D converter and inputs it to the arithmetic unit, using a conversion formula stored in advance. 2. The flow velocity measurement device according to claim 1, wherein the flow velocity measuring device is an output circuit that converts the flow velocity value into a flow velocity value and outputs it to the outside.
JP61024683A 1986-02-05 1986-02-05 Flow velocity measuring instrument Pending JPS62182670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024683A JPS62182670A (en) 1986-02-05 1986-02-05 Flow velocity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024683A JPS62182670A (en) 1986-02-05 1986-02-05 Flow velocity measuring instrument

Publications (1)

Publication Number Publication Date
JPS62182670A true JPS62182670A (en) 1987-08-11

Family

ID=12144950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024683A Pending JPS62182670A (en) 1986-02-05 1986-02-05 Flow velocity measuring instrument

Country Status (1)

Country Link
JP (1) JPS62182670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199108A (en) * 1987-10-12 1989-04-18 Yamada Mitsue Control device
JPH0558913U (en) * 1992-01-23 1993-08-03 新日本製鐵株式会社 Abnormality detection device for pneumatic drive
JPH05263589A (en) * 1990-12-17 1993-10-12 Daiho Constr Co Ltd Shield tunneling machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199108A (en) * 1987-10-12 1989-04-18 Yamada Mitsue Control device
JPH05263589A (en) * 1990-12-17 1993-10-12 Daiho Constr Co Ltd Shield tunneling machine
JPH0558913U (en) * 1992-01-23 1993-08-03 新日本製鐵株式会社 Abnormality detection device for pneumatic drive

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US4984460A (en) Mass flowmeter
US4043196A (en) Method and apparatus for effecting fluid flow measurement in a single sensor
US5461913A (en) Differential current thermal mass flow transducer
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
US4798093A (en) Apparatus for sensor compensation
EP1441206B1 (en) Sensor temperature control in a thermal anemometer
US5189362A (en) High frequency signal measurement circuits utilizing temperature-sensitive devices
JP2522337Y2 (en) Flow meter with thermal resistance element
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
JP4332296B2 (en) Method for measuring the pressure of a gas in a container and apparatus for carrying it out
US3501696A (en) Temperature compensated r.f. power measuring device having automatic zero setting means
US4070908A (en) Anemometer compensator linearizer
JPH08507864A (en) Thermal conductivity type vacuum gauge with measuring cell, measuring device and connecting cable
JPS62182670A (en) Flow velocity measuring instrument
US4122722A (en) Anemometer compensator linearizer
JPH102807A (en) Thermocouple measuring device
JP2531968B2 (en) Flow velocity sensor and flow velocity measuring device using the same
RU2738198C1 (en) Method of reducing measurement error of temperature with electric bridge and measuring axle of wheatstone-kapinos
JP3486511B2 (en) Flow sensor
JPH02120620A (en) Heater temperature control circuit
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH0786435B2 (en) Measuring circuit of resistance thermometer
Daneman et al. Method of Applying a Modern Potentiometer for Resistance Thermometry
SU957182A1 (en) Device for adjusting heater temperature