JPS62279626A - Impurity doping method for semiconductor substrate - Google Patents

Impurity doping method for semiconductor substrate

Info

Publication number
JPS62279626A
JPS62279626A JP12317386A JP12317386A JPS62279626A JP S62279626 A JPS62279626 A JP S62279626A JP 12317386 A JP12317386 A JP 12317386A JP 12317386 A JP12317386 A JP 12317386A JP S62279626 A JPS62279626 A JP S62279626A
Authority
JP
Japan
Prior art keywords
stage
voltage
substrate
polarity
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12317386A
Other languages
Japanese (ja)
Other versions
JPH0516656B2 (en
Inventor
Keiki Wada
和田 啓喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M SETETSUKU KK
Original Assignee
M SETETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M SETETSUKU KK filed Critical M SETETSUKU KK
Priority to JP12317386A priority Critical patent/JPS62279626A/en
Publication of JPS62279626A publication Critical patent/JPS62279626A/en
Publication of JPH0516656B2 publication Critical patent/JPH0516656B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a shallow impurity region easily in a short time by a method wherein a voltage whose polarity is varied is impressed to generate plasma between a stage with a substrate disposed thereon and an opposite electrode. CONSTITUTION:An N-type single crystal substrate 5 of Si as a negative pole is set on a stage 2, and an opposite electrode 3 made of a P-type single crystal is disposed above the substrate. The stage 2 is heated up to 200-400 deg.C by a heater 4. A diluted gas of B2H6 having H2 as a base is sealed in a plasma generating apparatus 1, and a directcurrent voltage of 400-600 V is impressed between the stage 2 and the opposite electrode 3, so as to produce plasma discharge. Thereafter a polarity converter 7 is operated at every prescribed time to vary the polarity of the impressed voltage. By this method, a shallow P-type impurity region can be prepared easily in a short time.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、半導体基板に対しプラズマにより不純物の
ドーピングを行なう不純物ドーピング方法に関するもの
である。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an impurity doping method for doping a semiconductor substrate with an impurity using plasma.

〔従来の技術〕[Conventional technology]

半導体の低温プロセスは熱変成や不純物分布の変化、ラ
イフタイムの変化を抑制する上から従来型デバイス製造
の工程でも要望さnていたが、特に最近台頭している3
次元ICの場合に、上層のデバイスを製造する際既に形
成されている下層デバイスに対する悪影響を避けるため
欠くことのできない技術として、半導体デバイス微細化
の傾向とともに一層渇望されている。
Low-temperature processing of semiconductors has been desired in conventional device manufacturing processes because it suppresses thermal metamorphosis, changes in impurity distribution, and changes in lifetime, but it has been particularly popular recently.
In the case of dimensional ICs, this technique is indispensable in order to avoid adverse effects on lower layer devices that have already been formed when manufacturing upper layer devices, and is becoming more sought after as semiconductor devices become smaller.

半導体基板に対する不純物の導入は現在熱拡散法に代り
イオン注入法が主流となりつつあるが、特に軽い元素の
ボロンの場合は深く注入さ石、易く浅いP領域を作るこ
とは困難であった。
Currently, ion implantation is becoming the mainstream method for introducing impurities into semiconductor substrates instead of thermal diffusion, but especially in the case of boron, which is a light element, it is difficult to implant deeply and to form a shallow P region.

しかし、これも10 kev 程度までエネルギーを下
げnは可能であるが、この場合はビーム電流が低下する
ので処理時間が長くなり!:産性が落ちる2問題がある
。また、注入後の不純物の活性化とダメージ回復のため
比較的高温の熱処理が必要となる等基板の深さ方向の微
細化に対して揮々の問題かあった。
However, it is also possible to lower the energy to about 10 keV, but in this case the beam current will decrease and the processing time will become longer! : There are two problems that reduce productivity. Further, there have been serious problems with miniaturization in the depth direction of the substrate, such as the need for heat treatment at a relatively high temperature for activation of impurities after implantation and damage recovery.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、半導体基板に対する不純物の導入は、軽
い元素のボロンの場合浅いP領域を作ることが困難であ
り処理1こ長時間を要しあるいは高温の熱処理を必要と
するなど多量生産に適さない各種の問題があった。
As mentioned above, when introducing impurities into a semiconductor substrate, it is difficult to create a shallow P region in the case of boron, which is a light element, and the process takes a long time or requires high-temperature heat treatment, making it unsuitable for mass production. There were no various problems.

この発明はこのような問題点を解決するためになされた
もので不純物の浅い領域を作ることが容易であり比較的
短時間lこ行ねりことができしかも高温の熱処理を必要
としない半導体基板に対する不純物のドテージ上に半導
体用単結晶基&を配置しこのステージおよび対向電極の
間に極性の変化する電圧を印加してプラズマを発生させ
イオン注入により不純物の導入を行なうことを特徴とし
、電圧の極性を反転させることによりエネルギーをもり
た電子を基板に照射しそのエネルギーを基板格子に与え
ることによりボロンの拡散を加速するものである。この
加速電圧を匍上御することにより所望の深さまでの拡4
f!1.を行なう0 〔実施例〕 以下図面を参照してこの発明の一実施例を説明する。
This invention was made to solve these problems, and is suitable for semiconductor substrates that can easily form shallow impurity regions, can be heated for a relatively short period of time, and do not require high-temperature heat treatment. A semiconductor single crystal group & is placed on a stage of impurities, and a voltage with changing polarity is applied between this stage and a counter electrode to generate plasma and introduce impurities by ion implantation. By reversing the polarity, the substrate is irradiated with energetic electrons and the energy is applied to the substrate lattice, thereby accelerating the diffusion of boron. By controlling this accelerating voltage, the expansion can be done to the desired depth.
f! 1. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

この実施例はN型基板にボロンを拡散する場合を示すも
のである。
This embodiment shows the case where boron is diffused into an N-type substrate.

第1因において、1は平行平板型のプラズマ発生装置で
あり、2はそのステージであり、3は対向電極、4はヒ
ータを示している。
In the first factor, 1 is a parallel plate type plasma generator, 2 is its stage, 3 is a counter electrode, and 4 is a heater.

ステー′)2の上lこシリコンのN型単結晶基板5を載
置してこnを負極とし、その上部5Qrmに設けられた
対向電極3にP型の比抵抗0.050の単結晶で作られ
たものを配設する。ステージ2はヒータ4により200
〜400“Cに加熱しておく。プラズマ発生装置tl中
1コ、H2ヲヘースとするB*Ha 2000 ppm
の希釈ガスを圧力2〜4.5 Torrで封入し、ステ
ージ2と対向′成極3の間に40ト伺OVの直流電圧を
印加し、プラズマ放電を行なう。
An N-type silicon single crystal substrate 5 is placed on top of the stay ') 2, which is used as a negative electrode, and a counter electrode 3 provided at the upper part 5Qrm is made of a P-type single crystal with a specific resistance of 0.050. Arrange the items that were given. Stage 2 is heated to 200 by heater 4.
Heat to ~400"C. 1 unit in plasma generator TL, H2 haze B*Ha 2000 ppm
diluent gas is sealed at a pressure of 2 to 4.5 Torr, and a DC voltage of 40 torr OV is applied between the stage 2 and the opposing polarization 3 to generate plasma discharge.

ジ2の側したがってN型単結晶基板5が負となるように
電圧を印加しその後極性を反転し10分間寛子犬射を行
なうサイクルを2回実施した時の拡散層の拡がり抵抗は
第2図に示す通りで拡散深さは01μであった。
Figure 2 shows the spreading resistance of the diffusion layer when a cycle of applying a voltage so that the diode 2 side and therefore the N-type single crystal substrate 5 is negative, then reversing the polarity and carrying out relaxation injection for 10 minutes is carried out twice. As shown in , the diffusion depth was 01μ.

な2、この極性転換は第3図のように拡散深さ1こよっ
てサイクルと正負電圧の絶体値を適当に選ぶものである
2. This polarity change is performed by appropriately selecting the cycle and the absolute values of the positive and negative voltages depending on the diffusion depth 1, as shown in FIG.

カくシて、その後のランプアニールでも特性の変化はな
く、不純物(オ充分活性化していることが明らかとなっ
た。またDLTSによるテープレベルの測定に2いても
格子欠かん及び重金属による準位も見らnなかった。
There was no change in the characteristics even after lamp annealing, and it became clear that impurities were sufficiently activated.Furthermore, even when measuring the tape level by DLTS, there were no lattice defects and levels due to heavy metals. I didn't see it either.

なお、この極性転換に代えて、5QH2の交番電圧を用
いることによっても拡散深さは0.06μと極性転換法
の場合よりも浅いが略同様の結果が得られた。
In addition, by using an alternating voltage of 5QH2 instead of this polarity reversal, the diffusion depth was 0.06 μm, which was shallower than that of the polarity reversal method, but substantially the same results were obtained.

なお、プラズマ中の陰極降下は数十ボルトで、これlこ
よる正イオンの衝撃は低エネルギーであるが衝突断面は
大きいためごく表面に限られるが欠かん中表面粗nが発
生する。
Incidentally, the cathode fall in the plasma is several tens of volts, and the impact of positive ions caused by this has low energy, but the collision cross section is large, so surface roughness occurs only on the surface, but not all of it.

こちらの欠かんは基板厚子の移動、原子配列の乱れ、原
子空孔や格子間原子の対をも生ずるものと考えらV、る
This deficiency is thought to be caused by movement of the substrate thickness, disorder of atomic arrangement, and pairs of atomic vacancies and interstitial atoms.

次にエネルギーをもったボロンイオンはこの原子空孔と
位置交換を繰返しまた格子間にある原子は格子点1こあ
る原子と玉突きで位置交換してそれぞ几拡散する。
Next, the energetic boron ions repeatedly exchange positions with these atomic vacancies, and the interstitial atoms exchange positions with the atoms at one lattice point and diffuse respectively.

このように結晶中に発生した点欠かんが関与したVac
ancy機構とInterstialcy  機構で拡
散するものと推察される。
In this way, the Vac caused by the dots generated in the crystal
It is presumed that it spreads by an ancy mechanism and an interstitial mechanism.

しかし、この拡散は入射エネルギーが少ないため基板表
膚下部の構成格子に与えるエネルギーが小さいのと格子
に置き変えられたボロン原子は負のアクセプタイオンと
なっているため外部電界により反撥さn内部への拡散は
難しい。
However, since the incident energy of this diffusion is low, the energy given to the constituent lattice under the surface of the substrate is small, and the boron atoms replaced by the lattice become negative acceptor ions, so they are repelled by the external electric field and go inside. is difficult to spread.

そこで、ある程度表面層に高濃度のボロンがドープされ
た時点で印加電圧の極性を反転する。
Therefore, the polarity of the applied voltage is reversed when the surface layer is doped with boron at a high concentration to a certain extent.

これによって基板にはエネルギーをもった電子が照射さ
れることになるが、この加速電圧を制御することによっ
て所望の拡散深さまでの基板格子に電子の保有するエネ
ルギーを与え、しかも反転によって基板側が正極となる
ので基板正面1こ局在していたアクセプタイオンのボロ
ンはこの電界のドリフトにより拡散を加速さこることに
なる。
As a result, the substrate is irradiated with energetic electrons, and by controlling this accelerating voltage, the energy possessed by the electrons is applied to the substrate lattice up to the desired diffusion depth, and furthermore, by reversal, the substrate side becomes the positive electrode. Therefore, the boron acceptor ions localized on the front surface of the substrate will be accelerated in diffusion due to the drift of this electric field.

このように原性反転作用により拡散が容易となるため印
加電圧も比較的低くてすむのでマスク材および多層構造
の絶縁膜にかかるストレスも低減できる利点がある。ま
た、この場合電子照射1こよるアニール作用も考えられ
る。
In this way, diffusion is facilitated by the primordial reversal effect, so the applied voltage can be relatively low, which has the advantage of reducing stress on the mask material and the insulating film of the multilayer structure. Further, in this case, an annealing effect due to electron irradiation 1 is also considered.

この猷子線による格子lこ対するエネルギの付与は、基
板物質の電気的および光学的特性などによって変らず、
また干渉効果もないので特定の場所だけにエネルギーを
放出さ几ることもなく平面的に見た場合のドープの均一
性が得ら几るものである。
The energy imparted to the grating by this wire does not change depending on the electrical and optical characteristics of the substrate material, etc.
In addition, since there is no interference effect, energy is not emitted only to a specific location, and uniformity of doping when viewed from a plane can be obtained.

また活性化が入射電子のエネルギーにより行なわnるた
め、準安定な固溶限以上の高講度不純物の凍結現象が起
こり再分布もなく表面高濃度が保持さV。
In addition, since the activation is performed by the energy of incident electrons, a freezing phenomenon of high-grade impurities exceeding the metastable solid solubility limit occurs, and a high surface concentration is maintained without redistribution.

る。Ru.

な”お入射電子のSi原子に対する臨界変位エネルギは
125kevと高いので、この発明の方法の如く低エネ
ルギーの場合(オこnによる格子欠かんは全く発生しな
いと見ろことができる。
Furthermore, since the critical displacement energy of incident electrons for Si atoms is as high as 125 keV, it can be seen that when the energy is low as in the method of this invention (lattice defects due to electrons do not occur at all).

次ニ一般のプラズマプロセスにもいえることであるが、
器壁、電極などによる重金属汚染の問題である。
This also applies to general plasma processes.
The problem is heavy metal contamination from the vessel walls, electrodes, etc.

特に、この発明の方法のようにプラズマを用いたドーピ
ング方式では、深い不純物準位を形成するpe、Ni 
 などは格子間機構で拡散するため、ボロン等に比べ拡
散係数は著しく犬きく無視できない問題である。
In particular, in the doping method using plasma like the method of this invention, pe, Ni, which forms deep impurity levels,
Since these materials diffuse through an interstitial mechanism, their diffusion coefficients are significantly higher than those of boron, etc., so this is a problem that cannot be ignored.

例えばSO8(ステンレス スチール)i1f極を用い
た場合、基板にはFe、Or、Niによる0、35 e
 I/〜0.55 e vのデープレベル準位が見らn
ライフタイムも減少する。
For example, when using SO8 (stainless steel) i1f electrode, the substrate has 0,35 e
A deep level level of I/~0.55 e v was observed n
Lifetime also decreases.

この現象は、SUS陽極、基板陰極の場合にも見られる
か゛、特に極性転換した場合のSO8陰極における金属
飛沫作用が大きく利いている。
This phenomenon is also seen in the case of SUS anodes and substrate cathodes, and the metal splash effect is particularly effective at the SO8 cathode when the polarity is reversed.

このため、この発明の実施例においては汚染防止上対向
%極31こドープしようとする元素と同じ元素を高濃度
に含んだ棺結晶のシリコンTi極を用いることによって
この問題を解決している。
Therefore, in the embodiment of the present invention, this problem is solved by using a coffin crystal silicon Ti electrode containing a high concentration of the same element as the element to be doped in the opposing electrode 31 to prevent contamination.

なお、この発明は上記の実施例に限定されるものではな
く要旨を変更しない範囲において異なる構成をとること
ができる。
It should be noted that the present invention is not limited to the above-described embodiments, and may have different configurations without changing the gist.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、不純物の浅い領域
を作ることが容易であり比較的短時間に行なうことがで
きしかも高温の熱処理を必要としない半導体基板に対す
る不純物のドーピング方法を提供することかできる。
As described above, according to the present invention, there is provided a method for doping impurities into a semiconductor substrate, which makes it easy to form a shallow impurity region, can be carried out in a relatively short time, and does not require high-temperature heat treatment. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の概略的構成図、第2図は
同実施例の表面からの深さlこ対する拡散層の拡がり抵
抗の特性を示す曲線図、第3図は同実施例に2いてステ
ージと対向−極の間が印加する電圧を示す波形図である
。 工・・プラズマ発生装置  2−ステージS・・・対向
電極      4−ヒータ5・・・N型単結晶基板 
  6・・・直流電源7・・極性転換器 出願人 エム・セテック株式会社 第2図 第3図 手続補正書 1、事件の表示 特願昭61−123173号 2、発明の名称 半導体基板に対する不純物のドーピング方法3、補正を
する者 事件との関係 特許出願人 エム・セテック株式会社 4、代理人 6、 補正の内容 (1)本願の特許請求の範囲を別紙の通り訂正する。 (2)本願明細4!:第3頁末行乃至第4頁第7行の「
この発明の・・・・・・・・加速するものである。」の
部分の記載を下記の通り訂正する。 記 「この発明のドーピング方法は、プラズマ発生装〔撹の
ステージ上1こ半導体用基板を配置しこのステージおよ
び対向電極の間1こ極性の変化する電圧を印加してプラ
ズマを発生させ不純物の導入を行なうことを特徴とし、
電圧の極性を反転させること1こよりエネルギーをもっ
た電子を基板に照射しそのエネルギーを基板格子1こ与
えることにより不純物原子の拡散を促すものである。」
(3)同第6頁第18行の「Interstialcy
 Jの部分を「INTBR8TITIALOY J  
と訂正する。 2、特許請求の範囲 +1+  プラズマ発生装置のステージ上に半導体用基
板を配置しこのステージおよび対向電極の間1こ極性の
変化する電圧を印加してプラズマを発生させ不純物の導
入を行なうことを特徴とする半導体用基板に対する不純
物のドーピング方法。 (2+  $IL性の変化する電圧はステージ側を負と
して印加した直流電圧を極性転換させて与えるものであ
ることを特徴とする特許請求の範囲第1項記載の半導体
基板jこ対する不純物のドーピング方法。 (3)極性の変化する電圧は交番電比によって与えるも
のであることを特徴とする特許請求の範囲第1項記載の
半導体基板に対する不M物のドーピング方法。 (4)対向′成極)こドープする元素と同じ元素を含む
シリコン電極を用いたことを特徴とする特許請求の疵囲
第1項乃至第3項のいずn 75) Iこ記載の半導体
基板に対する不純物のドーピング方法。
FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, FIG. 2 is a curve diagram showing the characteristics of the spreading resistance of the diffusion layer with respect to the depth l from the surface of the same embodiment, and FIG. FIG. 7 is a waveform diagram showing the voltage applied between the stage and the opposite pole in Example 2. Engineering...Plasma generator 2-Stage S...Counter electrode 4-Heater 5...N-type single crystal substrate
6...DC power supply 7...Polarity converter Applicant: M Setec Co., Ltd. Figure 2 Figure 3 Procedural amendment 1, Indication of the case Japanese Patent Application No. 123173/1982 2, Name of the invention Impurities on semiconductor substrates Doping method 3, relationship with the case of the person making the amendment Patent applicant M Setec Co., Ltd. 4, attorney 6 Contents of the amendment (1) The scope of the claims of the present application will be corrected as shown in the attached document. (2) Specification 4! : From the last line of page 3 to the 7th line of page 4, “
This invention... accelerates the invention. ” has been corrected as follows. ``The doping method of the present invention involves placing a semiconductor substrate on a stage of a plasma generator [stirring device] and applying a voltage of varying polarity between the stage and a counter electrode to generate plasma and introduce impurities. It is characterized by carrying out
By reversing the polarity of the voltage, the substrate is irradiated with energetic electrons, and the energy is applied to the substrate lattice, thereby promoting the diffusion of impurity atoms. ”
(3) “Interstialcy” on page 6, line 18.
Change the J part to “INTBR8TITIALOY J
I am corrected. 2. Scope of Claims +1+ A semiconductor substrate is placed on a stage of a plasma generation device, and a voltage of varying polarity is applied between the stage and a counter electrode to generate plasma and introduce impurities. A method for doping impurities into a semiconductor substrate. (2+ $) Doping of an impurity onto a semiconductor substrate according to claim 1, characterized in that the voltage changing with IL property is applied by changing the polarity of the DC voltage applied with the stage side being negative. (3) A method for doping a semiconductor substrate with an impurity substance according to claim 1, characterized in that the voltage whose polarity changes is applied by an alternating current ratio. (4) Opposing polarization 75) I. A method for doping impurities into a semiconductor substrate as described above, characterized in that a silicon electrode containing the same element as the element to be doped is used.

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマ発生装置のステージ上に半導体用単結晶
基板を配置しこのステージおよび対向電極の間に極性の
変化する電圧を印加してプラズマを発生させイオン注入
により不純物の導入を行なうことを特徴とする半導体用
基板に対する不純物のドーピング方法。
(1) A semiconductor single crystal substrate is placed on the stage of a plasma generator, and a voltage with changing polarity is applied between the stage and a counter electrode to generate plasma and introduce impurities by ion implantation. A method for doping impurities into a semiconductor substrate.
(2)極性の変化する電圧はステージ側を負として印加
した直流電圧を極性転換させて与えるものであることを
特徴とする特許請求の範囲第1項記載の半導体基板に対
する不純物のドーピング方法。
(2) The method of doping impurities into a semiconductor substrate according to claim 1, wherein the voltage whose polarity changes is applied by changing the polarity of a DC voltage applied with the stage side being negative.
(3)極性の変化する電圧は交番電圧によって与えるも
のであることを特徴とする特許請求の範囲第1項記載の
半導体基板に対する不純物のドーピング方法。
(3) A method for doping impurities into a semiconductor substrate according to claim 1, wherein the voltage whose polarity changes is applied by an alternating voltage.
(4)対向電極にドープする元素と同じ元素を含むシリ
コン電極を用いたことを特徴とする特許請求の範囲第1
項乃至第3項のいずれかに記載の半導体基板に対する不
純物のドーピング方法。
(4) Claim 1, characterized in that a silicon electrode containing the same element as that doped in the counter electrode is used.
A method for doping impurities into a semiconductor substrate according to any one of items 1 to 3.
JP12317386A 1986-05-27 1986-05-27 Impurity doping method for semiconductor substrate Granted JPS62279626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12317386A JPS62279626A (en) 1986-05-27 1986-05-27 Impurity doping method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12317386A JPS62279626A (en) 1986-05-27 1986-05-27 Impurity doping method for semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS62279626A true JPS62279626A (en) 1987-12-04
JPH0516656B2 JPH0516656B2 (en) 1993-03-05

Family

ID=14853991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12317386A Granted JPS62279626A (en) 1986-05-27 1986-05-27 Impurity doping method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62279626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220018A (en) * 1988-07-08 1990-01-23 M Setetsuku Kk Electrode structure for plasma processor
JP2014107278A (en) * 2012-11-22 2014-06-09 Shi Exaination & Inspection Ltd Method for manufacturing semiconductor device, substrate processing system, and substrate processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328378A (en) * 1976-08-27 1978-03-16 Handotai Kenkyu Shinkokai Method of plasma etching
JPS554937A (en) * 1978-06-27 1980-01-14 Fujitsu Ltd Dry etching method
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer
JPS57106120A (en) * 1980-12-24 1982-07-01 Fujitsu Ltd Manufacture of semiconductor device
JPS57197824A (en) * 1981-05-12 1982-12-04 Siemens Ag Method and device for filling impurity to semiconductor material
JPS57202726A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328378A (en) * 1976-08-27 1978-03-16 Handotai Kenkyu Shinkokai Method of plasma etching
JPS554937A (en) * 1978-06-27 1980-01-14 Fujitsu Ltd Dry etching method
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer
JPS57106120A (en) * 1980-12-24 1982-07-01 Fujitsu Ltd Manufacture of semiconductor device
JPS57197824A (en) * 1981-05-12 1982-12-04 Siemens Ag Method and device for filling impurity to semiconductor material
JPS57202726A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220018A (en) * 1988-07-08 1990-01-23 M Setetsuku Kk Electrode structure for plasma processor
JP2014107278A (en) * 2012-11-22 2014-06-09 Shi Exaination & Inspection Ltd Method for manufacturing semiconductor device, substrate processing system, and substrate processing device

Also Published As

Publication number Publication date
JPH0516656B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
Vial et al. Porous Silicon Science and Technology: Winter School Les Houches, 8 to 12 February 1994
JP3119693B2 (en) Semiconductor substrate manufacturing method and apparatus
US4465529A (en) Method of producing semiconductor device
US5597762A (en) Field-enhanced diffusion using optical activation
KR100204856B1 (en) Method for producing shallow junction in surface region of semiconductor substrate and apparatus therfor
JPH08255762A (en) Manufacture of semiconductor device
Kimerling et al. Injection‐stimulated dislocation motion in semiconductors
US4533831A (en) Non-mass-analyzed ion implantation
Ensinger Semiconductor processing by plasma immersion ion implantation
JPS62279626A (en) Impurity doping method for semiconductor substrate
Prokhorov et al. Laser solid-phase doping of semiconductors
JPH02222545A (en) Manufacture of thin film transistor
Myakon’kikh et al. Photovoltaic effect in a structure based on amorphous and nanoporous silicon formed by plasma immersion ion implantation
US9842958B2 (en) Ultrananocrystalline diamond contacts for electronic devices
JPH0376129A (en) Manufacture of electronic device using boron nitride
Lee et al. A new self‐limiting process for the production of thin submicron semiconductor films
Camm et al. Engineering ultra-shallow junctions using fRTP/sup TM
Werner et al. Crystallographic changes in electron pulse annealing of Ti-implanted GaP
JPH0786603A (en) Manufacture of semiconductor film
JPH01103832A (en) Plasma doping process
JPS5843899B2 (en) Method for forming transparent conductive film
JPH01120015A (en) Impurity doping method using plasma
JP2764422B2 (en) Method for manufacturing thin film transistor
JPS61141127A (en) Formation of active layer of compound semiconductor
Husein et al. Surface modification by plasma ion and ion beam implantation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees