JPS622778Y2 - - Google Patents

Info

Publication number
JPS622778Y2
JPS622778Y2 JP17561682U JP17561682U JPS622778Y2 JP S622778 Y2 JPS622778 Y2 JP S622778Y2 JP 17561682 U JP17561682 U JP 17561682U JP 17561682 U JP17561682 U JP 17561682U JP S622778 Y2 JPS622778 Y2 JP S622778Y2
Authority
JP
Japan
Prior art keywords
sealing layer
thermal expansion
substrate
synthetic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17561682U
Other languages
Japanese (ja)
Other versions
JPS5981040U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17561682U priority Critical patent/JPS5981040U/en
Publication of JPS5981040U publication Critical patent/JPS5981040U/en
Application granted granted Critical
Publication of JPS622778Y2 publication Critical patent/JPS622778Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【考案の詳細な説明】 本考案は、IC、トランジスタチツプをリード
線でセラミツク基板の接続端子に接続する式の防
湿処置が施された混成集積回路に関する。
[Detailed Description of the Invention] The present invention relates to a moisture-proof hybrid integrated circuit in which an IC or transistor chip is connected to a connection terminal of a ceramic substrate by a lead wire.

従来の混成集積回路は、第1図示のように、配
線基板a上に搭載したIC等のリード線接続部品
b及びリード線cを軟質シリコン樹脂又は硬質エ
ポキシ樹脂dで被覆して封止し、更に配線基板a
全体を別の樹脂eで被覆して形成されていた。し
かしながら、軟質シリコン樹脂は材料自体の熱膨
張係数が大きいため、急激な温度変化が連続的に
加わつた場合リード線が切断されたり、外装モー
ルド樹脂eとの接着性が弱く温度変化により外装
モールドがひび割れする等の不都合があつた。ま
た、エポキシ樹脂は、これとセラミツク基板の熱
膨張係数の差を補う弾力性が無いため、温度変化
の繰返しによりリード線cが切断する等の保都合
が存した。
In a conventional hybrid integrated circuit, as shown in the first diagram, lead wire connecting parts b such as ICs mounted on a wiring board a and lead wires c are coated and sealed with a soft silicone resin or a hard epoxy resin d. Furthermore, wiring board a
It was formed by covering the entire body with another resin e. However, since the material itself of soft silicone resin has a large coefficient of thermal expansion, the lead wires may break if sudden temperature changes are applied continuously, and the adhesiveness with the exterior mold resin e is weak and the exterior mold may be damaged due to temperature changes. There were some inconveniences such as cracking. Furthermore, since the epoxy resin does not have the elasticity to compensate for the difference in coefficient of thermal expansion between the epoxy resin and the ceramic substrate, there are disadvantages such as the lead wire c breaking due to repeated temperature changes.

本考案はかかる不都合の無い混成集積回路を提
供することをその目的としたもので、セラミツク
基板1上に配設されたリード線接続部品2及びリ
ード線3が無機質材料を含有する通気孔構造の合
成樹脂から成る第1封止層4と吸着剤粉末及び無
機質材料を含有する無気孔構造の合成樹脂から成
る第2封止層5とで順次被覆され、更に、その他
の部品6を搭載した基板全体が防湿性合成樹脂か
ら成る外装モールド7で被覆され、前記基板1、
第1封止層4、第2封止層5及び外装モールド7
各部の熱膨張係数は、前記基板1から順次増大す
るように選定され、隣接する各部の熱膨張係数の
間に大きな差がないようにされてなる。
The purpose of the present invention is to provide a hybrid integrated circuit free from such inconveniences, in which the lead wire connection parts 2 and the lead wires 3 disposed on the ceramic substrate 1 have a vent structure containing an inorganic material. A substrate that is sequentially coated with a first sealing layer 4 made of synthetic resin and a second sealing layer 5 made of a synthetic resin with a non-porous structure containing adsorbent powder and an inorganic material, and further has other components 6 mounted thereon. The entire body is covered with an exterior mold 7 made of moisture-proof synthetic resin, and the substrate 1,
First sealing layer 4, second sealing layer 5 and exterior mold 7
The coefficient of thermal expansion of each part is selected so as to increase sequentially from the substrate 1, so that there is no large difference between the coefficients of thermal expansion of adjacent parts.

第2図において、1はアルミナ等のセラミツク
基板で、該セラミツク基板1上には、リード線接
続部品2及びその他の部品6が搭載され、該部品
2と、該部品2の端子と基板1上の接続端子とを
接続するリード線3には第1封止層4及び第2封
止層5が順次被覆され、前記基板1全体には外装
モールド7が被覆されている。
In FIG. 2, reference numeral 1 denotes a ceramic substrate made of alumina or the like, and lead wire connection parts 2 and other parts 6 are mounted on the ceramic board 1. The lead wires 3 connecting the connection terminals are sequentially covered with a first sealing layer 4 and a second sealing layer 5, and the entire substrate 1 is covered with an exterior mold 7.

前記第1封止層4は無機質材料を含有する通気
孔構造の合成樹脂から成り、その熱膨張係数は無
機質材料の量によりセラミツク基板のそれの1.5
以内としたものであり、樹脂としては溶剤性樹脂
が適する。
The first sealing layer 4 is made of a synthetic resin with a vent structure containing an inorganic material, and its coefficient of thermal expansion is 1.5 that of the ceramic substrate depending on the amount of the inorganic material.
A solvent-based resin is suitable as the resin.

第2封止層5は吸着剤粉末及び無機質材料を含
有する無気泡構造の合成樹脂から成り、その熱膨
張係数は無機質材料の量により第1封止層4のそ
れの3倍以内とし、かつ外装モールド7のそれの
1/2以内としたものであり、樹脂として無溶剤性
樹脂が適する。この層5は熱膨張緩衝性と共に第
1封止層4を湿気から防護するものであり該層内
に浸入した湿気を吸着剤で吸収する。
The second sealing layer 5 is made of a synthetic resin with a cell-free structure containing adsorbent powder and an inorganic material, and its coefficient of thermal expansion is within three times that of the first sealing layer 4, depending on the amount of the inorganic material, and That of exterior mold 7
The amount should be within 1/2, and a solvent-free resin is suitable as the resin. This layer 5 has thermal expansion buffering properties and protects the first sealing layer 4 from moisture, and uses an adsorbent to absorb moisture that has entered the layer.

前記外装モールド7は防湿性樹脂例えばエポキ
シ樹脂から成る。
The exterior mold 7 is made of moisture-proof resin, such as epoxy resin.

前記構成によれば、第1封止層4、第2封止層
5及び外装モールド7各部の熱膨張係数はセラミ
ツク基板1に対し順次増大するように選定され、
セラミツク基板1と第1封止層4等隣接する各部
の熱膨張係数の間に大きな差がないようにしてい
る。この熱膨張係数の調整は樹脂中にシリカ等の
無機質材料の量により行なつている。
According to the above configuration, the coefficients of thermal expansion of each part of the first sealing layer 4, the second sealing layer 5, and the exterior mold 7 are selected so as to increase sequentially with respect to the ceramic substrate 1,
It is ensured that there is no large difference in the coefficient of thermal expansion of adjacent parts such as the ceramic substrate 1 and the first sealing layer 4. The coefficient of thermal expansion is adjusted by adjusting the amount of inorganic material such as silica in the resin.

かくして温度変化の著しい雰囲気に配置された
場合においてもリード線の断線が生ずることがな
く、また湿気によりIC等の部品の特性が劣化す
ることがない。
In this way, even when placed in an atmosphere with significant temperature changes, the lead wires will not break, and the characteristics of components such as ICs will not deteriorate due to moisture.

実施例 熱膨張係数が7×10-6/℃のアルミナ基板1上
に0.3mmφのリード線3としての金線で接続され
たICチツプ2と該リード線3とを埋没するよう
にシリカを85重量%混合して熱膨張係数が1×
10-5/℃付近に調整された溶剤性フエノール樹脂
で被覆し、150℃の温度で1時間焼付け第1封止
層4を形成した。
Example: On an alumina substrate 1 having a coefficient of thermal expansion of 7×10 -6 /°C, 85 silica is buried so as to embed the IC chip 2 connected with a gold wire as a lead wire 3 of 0.3 mmφ and the lead wire 3. When mixed by weight%, the thermal expansion coefficient is 1×
The first sealing layer 4 was formed by coating with a solvent-based phenolic resin adjusted to around 10 -5 /°C and baking at a temperature of 150°C for 1 hour.

次にアルミナ(40重量%)と活性炭(10重量
%)を混合して熱膨張係数が2〜3×10-5/℃に
調整されたエポキシ樹脂を第1封止層4上に塗布
し、100℃の温度で1.5時間焼付け、第2封止層5
を形成した。この焼付けの熱を利用して粉末エポ
キシ樹脂の中に基板を浸漬して樹脂を付着させ
150℃の温度で2時間焼付けて硬化させ3〜4×
10-5/℃の熱膨張係数の防湿モールド7を形成し
た。
Next, an epoxy resin mixed with alumina (40% by weight) and activated carbon (10% by weight) and whose thermal expansion coefficient was adjusted to 2 to 3 × 10 -5 /°C is applied on the first sealing layer 4, Bake at a temperature of 100℃ for 1.5 hours, second sealing layer 5
was formed. The heat of this baking is used to immerse the board in powdered epoxy resin to adhere the resin.
Baked at 150℃ for 2 hours to harden 3~4x
A moisture-proof mold 7 having a thermal expansion coefficient of 10 -5 /°C was formed.

以上のように形成された製品を、125℃に熱し
たシリコンオイル中に10分間保持して取り出し直
ちに−50℃に保持した低温槽に10分間保持する温
度サイクルを繰り返し100回行なつても外装モー
ルドにクラツク及びリード線の断線が生じなかつ
た。
The product formed as described above was placed in silicone oil heated to 125°C for 10 minutes, then immediately removed and placed in a low-temperature bath held at -50°C for 10 minutes. This temperature cycle was repeated 100 times, but no cracks were found in the exterior mold or breaks in the lead wires.

尚、シリコン樹脂を用いた従来のものは、20サ
イクル終了時に約半数に外装クラツクが、約5%
に断線が生じた。エポキシ樹脂の場合同じく20サ
イクルで外装クラツクがなかつたが断線が約8%
生じた。
In addition, with conventional products using silicone resin, approximately half of the cases have exterior cracks at the end of 20 cycles, and approximately 5% of cases have exterior cracks.
A disconnection occurred. In the case of epoxy resin, there was no crack on the exterior after 20 cycles, but about 8% of the wires were broken.
occured.

又、本考案品を2気圧、120℃の飽和蒸気中で
耐湿テストを行なつた結果、20時間のテストでは
異常がなかつた。これに対し従来のものは5時間
で絶縁劣化により半導体の電気特性に異常が発生
した。
Furthermore, the product of the present invention was subjected to a moisture resistance test in saturated steam at 2 atmospheres and 120°C, and no abnormalities were found during the 20 hour test. In contrast, in the conventional case, the electrical properties of the semiconductor became abnormal due to insulation deterioration within 5 hours.

このように本考案によるときは、セラミツク基
板1、第1封止層4、第2封止層5及び外装モー
ルド7等の各部の熱膨張係数を前記基板1から順
次増大するように選定され、隣接する各部の熱膨
張係数の間に大きな差がないようにされたので、
温度変化が連続的に加わつてもリード線が切断さ
れたり、湿気による特性の劣化などが生じない等
の混成集積回路が得られる等の効果がある。
In this way, according to the present invention, the coefficients of thermal expansion of each part of the ceramic substrate 1, the first sealing layer 4, the second sealing layer 5, the exterior mold 7, etc. are selected to increase sequentially from the substrate 1, Since there was no large difference between the thermal expansion coefficients of adjacent parts,
There are effects such as the ability to obtain a hybrid integrated circuit that does not cause lead wires to break or characteristics to deteriorate due to moisture even if temperature changes are continuously applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの拡大された一部截断側面
図、第2図は本考案の1実施例の拡大された一部
截断側面図を示す。 1……セラミツク基板、2……リード線接続部
品、3……リード線、4……第1封止層、5……
第2封止層、6……その他の部品、7……外装モ
ールド。
FIG. 1 shows an enlarged, partially cut-away side view of a conventional device, and FIG. 2 shows an enlarged, partially cut-away side view of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Ceramic substrate, 2...Lead wire connection parts, 3...Lead wires, 4...First sealing layer, 5...
Second sealing layer, 6...Other parts, 7...Exterior mold.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] セラミツク基板1上に配設されたリード線接続
部品2及びリード線3が無機質材料を含有する通
気孔構造の合成樹脂から成る第1封止層4と吸着
剤粉末及び無機質材料を含有する無気孔構造の合
成樹脂から成る第2封止層5とで順次被覆され、
更に、その他の部品6を搭載した基板全体が防湿
性合成樹脂から成る外装モールド7で被覆され、
前記基板1、第1封止層4、第2封止層5及び外
装モールド7各部の熱膨張係数は、前記基板1か
ら順次増大するように選定され、隣接する各部の
熱膨張係数の間に大きな差がないようにされてな
る混成集積回路。
A first sealing layer 4 made of a synthetic resin with a vent structure containing an inorganic material and a non-porous structure containing an adsorbent powder and an inorganic material are arranged on a ceramic substrate 1, and a lead wire connecting part 2 and a lead wire 3 are arranged on the ceramic substrate 1. sequentially coated with a second sealing layer 5 made of a synthetic resin with a structure,
Furthermore, the entire board on which other parts 6 are mounted is covered with an exterior mold 7 made of moisture-proof synthetic resin,
The thermal expansion coefficients of each part of the substrate 1, the first sealing layer 4, the second sealing layer 5, and the exterior mold 7 are selected so as to increase sequentially from the substrate 1, and there is a difference between the thermal expansion coefficients of adjacent parts. A hybrid integrated circuit in which there are no major differences.
JP17561682U 1982-11-22 1982-11-22 hybrid integrated circuit Granted JPS5981040U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17561682U JPS5981040U (en) 1982-11-22 1982-11-22 hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17561682U JPS5981040U (en) 1982-11-22 1982-11-22 hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JPS5981040U JPS5981040U (en) 1984-05-31
JPS622778Y2 true JPS622778Y2 (en) 1987-01-22

Family

ID=30382024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17561682U Granted JPS5981040U (en) 1982-11-22 1982-11-22 hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPS5981040U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796043B2 (en) * 1993-07-30 1998-09-10 京セラ株式会社 Electronic components
JP2014116409A (en) * 2012-12-07 2014-06-26 Denso Corp Electronic device

Also Published As

Publication number Publication date
JPS5981040U (en) 1984-05-31

Similar Documents

Publication Publication Date Title
US5165956A (en) Method of encapsulating an electronic device with a silicone encapsulant
CN108604589A (en) Semiconductor device and its manufacturing method
JPS622778Y2 (en)
US6265768B1 (en) Chip scale package
JPS6077446A (en) Sealed semiconductor device
JPS60154543A (en) Semiconductor device using synthetic resin substrate
JPS59154054A (en) Wire and semiconductor device using it
JPH0337308B2 (en)
JPH0142356Y2 (en)
EP0893823B1 (en) Semiconductor bonding and sealing structure
JPS61230344A (en) Resin-sealed semiconductor device
JP3147157B2 (en) Electronic circuit device including semiconductor element
JP2555519Y2 (en) Surface-mount resin-encapsulated semiconductor device
JPH0590448A (en) Hybrid integrated circuit
JPS6167247A (en) Hybrid integrated circuit
JPH0210858A (en) Resin-sealed semiconductor device
EP0412608A1 (en) Semiconductor device
JPS63143850A (en) Semiconductor device
JPS5855673Y2 (en) Electronic component mounting equipment
JPS59763Y2 (en) hybrid integrated circuit
JPH04252041A (en) Manufacture of hybrid integrated circuit
JPS6269538A (en) Resin sealed semiconductor device
JPH0493052A (en) Semiconductor integrated circuit device
JPS63316462A (en) Semiconductor module
JPS62108554A (en) Hybrid integrated circuit device and manufacture thereof