JPS6227613A - Position detector - Google Patents

Position detector

Info

Publication number
JPS6227613A
JPS6227613A JP16716985A JP16716985A JPS6227613A JP S6227613 A JPS6227613 A JP S6227613A JP 16716985 A JP16716985 A JP 16716985A JP 16716985 A JP16716985 A JP 16716985A JP S6227613 A JPS6227613 A JP S6227613A
Authority
JP
Japan
Prior art keywords
measured
light
photoelectric
reflected
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16716985A
Other languages
Japanese (ja)
Inventor
Kenichi Kodama
賢一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP16716985A priority Critical patent/JPS6227613A/en
Publication of JPS6227613A publication Critical patent/JPS6227613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect the position of a surface to be measured accurately, by the constitution, in which two luminous fluxes are projected on the surface to be measured through symmetrical light paths with respect to a specified plane and the reflected light beams of the two luminous fluxes from the surface to be measured are received. CONSTITUTION:Two luminous fluxes 1r and 1l intersect at the same point in a specified plane, which is approximately parallel with a surface to be measured 3. The luminous fluxes pass symmetrical light paths with respect to a line AX, which includes the same point and is vertical to the specified plane. One of the reflected light beams of the luminous fluxes 1r and 1l from the surface to be measured 3 is received by a first photoelectric detector 5r. The other reflected light beam from the surface to be measured 3 is received by a second photoelectric detector 5l. Based on the photoelectric outputs of both detectors 5r and 5l, the position signals of the surface to be measured 3 are outputted from position detecting circuits. The luminous fluxes 1r and 1l are projected in the slant directions on the surface to be measured 3. Therefore, the same effect is received from the surface to be measured 3. Thus the position can be accurately detected without the effect of the state of the surface to be measured 3 by using the position signals from the position detecting circuits.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、被測定面に斜めに光線を照射させ、該被測定
面からの反射光を受光し、該反射光の受光位置の変化か
ら該被測定面に略垂直な方向における該被測定面の位置
を検出する位置検出装置に関するもので、顕微鏡等の被
測定面の位置検出に用いられるものである。
Detailed Description of the Invention (Technical Field of the Invention) The present invention obliquely irradiates a surface to be measured with a light beam, receives reflected light from the surface to be measured, and detects the difference from the change in the receiving position of the reflected light. The present invention relates to a position detection device that detects the position of a surface to be measured in a direction substantially perpendicular to the surface, and is used for detecting the position of a surface to be measured in a microscope or the like.

(発明の背景) 従来、この種の位置検出装置としては、例えば第11図
に示すようなものがある。
(Background of the Invention) Conventionally, as this type of position detection device, there is one shown in FIG. 11, for example.

第11図に示す従来の位置検出装置は、光線1を対物レ
ンズ2により被測定面31:、に斜めに入射させ、該被
測定面3からの反射光を対物レンズ2と集光レンズ4と
により2分割光電素子5上に集光させ、該2分割光電素
子5の各光電素子5a。
The conventional position detection device shown in FIG. The light is focused on the two-split photoelectric element 5 by the two-split photoelectric element 5, and each photoelectric element 5a of the two-split photoelectric element 5 is focused.

5bからの出力を差動増幅器6に入力させて成り、被測
定面3を対物レンズ2の光軸Axにモ行に動かすと集光
点Pが直線Lllを移動することから、該集光点Pの動
きにより被測定面3の合無位置を検出するように構成し
たものである。
5b is input to the differential amplifier 6, and when the surface to be measured 3 is moved in the direction of the optical axis Ax of the objective lens 2, the focal point P moves along the straight line Lll. The device is configured to detect the matching/non-matching position of the surface to be measured 3 based on the movement of P.

そして、この位置検出装置では、被測定面3を対物レン
ズ2の光軸Axにモ行に動かした際に、被測定面3が図
の実線で示す合焦位置にあるときには、集光点Pは2分
割光電素f5の中央、すなわち光電素子5a、5bの境
界部に位置し、被測定面3が点線位置3′にあるときに
は、集光点PはP′点に位置するので、被測定面3の位
置に応じて差動増幅器6からは第12図に示すような出
力信号が得られる。ここで、第12図において横軸は被
測定面3の位置Zを表わしており、縦軸は差動増幅器6
の出力信号Vを表わしている。
In this position detection device, when the surface to be measured 3 is moved in the direction of the optical axis Ax of the objective lens 2 and the surface to be measured 3 is at the in-focus position shown by the solid line in the figure, the focal point P is located at the center of the two-divided photoelectric element f5, that is, at the boundary between the photoelectric elements 5a and 5b, and when the surface to be measured 3 is at the dotted line position 3', the condensing point P is located at the point P', so the Depending on the position of the surface 3, an output signal as shown in FIG. 12 is obtained from the differential amplifier 6. Here, in FIG. 12, the horizontal axis represents the position Z of the surface to be measured 3, and the vertical axis represents the differential amplifier 6.
represents the output signal V of .

したがって、差動増幅器6の出力信号が零のときには被
測定面3が第11図の実線で示すような合焦位置にある
と判別でき、その出力信号がプラスの出力あるいはマイ
ナスの出力のときには被測定面3が合焦位置からずれて
いる方向を判別できるように成っている。
Therefore, when the output signal of the differential amplifier 6 is zero, it can be determined that the surface to be measured 3 is in the focused position as shown by the solid line in FIG. The direction in which the measurement surface 3 is deviated from the in-focus position can be determined.

しかしながら、このような従来の位置検出装置では、(
1)第13図(a)に示すように光線lが被測定面3に
に形成されたパターンPTのエツジに当たっている場合
には、パターンFT面と被測定面3とは反射率が異なっ
ているので、たとえ被測定面3がL記合焦位置にあり、
第14図(a)に示すように前記集光点Pが2分割光電
素f5の中央に位置している場合でも、前記差動増幅器
6からの出力信号は零にはならず、大きな位置検出誤差
が生じてしまう、(2)第13図(b)に示すように被
測定面3I:、に薄くレジストRが塗布されており、光
線1がレンズ)Rに当たっている場合には、レンズ)R
の厚さむらによるf渉縞が生じてしまう虞れがあり、こ
の場合にはたとえ被測定面3がL記合焦位置にあり、第
14図(b)に示すように前記集光点Pが2分割光電素
f5の中央に位置している場合でも、前記差動増幅器6
からの出力信号は零にはならず、大きな位置検出誤差が
生じてしまう、(3)第13図(C)に示すように被測
定面3が前記対物レンズ2の焦点からずれた位置で、か
つ該対物レンズ2の光軸Axと成す角度が直角な状態(
実線で示す状IE)から少し傾いている場合には、第1
4図(C)に示すように、2分割光電素子5 l:にお
ける集光点Pの位置が実線の位置から破線の位置にずれ
てしまうので、差動増幅器6から正しい出力信号が得ら
れず、位置検出誤差が生じてしまうという問題点があっ
た。
However, in such conventional position detection devices, (
1) As shown in FIG. 13(a), when the light beam l hits the edge of the pattern PT formed on the surface to be measured 3, the pattern FT surface and the surface to be measured 3 have different reflectances. Therefore, even if the surface to be measured 3 is at the focus position indicated by L,
As shown in FIG. 14(a), even when the focal point P is located at the center of the two-split photoelectric element f5, the output signal from the differential amplifier 6 does not become zero, and a large position detection (2) As shown in FIG. 13(b), if a thin resist R is applied to the surface to be measured 3I, and the light beam 1 hits the lens )R, the error will occur.
In this case, even if the surface to be measured 3 is at the focal position indicated by L, the focal point P as shown in FIG. is located at the center of the two-divided photoelement f5, the differential amplifier 6
(3) At a position where the surface to be measured 3 is deviated from the focus of the objective lens 2, as shown in FIG. 13(C), and the angle formed with the optical axis Ax of the objective lens 2 is a right angle (
If it is slightly tilted from the solid line (IE), the first
As shown in Fig. 4 (C), the position of the condensing point P in the two-split photoelectric element 5l shifts from the position of the solid line to the position of the broken line, so the correct output signal cannot be obtained from the differential amplifier 6. However, there is a problem in that position detection errors occur.

(発明の目的) 本発明は、このような従来の問題点に着目して成された
もので、被測定面の状態に影響を受けずに被測定面の位
置を正確に検出できる位置検出装置を提供することを目
的としている。
(Object of the Invention) The present invention has been made by focusing on such conventional problems, and provides a position detection device that can accurately detect the position of a surface to be measured without being affected by the state of the surface to be measured. is intended to provide.

(発明の概要) かかる目的を達成するための本発明の要旨は、被測定面
に斜めに光線を照射させ、該被測定面からの反射光を受
光し、該反射光の受光位置の変化から該被測定面に略垂
直な方向における該被測定面の位置を検出する位置検出
装置において、前記被測定面と略平行な所定平面内の同
一点で交わり、該同一点を含み該所定平面に垂直な線に
関して対称な光路を通る2つの光束により該被測定面を
2方向から照射する照射光学系と、該2つの光束の−・
方が該被測定面で反射された反射光を受光する第1光電
検出器と、 該2つの光束の他方が該被測定面で反射された反射光を
受光する第2光電検出器と、 該第1および第2光電検出器の各光電出力に基づいて前
記所定平面に対する該被測定面の位置信号を出力する位
置検出回路とを備えて成ることを特徴とする位置検出装
置に存する。
(Summary of the Invention) The gist of the present invention for achieving the above object is to irradiate a surface to be measured with a light beam obliquely, receive reflected light from the surface to be measured, and detect changes in the receiving position of the reflected light. In a position detection device that detects the position of the surface to be measured in a direction substantially perpendicular to the surface to be measured, the surface of the surface to be measured intersects with the surface to be measured at the same point within a predetermined plane that is substantially parallel to the surface to be measured, and includes the same point and lies within the predetermined plane. an irradiation optical system that irradiates the surface to be measured from two directions with two light beams passing through symmetrical optical paths with respect to a perpendicular line;
a first photoelectric detector, one of which receives the reflected light reflected by the surface to be measured; a second photoelectric detector, the other of the two light fluxes receives the reflected light reflected by the surface to be measured; and a position detection circuit that outputs a position signal of the surface to be measured with respect to the predetermined plane based on the photoelectric outputs of the first and second photodetectors.

そして、L記位置検出装置では、前記2つの光束は、前
記所定平面に垂直な線に関して対称な光路を通って前記
被測定面Eに斜めから入射し、該被測定面で同じ影響を
受けるので、前記位置検出回路からの位置信号により被
測定面の状態に影響を受けずに被測定面の位置を正確に
検出できるように成っている。
In the L position detection device, the two light beams obliquely enter the surface to be measured E through optical paths that are symmetrical with respect to a line perpendicular to the predetermined plane, and are subject to the same influence on the surface to be measured. According to the position signal from the position detection circuit, the position of the surface to be measured can be accurately detected without being affected by the state of the surface to be measured.

(実施例) 以下、図面に基づいて本発明の各実施例を説明する。な
お、各実施例の説明において同様の部位には同一・符号
を付して重複し、た説明を省略する。
(Example) Hereinafter, each example of the present invention will be described based on the drawings. In addition, in the description of each embodiment, similar parts are given the same reference numerals, redundant descriptions are omitted.

第1図から第7図は本発明の第1実施例を示しており、
第1図は第1実施例に係る位置検出装置を示す概略的な
光学系の配置図である。
1 to 7 show a first embodiment of the present invention,
FIG. 1 is a schematic layout diagram of an optical system showing a position detection device according to a first embodiment.

i1図に示すように、対物レンズ2の光軸Axに関して
対称な位置にハーフミラ−7!;L、7rが配置されて
おり、該ハーフミラ−7fL、7rには平行な入射光1
1、lrがそれぞれ入射している。したがって、この2
つの入射光1旦、lrはハーフミラ−7fL、7rによ
って光軸Axと平行になるように反射され、対物レンズ
2の焦点位置を含む光軸Axに垂直な所定平面内の同一
点に同じスポットサイズで集光するように成っている。
As shown in Figure i1, the half mirror 7 is placed at a symmetrical position with respect to the optical axis Ax of the objective lens 2! ; L, 7r are arranged, and the parallel incident light 1 is placed on the half mirrors 7fL, 7r.
1 and lr are respectively incident. Therefore, these two
Once the two incident lights are reflected, lr is reflected by the half mirrors 7fL and 7r so as to be parallel to the optical axis Ax, and the spot size is the same at the same point within a predetermined plane perpendicular to the optical axis Ax that includes the focal position of the objective lens 2. It is designed to focus light.

光軸Axに垂直に被測定面3が配置されており、該被測
定面3は光軸Axに平行に移動可能である。
A surface to be measured 3 is arranged perpendicularly to the optical axis Ax, and the surface to be measured 3 is movable parallel to the optical axis Ax.

ここで、光軸Ax(前記所定平面に垂直な線)に関して
対称な光路を通る2つの光束により該被測定面3を2方
向から照射する照射光学系が対物レンズ2、ハーフミラ
−7g、、7rにより構成されている。
Here, an irradiation optical system that irradiates the measured surface 3 from two directions with two light beams passing through optical paths symmetrical with respect to the optical axis Ax (a line perpendicular to the predetermined plane) includes an objective lens 2, half mirrors 7g, 7r. It is made up of.

対物レンズ2の瞳位置には被測定面3からの散乱光を遮
り、該散乱光が位置検出に与、える悪影響を軽減するる
ために絞り8r、8文が配置されている。該絞り8r、
8見は入射光IJ1.1rの被測定面3かもの正反射光
をぎりぎりで通すような大きさに設定されている。
A diaphragm 8r is arranged at the pupil position of the objective lens 2 in order to block the scattered light from the surface to be measured 3 and to reduce the adverse effects of the scattered light on position detection. The aperture 8r,
The size of the 8th lens is set to just barely allow the regular reflection of the incident light IJ1.1r from three surfaces to be measured to pass through.

絞り8文、8rの後方には、ハーフミラ−7見、7rを
それぞれ透過した被測定面3からの反射光を2分割光電
素7−51.5rLに集光させる集光レンズ4J1.4
rが配置されている。
Behind the apertures 8 and 8r, there is a condenser lens 4J1.4 that condenses the reflected light from the surface to be measured 3 that has passed through the half mirrors 7 and 7r onto a two-split photoelement 7-51.5rL.
r is placed.

2分割光電麦7・5rは2つの光電素%50r、51r
から成っており、2分割光電素子5文も2つの光電素″
:f50fL、51!lから成っている。
2-split photoelectric barley 7/5r has two photoelectric elements %50r, 51r
It consists of 2 photoelectric elements, and the 5 parts are also composed of 2 photoelectric elements.''
:f50fL, 51! It consists of l.

2分割光電素′f−5rの光電素7−5Or、51rか
らの各光電出力S1.S2および2分割光電素子5交の
光′rri、素子50見、51文からの各光電出力S4
.S3は第2図に示す位置検出回路20で処理される。
Each photoelectric output S1. S2 and each photoelectric output S4 from the 5-cross light 'rri of the 2-split photoelectric element, 50 elements, and 51 sentences
.. S3 is processed by the position detection circuit 20 shown in FIG.

第2図に示す位置検出回路20の減算器21のプラス端
子には光電出力S1が、そのマイナス端子には光電出力
S2が、減算器22のマイナス端子には光電出力S3が
、そのプラス端T−には光電出力S4がそれぞれ入力さ
れている。光電出力S1、S2は加算器23に、光電出
力S3、S4は加算器24にそれぞれ入力されている。
The positive terminal of the subtracter 21 of the position detection circuit 20 shown in FIG. The photoelectric output S4 is input to - respectively. The photoelectric outputs S1 and S2 are input to an adder 23, and the photoelectric outputs S3 and S4 are input to an adder 24, respectively.

減算器21の出力端Tは割算器25の分子側端子に、加
算器23の出力端子は割算器25の分母側端子に、減算
器22の出力端子は割算器26の分子−側端子に、加算
器24の出力端fは割算器26の分母側端子にそれぞれ
接続されている。
The output terminal T of the subtracter 21 is connected to the numerator side terminal of the divider 25, the output terminal of the adder 23 is connected to the denominator side terminal of the divider 25, and the output terminal of the subtractor 22 is connected to the numerator side terminal of the divider 26. The output terminal f of the adder 24 is connected to the denominator side terminal of the divider 26, respectively.

割算器25の出力端子および割算器26の出力端子は加
算器27の入力端子に接続されており、該加算器27か
らは前記被測定面3の位置を表わす位置信号Sが出力さ
れるように成っている。
The output terminal of the divider 25 and the output terminal of the divider 26 are connected to the input terminal of an adder 27, and the adder 27 outputs a position signal S representing the position of the surface to be measured 3. It is made up like this.

上記構成を有する第1実施例の位置検出装置では、入射
光1!;L、1rはハーフミラ−7fL、7rで反射さ
れた後対物レンズ2により集光され、被測定面3に照射
される。
In the position detection device of the first embodiment having the above configuration, the incident light 1! ; L and 1r are reflected by the half mirrors 7fL and 7r, then focused by the objective lens 2, and irradiated onto the surface 3 to be measured.

入射光IJJは、被測定面3で反射された後、対物レン
ズ2、ハーフミラ−7rおよび絞り8文を通う1歩光レ
ンズ4すにより2分割光1「憲子5見上に集光される。
After the incident light IJJ is reflected by the surface to be measured 3, it passes through the objective lens 2, the half mirror 7r, and the diaphragm 8, and is condensed onto two divided lights 1 and 5 by the single-step light lens 4.

なお、散乱光の大半は絞り8見によりけられ、2分;1
光電素了−5文には到達しなt/)。
In addition, most of the scattered light is eclipsed by the aperture 8, and is 2 minutes;
I haven't reached the 5th sentence of Koden Soryo (t/).

一方、入射光1rは、被測定面3で反射された後、対物
レンズ2およびハーフミラ−7文を通っテ集光レンズ4
rにより2分;1光電素′f−5r上に集光される。な
お、散乱光の大半は絞り8rによりけられ、2分割光電
素T−5rには到達しないので、該散乱光が位置検出に
午える影響が軽減されている。
On the other hand, the incident light 1r is reflected by the surface to be measured 3 and then passes through the objective lens 2 and the half mirror 7.
r for 2 minutes; the light is focused on one photoelement 'f-5r. Note that most of the scattered light is filtered out by the aperture 8r and does not reach the two-split photoelectric element T-5r, so that the influence of the scattered light on position detection is reduced.

第1図の実線で示すように、被測定面3が前記所定乎面
に位置しているとき(被測定面3が合焦位置にあるとき
)には、入射光tiは2分割光電素子5交の中央に、入
射光1rは2分割光電素子5rの中央にそれぞれ集光さ
れている。このときの各入射光1見、1rの集光位置が
集光点P見、Prでそれぞれ示されている。
As shown by the solid line in FIG. 1, when the surface to be measured 3 is located on the predetermined plane (when the surface to be measured 3 is in the in-focus position), the incident light ti passes through the two-split photoelectric element 5. At the center of the intersection, the incident light 1r is focused on the center of the two-split photoelectric element 5r. The condensing positions of each of the incident lights 1 and 1r at this time are shown as condensing points P and Pr, respectively.

被測定面3を光軸Axに平行に移動させると、入射光I
L;L、1rの各集光点は直線り見、Lr上を移動する
0例えば、第1図の破線で示すように、被測定面3が前
記所定平面より対物レンズ2寄りの位置3′に位置して
いるときには、入射光19、、lr+7)各集光点はP
l’、Pr’である。
When the surface to be measured 3 is moved parallel to the optical axis Ax, the incident light I
L: Each condensing point of L and 1r is viewed in a straight line and moves on Lr. For example, as shown by the broken line in FIG. When the incident light 19,,lr+7) is located at P
l', Pr'.

このように被測定面3の位置に応じて入射光1M、1r
の各集光点の位置が移動し、この入射光1文、lrの各
集光点の位置に応じた光電出方が2分割光電素子5!;
L、2分割光電素子5rの各光電素子から出力される。
In this way, depending on the position of the surface to be measured 3, the incident light 1M, 1r
The position of each condensing point of this incident light moves, and the way of photoelectric output according to the position of each condensing point of this incident light is divided into two photoelectric elements 5! ;
It is output from each photoelectric element of L and two-split photoelectric element 5r.

2分割光電素子5rの光電素子50r、51rからの各
光電出力S1.S2は位置検出回路2゜の減算器21お
よび加算器23に送られ、該減算器21は光電出力Sl
から光電出力s2を減算して(Sl−52)の信号を出
力し、加算器23は光電出力Slに光電出力S2を加算
して(St+52)の信号を出力する。
Each photoelectric output S1. from the photoelectric elements 50r, 51r of the two-divided photoelectric element 5r. S2 is sent to the subtracter 21 and adder 23 of the position detection circuit 2°, and the subtracter 21 receives the photoelectric output Sl
The adder 23 subtracts the photoelectric output s2 from the photoelectric output s1 to output a signal of (Sl-52), and the adder 23 adds the photoelectric output S2 to the photoelectric output Sl and outputs a signal of (St+52).

減算器21、加算器23からの各出力信号は割算器25
に送られ、割算器25は(Sl−32)の信号を(S1
+52)の信号で割り、(Sl−32)/ (S1+S
2)の信号を出力する。
Each output signal from the subtracter 21 and adder 23 is sent to the divider 25.
The divider 25 converts the signal (Sl-32) into (S1
+52) signal, (Sl-32)/(S1+S
2) Outputs the signal.

一方、2分割光電素子5fLの光電素7−stx、50
文からの光’+t=出力S3、S4は位置検出回路20
の減算器22および加算器24に送られ、減算器22は
光電出力S4から光電出力S3を減算して(S4−S3
)の信号を出力し、加算器24は光電出力S4に光電出
力s3を加算して(S4+33)の信号を出力する。
On the other hand, photoelectric element 7-stx of 2-split photoelectric element 5fL, 50
Light from text'+t=outputs S3 and S4 are position detection circuit 20
The subtracter 22 subtracts the photoelectric output S3 from the photoelectric output S4 to obtain (S4-S3).
), and the adder 24 adds the photoelectric output s3 to the photoelectric output S4 to output a signal (S4+33).

減算器22.加算器24からの各出力は割算器26に送
られ、割算器26は(S4−53)の信号を(S4+3
3)(7)信号で割り、(s4−S3)/ (S4+5
3)の信号を出力する。
Subtractor 22. Each output from the adder 24 is sent to the divider 26, and the divider 26 converts the signal (S4-53) into (S4+3
3) (7) Divide by the signal, (s4-S3)/(S4+5
Output the signal of 3).

割算器25、割算器26からの各出力信号は加算器27
に送られ、該加算器27は両人カ信号を加算し1位l信
号S (S= (Sl−52)/(S 1+S2)+ 
(S4−S3)/ (S4+83))を出力する。
Each output signal from the divider 25 and the divider 26 is sent to the adder 27.
The adder 27 adds the signals of both people and obtains the first l signal S (S= (Sl-52)/(S1+S2)+
(S4-S3)/(S4+83)) is output.

この位置信号Sの出力波形は、第12図で示すようなL
記従来例のものと同様であり、この位置信号Sにより被
測定面3の位置を検出することができる。すなわち、被
測定面3が丘記合焦位置にあるときには位置信号Sは零
となるので、該位置信号Sが零となるように被測定面3
を光軸Axに乎行に移動させればよい。
The output waveform of this position signal S is L as shown in FIG.
This is similar to the conventional example described above, and the position of the surface to be measured 3 can be detected using this position signal S. That is, when the surface to be measured 3 is at the focal position, the position signal S becomes zero, so the surface to be measured 3 is adjusted so that the position signal S becomes zero.
What is necessary is to move it toward the optical axis Ax.

なお、この位置信号Sはと述したように割算器25、割
算器26からの各出力信号を加算したものであるので、
この位置信号Sはト記従来例のものよりも感度が良くな
っている。
Note that this position signal S is the sum of the output signals from the divider 25 and the divider 26, as described above.
This position signal S has better sensitivity than that of the conventional example.

さらに、割算器25において(Sl−32)を(S1+
32)で割って規格化していると共に割算器26におい
て(S4−53)を(S4+33)で割って規格化して
いるので、被測定面3の反射率が異なっても位置検出精
度がばらつくことはない。
Furthermore, the divider 25 converts (Sl-32) into (S1+
32) and normalize it by dividing (S4-53) by (S4+33) in the divider 26, so even if the reflectance of the surface to be measured 3 differs, the position detection accuracy will vary. There isn't.

また2本の入射光11とlrの強度が異なっても、また
2分割光電素子5rと5交の感度特性が異なっても位置
検出精度がばらつくことはない6次に、上記第1実施例
において、第3図に示すようにパターンFTが形成され
た被測定面3を用い1合焦位置にある被測定面3が図の
矢印方向に移動することにより入射光11、lrがパタ
ーンFTのエツジ部分に当たった場合におけるト記第1
実施例の動作について説明する。ここでパターンFT面
と被測定面3の反射率は異なっており、パターンFTの
厚さは入射光1M、1rの焦点深度に比してF分小さい
ものとする。
Furthermore, even if the intensities of the two incident lights 11 and lr are different, and even if the sensitivity characteristics of the two-split photoelectric element 5r and the five-crossing are different, the position detection accuracy will not vary. As shown in FIG. 3, when the surface to be measured 3 on which the pattern FT is formed is moved in the direction of the arrow in the figure, the surface to be measured 3 at one focal position moves in the direction of the arrow in the figure, so that the incident light 11, lr is focused on the edge of the pattern FT. Part 1 of G.
The operation of the embodiment will be explained. Here, it is assumed that the reflectance of the pattern FT surface and the surface to be measured 3 are different, and the thickness of the pattern FT is smaller by F than the depth of focus of the incident lights 1M and 1r.

第3図は入射光IJIL、lrの焦点がパターンFTの
エツジ部分に当たっている場合であるが、該入射光1見
、lrはその焦点でもある大きさくスポットサイズ)を
有している。したがって、第3図に示すように入射光線
11.1rがその焦点位置でパターンFTのエツジ部分
に当たっている場合には、該入射光1r、11の集光点
Pr。
FIG. 3 shows a case where the focal point of the incident light IJIL, lr hits the edge portion of the pattern FT, and the incident light IJIL, lr has a large spot size which is also the focal point. Therefore, when the incident light beam 11.1r hits the edge portion of the pattern FT at its focal position as shown in FIG. 3, the focal point Pr of the incident light beams 1r and 11.

Plは第4図(a)、(b)に示すように2分割光電素
子5r、2分割光電素子5文の中央部に位置しているが
、2分割光電素子5rの光電素7−5 Orおよび2分
割光電素′f51の光電素T−51見はパターンFTか
らの反射光を、2分割光電素子5rの光電素子51rお
よび2分割光′屯素f5文の光電素子50fLは、パタ
ーンFTのr地にあたる被測定面3そのものからの反射
光をそれぞれ受光している。
As shown in FIGS. 4(a) and 4(b), Pl is located in the center of the 2-split photoelectric element 5r and the 2-split photoelectric element 5, but the photoelectric element 7-5 Or of the 2-split photoelectric element 5r The photoelectric element T-51 of the two-split photoelectric element 'f51 receives the reflected light from the pattern FT, and the photoelectric element 51r of the two-split photoelectric element 5r and the photoelectric element 50fL of the two-split photoelectric element f5 receive the reflected light from the pattern FT. The reflected light from the surface to be measured 3 itself, which is on the r ground, is received.

したがって、被測定面3が合焦位置にあり、前記集光点
Pr、PRが2分割光’iTi、素’)5r、2分割光
電素)51の中央部に位置しているにも拘らず、パター
ンFTと被測定面3との反射率の相違により光電出力S
1と光電出力S2とが異なり、また光電出力S3と光電
出力S4とが異なっている。
Therefore, even though the surface to be measured 3 is in the focused position and the condensing points Pr and PR are located at the center of the two-split beam 'iTi, element') 5r and the two-split photoelectric element) 51, , due to the difference in reflectance between the pattern FT and the surface to be measured 3, the photoelectric output S
1 and the photoelectric output S2 are different, and the photoelectric output S3 and the photoelectric output S4 are different.

このため、被測定面3が第3図の矢印に示すX方向に移
動した際における前記割算器251割算器26からの出
力信号(SL−S2)/ (S1+52)、(S4−5
3)/ (S4+53)は第5図(a) 、 (b)に
示すように変化する。ここで横軸は被Δ14定面3の位
置を表わしており、入射光l交、1rの焦点の位置に被
測定面3LのパターンPTのエツジ部分が当たっている
ときに、割算器25、割算器26の各出力信号には互い
に逆方向に突出した角状の乱れが生じてしまう、第4図
(a)、(b)はそれぞれ第5図(a)、(b)上に生
じた角状の乱れの頂点の部分(エツジ位置Xi)に対応
している。
Therefore, the output signals from the divider 251 and the divider 26 when the surface to be measured 3 moves in the X direction shown by the arrow in FIG.
3)/(S4+53) changes as shown in FIGS. 5(a) and (b). Here, the horizontal axis represents the position of the Δ14 constant surface 3, and when the edge portion of the pattern PT on the surface to be measured 3L hits the focal point of the incident light 1r, the divider 25, In each output signal of the divider 26, angular disturbances protruding in mutually opposite directions occur. FIGS. 4(a) and (b) are similar to those in FIGS. 5(a) and (b), respectively. This corresponds to the apex portion (edge position Xi) of the angular disturbance.

しかし、割算器25、割算器26の各出力信号は加算器
27により加算されるので、該加算器27から構成され
る装置信号Sは、h配色状の乱れがWいに相殺し合い第
5図(C)のように乱れのない安定した信号となる。
However, since the respective output signals of the divider 25 and the divider 26 are added by the adder 27, the device signal S composed of the adder 27 is generated in such a way that the disturbances in the color scheme cancel each other out. As shown in Figure 5 (C), a stable signal with no disturbances is obtained.

同図における出力信号Sの段差(偏差電圧Vp)は被測
定面3七のパター7FTの厚さに相当している。
The level difference (deviation voltage Vp) of the output signal S in the figure corresponds to the thickness of the putter 7FT on the surface to be measured 37.

したがって、L記構成を有する位置検出装置では、入射
光1!;L、lrの焦点がパターンFTのエツジ部分に
当たっても、被測定1m3の位置を誤差なく検出するこ
とができる。
Therefore, in the position detection device having the configuration L, the incident light 1! Even if the focus of L and lr hits the edge portion of pattern FT, the position of 1 m3 to be measured can be detected without error.

また、第13図(b)に示すようにレジストRが薄く塗
布された被測定面3を用い、第3図に示した場合と同様
に入射光1誌、1rの焦点がレジストRにちたった場合
には、レンズ)Rの厚さむらによるモ渉編が生じてしま
う虞れがある。
In addition, as shown in FIG. 13(b), using the surface to be measured 3 coated with a thin resist R, the focus of the incident light 1, 1r was on the resist R, as in the case shown in FIG. In this case, there is a risk that the unevenness of the thickness of the lens (R) may cause a wavy stitch.

この場合においても、と記入射光1u、1rの焦点がパ
ターンFTのエツジ部分に当たった場合と同様の理由に
より、加算器27から構成される装置信号Sは1記角状
の乱れのない安定した信号となり、被測定面3の位置を
誤差なく検出することができる。
In this case as well, for the same reason as when the focal points of the incident light beams 1u and 1r hit the edge portion of the pattern FT, the device signal S composed of the adder 27 is stable without disturbance in the form of a diagonal. This becomes a signal, and the position of the surface to be measured 3 can be detected without error.

次に、第6図に示すように被測定面3が対物レンズ2の
焦点位置からずれた位置にあり、かつ該対物レンズ2の
光軸Axと成す角度が直角な状態(実線で示す状8)か
ら少し傾いた破線で示す位置にある場合について説明す
る。
Next, as shown in FIG. 6, the surface to be measured 3 is at a position shifted from the focal position of the objective lens 2, and the angle formed with the optical axis Ax of the objective lens 2 is a right angle (a state shown by a solid line 8). ) at a position indicated by a dashed line that is slightly inclined.

この場合には、第7図(a)に示すように2分割光電素
子5r、31に形成される入射光1rの集光点は、実線
で示す実際の位置Prから点線位置P r ”のように
L方にずれてしまい、−・方第7図(b)に示すように
2分割光電素子5見りに形成される入射光1立の集光点
も実線で示す実際の位置PMから点線位置PM”に上方
にずれてしまう。
In this case, as shown in FIG. 7(a), the focal point of the incident light 1r formed on the two-split photoelectric elements 5r and 31 is shifted from the actual position Pr shown by the solid line to the dotted line position Pr''. As shown in FIG. 7(b), the convergence point of one incident light formed when looking at the two-split photoelectric element 5 is also shifted from the actual position PM shown by the solid line to the dotted line. It shifts upward to position PM''.

ここで、入射光1rの集光点Prおよび入射光1文の集
光点PHは共に上方にずれてお・す、かつ集光点Prの
ずれ量Δrと集光点2文のずれ量Δ交はほぼ等しい。
Here, the condensing point Pr of the incident light 1r and the condensing point PH of the incident light 1 are both shifted upward, and the displacement amount Δr of the condensing point Pr and the displacement amount Δ of the condensing point 2 are The intersections are almost equal.

したがって、前記割算器25からの出力信号(Sl−S
2)/(S1+S2)中に含まれた前記ずれ最Δrと、
前記割算器26からの出力信号(S4−53)/ (S
4+53)中に含まれた前記ずれh″EΔ文とは符号が
互いに逆になっているので、前記加算器27が割算器2
51割算器26からの出力信号を加算することによって
ずれ¥−Δrおよびずれ賃Δ文は互いに相殺され、該加
算器27からの位置信号Sは被測定面3が傾いたことに
よる誤差成分を含んでおらず、被+1+11定而3の位
置検出に際し大きな誤差を生じることはない。また瞳面
を通る反射光束は、被測定面3の傾斜によって瞳面りで
の位置が変化するため、絞り8r、81の開目は、その
変化に応じて反射光束をうけることのないように、少し
大きな径としである。
Therefore, the output signal from the divider 25 (Sl-S
2) the maximum deviation Δr included in /(S1+S2);
Output signal from the divider 26 (S4-53)/(S
4+53), the signs are opposite to each other, so the adder 27 is connected to the divider 2.
By adding the output signals from the 51 divider 26, the deviation ¥-Δr and the deviation amount Δ are canceled out, and the position signal S from the adder 27 includes an error component due to the tilt of the surface to be measured 3. This does not cause a large error in detecting the position of the +1+11 target 3. In addition, since the reflected light flux passing through the pupil plane changes its position on the pupil plane depending on the inclination of the surface to be measured 3, the apertures 8r and 81 are opened in accordance with the change so as not to receive the reflected light flux. , with a slightly larger diameter.

なお、上記第1実施例では、被Jlll定面3を光軸A
xに下行に移動させて該被測定面3を合焦位置に位置決
めさせているが、被測定面3は固定しておき、対物レン
ズ2を光軸Axに乎行に移動させて該被測定面3を合焦
位置に位置決めさせるように構成してもよい、このこと
は、後に述べる各実流側についても言えることである。
Note that in the first embodiment, the Jllll constant surface 3 is aligned with the optical axis A.
The surface to be measured 3 is positioned at the in-focus position by moving the object surface 3 downward to It may be configured so that the surface 3 is positioned at the in-focus position, and this also applies to each actual flow side described later.

また、この第1実施例において、入射光1r。Furthermore, in this first embodiment, the incident light 1r.

1文の光量(光強度)は同一・である方が望ましいが、
入射光1r、IJlの光量に差があっても、第2図に示
した回路の割算器によりAGCが掛っているので問題に
ならない。
It is preferable that the amount of light (light intensity) in one sentence is the same.
Even if there is a difference in the amount of incident light 1r and IJl, it does not pose a problem because AGC is applied by the divider of the circuit shown in FIG.

次に、第8図に基づいて本発明の第2実施例を説明する
。第8図は第2実施例に係る位置検出装置を示す概略的
な光学系の配置図である。
Next, a second embodiment of the present invention will be described based on FIG. FIG. 8 is a schematic layout diagram of an optical system showing a position detection device according to a second embodiment.

第8図に示す位置検出装置は、被測定面3に照射する入
射光としてレーザー光源9からのレーザービーム90を
用いたものであり、該レーザービーム90はハーフミラ
−10により2本のレーザービーム9041.9Orに
分離される。なお、作図の都合上、同図中のビームは全
て主光線のみを示す。
The position detection device shown in FIG. 8 uses a laser beam 90 from a laser light source 9 as the incident light irradiated onto the surface to be measured 3, and the laser beam 90 is divided into two laser beams 9041 by a half mirror 10. It is separated into .9Or. Note that for convenience of drawing, all beams in the figure show only principal rays.

ハーフミラ−1Oの反射光路中には、レーザービーム9
0rを光軸Axに平行に、かつ対物レンズ2に向けて反
射するミラー11が配置されている。ハーフミラ−10
の透過光路中には、レーザービーム90愛を光軸Axに
関してレーザービーム90rと対称に、かつ対物レンズ
2に向けて反射するミラー12.13が配置されている
In the reflected optical path of the half mirror 1O, a laser beam 9
A mirror 11 that reflects the light 0r toward the objective lens 2 is arranged parallel to the optical axis Ax. Half mirror 10
Mirrors 12 and 13 are arranged in the transmission optical path of the mirror 12 and 13 to reflect the laser beam 90 symmetrically with the laser beam 90r with respect to the optical axis Ax and toward the objective lens 2 .

したがって、この2木のレーザービーム90文、90r
は、上記第1実施例における2つの入射光1文、lrの
場合と同様に対物レンズ2の焦点位置を含む光軸Axに
暇直な所定平面内の同一点に集光するように成っている
Therefore, this two-tree laser beam 90 sentences, 90r
The two incident lights are condensed at the same point within a predetermined plane perpendicular to the optical axis Ax including the focal position of the objective lens 2, as in the case of the two incident lights, lr, in the first embodiment. There is.

ここで、光軸Ax(前記所定平面に垂直な!Ia)に関
して対称な光路を通る2つの光束により被測定面3を2
方向から照射する照射光学系が、対物レンズ2.レーサ
ー光源9.ハーフミラ−10およびミラー11−13に
より構成されている。
Here, the surface to be measured 3 is 2
An irradiation optical system that emits light from a direction includes an objective lens 2. Racer light source9. It is composed of a half mirror 10 and mirrors 11-13.

そして、被測定面3で反射されたレーザービーム90見
、90rの各反射光は、ハーフミラ−7文、7rで反射
された後、集光レンズ4fL、4rにより2分割光電素
子5文、5r七に集光されるように成っている。
The laser beams 90 and 90r reflected by the surface to be measured 3 are reflected by the half mirrors 7 and 7r, and then split into two photoelectric elements 5 and 5r by condenser lenses 4fL and 4r. It is designed so that the light is focused on the

上記第1実施例の場合と同様に、前記2分割光電素f5
rの光電素子50r、51rからの各光電出力S1.S
2および2分割光電素子5立の光電素子50文、519
.からの各光電出力S4、S3は第2図に示す位置検出
回路20で処理されるように成っている。
As in the case of the first embodiment, the two-split photoelectric element f5
Each photoelectric output S1.r from the photoelectric elements 50r, 51r. S
2 and 2 split photoelectric elements 5 standing photoelectric elements 50 sentences, 519
.. The photoelectric outputs S4 and S3 are processed by a position detection circuit 20 shown in FIG.

ト記構成を有する位置検出装置では、レーザー光源9か
ら実線で示すように光軸Axに平行にレーザービーム9
0が発せられた場合には、該レーザービーム90はハー
フミラ−10によりレーザービーム90rとレーザービ
ーム90fLとに分離される。レーザービーム90rは
、ミラー11で反射された後光軸Axに平行に進み、ハ
ーフミラ−7文を透過して対物レンズ2により被測定面
3Fに集光される。一方、レーザービーム909゜は、
ミラー12.13で反射された後光軸Axに関してレー
ザービーム90rと対称に進み、ハーフミラ−7rを透
過して対物レンズ2により被測定面3上に集光される。
In the position detection device having the above configuration, a laser beam 9 is emitted from the laser light source 9 parallel to the optical axis Ax as shown by the solid line.
When 0 is emitted, the laser beam 90 is separated by the half mirror 10 into a laser beam 90r and a laser beam 90fL. After being reflected by the mirror 11, the laser beam 90r travels parallel to the optical axis Ax, passes through the half mirror 7, and is focused by the objective lens 2 onto the surface to be measured 3F. On the other hand, a laser beam of 909° is
After being reflected by the mirrors 12 and 13, the beam proceeds symmetrically with the laser beam 90r with respect to the optical axis Ax, passes through the half mirror 7r, and is focused onto the surface to be measured 3 by the objective lens 2.

第8図においては被測定面3は合焦位置にあるので、レ
ーザービーム90rとレーザービーム90立とは被測定
面3上の同一・点に集光している。
In FIG. 8, the surface to be measured 3 is at the focused position, so the laser beam 90r and the laser beam 90 are focused on the same point on the surface to be measured 3.

被測定面3で反射された各レーザービーム90 r 、
90Mは、対物レンズ2を通り、ハーフミラ−7r、7
文で反射され、集光レンズ4r、4文により2分割光電
素子5r、5立上に集光される。第8図に示す場合には
、被測定面3が合焦位置にあるので、各レーザービーム
90r。
Each laser beam 90 r reflected by the surface to be measured 3,
90M passes through objective lens 2 and half mirrors 7r, 7
The light is reflected by the light beam, and is focused by the condensing lens 4r, 4 onto the two-split photoelectric elements 5r, 5. In the case shown in FIG. 8, since the surface to be measured 3 is in the focused position, each laser beam 90r.

90!lは2分割光電素′f5r、5愛の中央部に集光
され、このときの各集光点がPr、Plで示されている
90! 1 is condensed at the center of the two-split photoelectric element 'f5r, 5a, and each condensing point at this time is indicated by Pr and Pl.

そして、前記2分割光電素r5rの光電素子50r、5
1rからの各光電出力S1.S2および2分割光電素子
5愛の光電素子50文、51文からの各光電出力S4.
S3は、第2図に示す位置検出回路20で処理され、前
記加算器27からは前記位置信号Sが出力される。
Then, the photoelectric elements 50r, 5 of the two-split photoelectric element r5r
Each photoelectric output S1. S2 and each photoelectric output from the photoelectric element 50 and 51 of the two-split photoelectric element 5 S4.
S3 is processed by the position detection circuit 20 shown in FIG. 2, and the adder 27 outputs the position signal S.

したがって、この実施例においてもL記第1実施例の場
合と同様に、レーザービーム90r、90交が、パター
ンFTのエツジ部分や前記レジストに当たったりしても
、あるいは被測定面3が合焦位置からずれた位置で、光
軸Axに対して直角な位置から傾いていたとしても、こ
のような被測定面3の状態に影響を受けずに被Δ11定
面3の位置を誤差なく正確に検出できる。
Therefore, in this embodiment, as in the case of the first embodiment, even if the laser beams 90r and 90 cross each other and hit the edge portion of the pattern FT or the resist, or the surface to be measured 3 is in focus. Even if the measured surface 3 is deviated from the position and tilted from the position perpendicular to the optical axis Ax, the position of the measured surface 3 can be accurately determined without any error without being affected by the state of the measured surface 3. Can be detected.

また、第8図に示す状態においてレーザー光源9からの
レーザービーム90の発光角が破線で示すようにわずか
に変化した場合には、2分割光電素子5r上におけるレ
ーザービーム90rの集光点Prは該2分割光電素′T
−5rの中央部からΔr′だけずれ、2分割光電素子5
11.におけるレーザービーム90文の集光点2文も該
2分割光電素7−51の中央部からΔ立′だけずれてし
まう。
Furthermore, when the emission angle of the laser beam 90 from the laser light source 9 changes slightly as shown by the broken line in the state shown in FIG. 8, the focal point Pr of the laser beam 90r on the two-split photoelectric element 5r The two-split photoelectric element'T
deviated by Δr' from the center of -5r, two-split photoelectric element 5
11. The condensing point 2 of the laser beam 90 in is also shifted by Δt' from the center of the two-divided photoelectric element 7-51.

このずれ敲Δr′、Δ交′は、被測定面3が光軸Axに
モ行にfXO/2tanφだけ移動したときのずれ量に
等しく、前者(Δr’)は被測定面3が対物レンズ2か
ら遠ざかる方向、後者(Δ文′)は対物レンズ2に近ず
く方向へ移動した場合に対応している。ここで、fは対
物レンズ2の焦点距離、θはレーザーど−ム90の発光
角の変化−1、φは被測定面3に端するレーザービーム
90r、90立の傾きである。
These deviations Δr' and Δcross' are equal to the amount of deviation when the surface to be measured 3 moves in the direction of the optical axis Ax by fXO/2tanφ, and the former (Δr') means that the surface to be measured 3 is The latter direction (Δtext') corresponds to the case of movement toward the objective lens 2. Here, f is the focal length of the objective lens 2, θ is the change in the emission angle of the laser beam 90 by -1, and φ is the inclination of the laser beam 90r at the end of the surface 3 to be measured.

しかしながら、上記ずれ贋Δr′、Δ文′は等しいので
、前記加算器27が割算器255割算器26からの出力
信号を加算することによって該ずgBΔr′2Δ文′は
互いに相殺され、したがって、該加算器27からの位置
信号Sにはずれ量Δr′、Δ見′に帰因する誤差成分は
含まれておらず、被測定面3の位置を誤差なく検出する
ことができる。
However, since the deviations Δr' and Δsentence' are equal, the adder 27 adds the output signals from the divider 255 and the divider 26, so that the difference gBΔr'2Δsentence' cancel each other out. , the position signal S from the adder 27 does not include error components attributable to the deviation amounts Δr' and Δr', and the position of the surface to be measured 3 can be detected without error.

次に、第9図に基づいて本発明の第3実施例を説明する
Next, a third embodiment of the present invention will be described based on FIG.

第9図に示す位置検出装置では、一本のモ行光14が、
ハーフミラ−15,16を介して光軸Axにモ行に対物
レンズ2に入射し、該対物レンズ2により集光されて被
測定面3に入射するように成っている。該ハーフミラ−
16と集光レンズ4r、4又との間には集光レンズ17
.18が配置されている。該集光レンズ17に関して対
物レンズ2の瞳位置と共役な位置には絞り19が配置さ
れている。
In the position detection device shown in FIG.
The light enters the objective lens 2 in a direction along the optical axis Ax via the half mirrors 15 and 16, is condensed by the objective lens 2, and enters the surface to be measured 3. The half mirror
Between the condenser lens 16 and the condenser lens 4r, the condenser lens 17
.. 18 are arranged. A diaphragm 19 is arranged at a position conjugate with the pupil position of the objective lens 2 with respect to the condenser lens 17 .

該絞り19には、光軸Axに関して対称な位置に開口部
19r、19立が開設されている。
The diaphragm 19 has apertures 19r and 19vertical openings located at symmetrical positions with respect to the optical axis Ax.

前記光軸Ax(前記所定平面に垂直な線)に関して対称
な光路を通る2つの光束により被測定面3を2方向から
照射する照射光学系が、対物レンズ2、平行光14、ハ
ーフミラ−16により構成されている。
An irradiation optical system that irradiates the surface to be measured 3 from two directions with two light beams passing through optical paths symmetrical with respect to the optical axis Ax (a line perpendicular to the predetermined plane) includes an objective lens 2, parallel light 14, and a half mirror 16. It is configured.

上記構成を有する第3実施例の位置検出装置では、絞り
19が対物レンズ2の瞳位置と共役な位置に配置されて
おり、該絞り19は対物レンズ2の瞳位置に破線で示す
絞り19’を置いたのと等価であるので、被測定面3を
照射した暦行光14の反射光のうち、対物レンズ2.ハ
ーフミラ−16を介して絞り19の開口部19r、19
fLを通過した周辺光束3Or、30党のみが5r、5
見に到達し、他の光束は該絞り19に−よってけられる
。このとき、開口部19r、1941は光軸Axに関し
て対称な位置に開設されているので。
In the position detection device of the third embodiment having the above configuration, the diaphragm 19 is arranged at a position conjugate with the pupil position of the objective lens 2, and the diaphragm 19 is located at the pupil position of the objective lens 2 with a diaphragm 19' indicated by a broken line. This is equivalent to placing 2. Openings 19r, 19 of the diaphragm 19 via the half mirror 16
The peripheral luminous flux that passed through fL is 3Or, only 30 parts are 5r, 5
The other light beams are rejected by the aperture 19. At this time, the openings 19r and 1941 are opened at symmetrical positions with respect to the optical axis Ax.

周辺光束30r、301は光軸Axに関して対称な光路
を通っている。
The peripheral light beams 30r and 301 pass through optical paths that are symmetrical with respect to the optical axis Ax.

したがって、被測定面3が第9図の実線で示す合焦位置
にあるときには、実線で示すように光軸Axに関して対
称な光路を通る2つの周辺光束30r、30見により被
測定面3が2方向から斜めに照射され、該周辺光束3O
r、301の反射光が2分割光電素75r、5文上に集
光される。
Therefore, when the surface to be measured 3 is at the in-focus position shown by the solid line in FIG. 9, the surface to be measured 3 is 2 It is irradiated obliquely from the direction, and the peripheral luminous flux 3O
The reflected light of r, 301 is focused on the two-split photoelectric element 75r, 5.

被測定−面3が図の点線位置3′にあるときの光路が点
線で示されている。
The optical path when the surface 3 to be measured is at the dotted line position 3' in the figure is shown by the dotted line.

このように、本実施例の位置検出装置は、上記:51お
よび第2実施例の場合と同様に、光軸Axに関して対称
な光路を通る2つの光束により被゛測定面3を2方向か
ら照射するように成っている。
In this way, the position detection device of this embodiment irradiates the surface to be measured 3 from two directions with two light beams passing through symmetrical optical paths with respect to the optical axis Ax, as in the case of 51 and the second embodiment above. It is designed to do this.

したがって、この第3実施例においても、上記各実施例
の場合と同様に、周辺光束30r、301が、前記パタ
ーンFTのエツジ部分や前記レジストに当たったりして
も、このような被測定面3の状態に影響を受けずに被測
定面3の位置を誤差なく正確に検出できる。またモ行光
14が第8図の場合と同様にわずかに傾いたとしても、
その傾きによる影響は相殺されてしまう。
Therefore, in this third embodiment, even if the peripheral light beams 30r, 301 hit the edge portions of the pattern FT or the resist, as in each of the above embodiments, even if the peripheral light beams 30r, 301 hit the edge portion of the pattern FT or the resist, The position of the surface to be measured 3 can be detected accurately without any error without being affected by the state of the surface. Also, even if the light beam 14 is slightly tilted as in the case of Fig. 8,
The effects of that slope cancel out.

また、該絞り19によって前記散乱光が除去されること
は言うまでもない。
It goes without saying that the aperture 19 removes the scattered light.

さらに、この実施例では、ハーフミラ−16を透過した
光線を被測定面3の位置検出のための信号として使用し
ているが、該ハーフミラ−16およびハーフミラ−15
で反射された光線を他の信号処理のために使用すること
ができる。
Further, in this embodiment, the light beam transmitted through the half mirror 16 is used as a signal for detecting the position of the surface to be measured 3.
The reflected light beam can be used for other signal processing purposes.

次に、第10図に基づいて本発明の第4実施例を説明す
る。この実施例は、縮小投影型露光装置に適用したもの
である。
Next, a fourth embodiment of the present invention will be described based on FIG. This embodiment is applied to a reduction projection type exposure apparatus.

第1O図に示すように、縮小投影型露光装置の縮小投影
レンズ31の光軸Axに垂直に被測定面3が配置されて
おり、該被測定面3の位置を検出する位置検出装置は、
光軸Axに関して対称に配置された一対の光学系から成
っている。
As shown in FIG. 1O, a surface to be measured 3 is arranged perpendicularly to the optical axis Ax of a reduction projection lens 31 of a reduction projection type exposure apparatus, and a position detection device for detecting the position of the surface to be measured 3 is as follows:
It consists of a pair of optical systems arranged symmetrically with respect to the optical axis Ax.

該−・対の光学系の各々は、光源32r。Each of the pairs of optical systems is a light source 32r.

32文、レンズ33r、33文、ビームスプリッタ34
r、34見、対物レンズ2r、2g、、集光レンズ4r
、4!j、および2分割光電素子5r、5文からそれぞ
れ構成されており、該一対の光学系の各々からの光線4
Or、40立は光軸Axに関して対称な光路を通るよう
に成っている。
32 sentences, lens 33r, 33 sentences, beam splitter 34
r, 34 views, objective lens 2r, 2g,, condensing lens 4r
, 4! j, and two-split photoelectric elements 5r and 5, respectively, and the light rays 4 from each of the pair of optical systems
Or, 40 yen is configured to pass through a symmetrical optical path with respect to the optical axis Ax.

光源32rからの光線4Orは、被測定面3で反射され
た後、対物レンズ2愛、ビームスプリッタ34文、集光
レンズ4L;Lを介して2分割光電素子5見に集光され
、一方光源32fLからの光線40fLは、被測定面3
で反射された後、対物レンズ2r、ビームスプリッタ3
4r、集光レンズ4rを介して2分割光電素7−5 r
に集光されるように成っている。
The light beam 4Or from the light source 32r is reflected by the surface to be measured 3, and then condensed onto the two-split photoelectric element 5 through the objective lens 2, the beam splitter 34, and the condenser lens 4L; The light beam 40fL from 32fL is on the surface to be measured 3.
After being reflected by the objective lens 2r, the beam splitter 3
4r, 2-split photoelectric element 7-5r via condensing lens 4r
It is designed so that the light is focused on the

ここで、前記光軸Ax(前記所定平面に昨直な線)に関
して対称な光路を通る2つの光束により該被測定面3を
2方向から照射する照射光学系が、対物レンズ2r、2
見、光源32r、32文、レンズ33r、33文、およ
びビームスズリ、り34r、34交により構成されてい
る。
Here, an irradiation optical system that irradiates the surface to be measured 3 from two directions with two light beams passing through optical paths symmetrical with respect to the optical axis Ax (a line perpendicular to the predetermined plane) includes objective lenses 2r and 2.
It is composed of a light source 32r, a lens 33r, a lens 33r, a beam lens 34r, and a beam lens 34r.

この第4実施例においても、上記各実施例の場合と同様
に、光線4Or、40文が、前記パターンFTのエツジ
部分や前記レジストに当たったりしても、あるいは被測
定面3が合焦位置からずれた位置で、光軸Axに対して
直角な位置から傾いていたとしても、このような被測定
面3の状態に影響を受けずに被測定面3の位置を誤差な
く正確に検出できる。
In this fourth embodiment, as in the above-mentioned embodiments, even if the light beams 4Or, 40 hit the edge portion of the pattern FT or the resist, or the surface to be measured 3 is at the focused position. The position of the surface to be measured 3 can be accurately detected without error even if the surface to be measured 3 is tilted from a position perpendicular to the optical axis Ax, without being affected by the state of the surface to be measured 3. .

さらに、上記各実施例においては、2つの光束の一方が
被測定面3で反射された反射光を受光する:tSl光電
検出器と、その他方が被測定面3で反射された反射光を
受光する第2光電検出器とを2分割光電素子−5rと5
交とでそれぞれ構成したが、該第1および第2光電検出
器として受光部が連続しているリニアセンサーをそれぞ
れ用い、各リニアセンサーを、その受光部の中央で反射
光を受光した際には零の光電出力を、該中央から一方に
ずれた位置で受光した際にはその位置に対応したプラス
の光電出力を、該中央から他方にずれた位置で受光した
際にはその位置に対応したマイナスの光電出力をそれぞ
れ発するように構成し、さらに該両リニアセンサーから
の光電出力を加算あるいは減算するように構成してもよ
い。
Furthermore, in each of the above embodiments, one of the two light beams receives the reflected light reflected by the surface to be measured 3: the tSl photoelectric detector, and the other one receives the reflected light reflected by the surface to be measured 3. The second photoelectric detector is divided into two photoelectric elements-5r and 5.
However, as the first and second photoelectric detectors, linear sensors with continuous light receiving parts are used, and when each linear sensor receives reflected light at the center of its light receiving part, When zero photoelectric output is received at a position shifted to one side from the center, a positive photoelectric output corresponding to that position is received, and when light is received at a position shifted to the other side from the center, a positive photoelectric output corresponding to that position is received. It may be configured to emit negative photoelectric outputs, respectively, and further configured to add or subtract the photoelectric outputs from both linear sensors.

(発明の効果) 本発明に係る位置検出装置によれば、前記2つの光束は
、前記所定平面に垂直な線に関して対称な光路を通って
前記被測定面上に斜めから入射し、該被測定面で同じ影
響を受け、かつ該2つの光束の被測定面からの各反射光
を受光する第1および第2光電検出器からの各光′這出
力に基づいて位置検出回路が位置信号を出力するので、
該位置信号により被測定面の状態に影響を受けずに被測
定面の位置を正確に検出できるように成っている。
(Effects of the Invention) According to the position detection device according to the present invention, the two light beams obliquely enter the surface to be measured through optical paths that are symmetrical with respect to a line perpendicular to the predetermined plane. A position detection circuit outputs a position signal based on each light output from the first and second photoelectric detectors, which are subjected to the same influence on the surface and receive respective reflected lights of the two light beams from the surface to be measured. So,
The position signal allows the position of the surface to be measured to be accurately detected without being affected by the state of the surface to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図は本発明の第1実施例を示しており、
第1図は位置検出装置を示す概略的な光学系の配置図、
第2図は位置検出回路を示すブロック図、第3図は2つ
の光線がパターンのエツジ部分に当たっている状態を示
す説明図、第4図(a)は2つの光束の一方が一方の2
分割光電素子上に集光している様子を示す説明図、第4
図(b)は2つの光束の他方が他方の2分割光電素子上
に集光している様子を示す説明図、第5図(a)は第3
図において被測定面を矢印方向に移動した際における一
方の2分割光電素子からの規格化された信号の信号波形
図、第5図(b)は第3図において被測定面を矢印方向
に移動した際における他方の2分割光電素子からの規格
化された信号の信号波形図、第5図(c)は、第5図(
a)の信号と第5図(b)の信号とを加算した信号の信
号波形図、第6図は被測定面が対物レンズの焦点位置か
らずれた位置にあり、かつ該対物レンズの光軸と成す角
度が直角な状態から少し傾いた位ごにある場合における
光路説明図、第7図(a)および(b)は第6図に示し
た場合において上記各光束が各2分割充電素子上に集光
している様子を示す説明図、第8図は本発明の第2実施
例を示す概略的な光学系の配置図、第9図は本発明のg
S3実施例を示す概略的な光学系の配置図、第10図は
本発明の:54実施例を示す概略的な光学系の配置図、
第11図から第14図は従来例を示しており、第11図
は位置検出装置を示す概略的な光学系の配置図、第12
図は出力信号の波形図、第13図(a)は光線がパター
ンのエツジ部分に当たっている様fを示す説明図、第1
3図(b)は光線が薄いレジストに自たっている様子を
示す説明図、第13図(c)は被測定面が対物レンズの
焦点位置からずれた位置にあり、かつ該対物レンズの光
軸と成す角度が直角な状態から少し傾いた位置にある場
合における説明図、第14図(a) 、(b) 、(c
)は第13図(a)、(b)。 (c)にそれぞれ対応しており、光線が2分割充電素子
上に集光している様Y−を示す説明図である。 lr、LfL・・・2つの入射光(2つの光束)90r
、90!Q・−・2つ(7)L/−ザービーム(2つの
光束) 3Or 、301・・・2つの周辺光束(2つの光束)
40r、40fL−・2つの光線(2つの光束)Ax・
・・光軸(所定平面に垂直な線)3・・・被測定面 5r・・・2分割光電素子(第1光電検出器)第1図 Nz図 第δ図 第C図 N7図 第3図 第11図 V 第1Z図 第13図     第14図
1 to 7 show a first embodiment of the present invention,
Figure 1 is a schematic layout diagram of the optical system showing the position detection device;
Figure 2 is a block diagram showing the position detection circuit, Figure 3 is an explanatory diagram showing a state in which two light beams hit the edge of a pattern, and Figure 4 (a) shows that one of the two light beams is
Explanatory diagram showing how light is focused on the split photoelectric element, 4th
Figure (b) is an explanatory diagram showing how the other of the two light beams is focused on the other two-split photoelectric element, and Figure 5 (a) is an explanatory diagram showing how the other of the two light beams is focused on the other two-split photoelectric element.
Figure 5(b) is a signal waveform diagram of the standardized signal from one of the two-split photoelectric elements when the surface to be measured is moved in the direction of the arrow in Figure 3. The signal waveform diagram of the standardized signal from the other two-split photoelectric element, FIG. 5(c), is shown in FIG.
A signal waveform diagram of the signal obtained by adding the signal in a) and the signal in FIG. Figure 7 (a) and (b) are explanatory diagrams of the optical path when the angle formed by the angle is slightly tilted from a right angle. FIG. 8 is a schematic layout diagram of the optical system showing the second embodiment of the present invention, and FIG. 9 is an explanatory diagram showing how the light is focused.
FIG. 10 is a schematic layout diagram of the optical system showing the S3 embodiment, and FIG. 10 is a schematic layout diagram of the optical system showing the :54 embodiment of the present invention.
11 to 14 show a conventional example, in which FIG. 11 is a schematic layout diagram of an optical system showing a position detection device, and FIG.
The figure is a waveform diagram of the output signal, FIG. 13(a) is an explanatory diagram showing how the light beam hits the edge part of the pattern,
Figure 3 (b) is an explanatory diagram showing how the light beam is reflected on a thin resist, and Figure 13 (c) shows that the surface to be measured is at a position shifted from the focal position of the objective lens, and the optical axis of the objective lens is 14 (a), (b), (c)
) are shown in Figures 13(a) and (b). (c), respectively, and is an explanatory diagram showing Y- in which the light beam is focused on the two-split charging element. lr, LfL...Two incident lights (two luminous fluxes) 90r
, 90! Q.--2 (7) L/- laser beam (2 luminous fluxes) 3Or, 301...2 peripheral luminous fluxes (2 luminous fluxes)
40r, 40fL-・Two rays (two luminous fluxes) Ax・
... Optical axis (line perpendicular to a predetermined plane) 3 ... Surface to be measured 5r ... Two-split photoelectric element (first photoelectric detector) Fig. 1 Fig. Nz Fig. δ Fig. C Fig. N7 Fig. 3 Figure 11V Figure 1Z Figure 13 Figure 14

Claims (1)

【特許請求の範囲】 被測定面に斜めに光線を照射させ、該被測定面からの反
射光を受光し、該反射光の受光位置の変化から該被測定
面に略垂直な方向における該被測定面の位置を検出する
位置検出装置において、前記被測定面と略平行な所定平
面内の同一点で交わり、該同一点を含み該所定平面に垂
直な線に関して対称な光路を通る2つの光束により該被
測定面を2方向から照射する照射光学系と、 該2つの光束の一方が該被測定面で反射された反射光を
受光する第1光電検出器と、 該2つの光束の他方が該被測定面で反射された反射光を
受光する第2光電検出器と、 該第1および第2光電検出器の各光電出力に基づいて前
記所定平面に対する該被測定面の位置信号を出力する位
置検出回路とを備えて成ることを特徴とする位置検出装
置。
[Scope of Claims] A light beam is irradiated obliquely onto the surface to be measured, the reflected light from the surface is received, and from a change in the receiving position of the reflected light, the surface of the measured surface is irradiated with a light beam in a direction substantially perpendicular to the surface to be measured. In a position detection device that detects the position of a measurement surface, two light beams intersect at the same point in a predetermined plane substantially parallel to the surface to be measured, and pass through optical paths that are symmetrical with respect to a line that includes the same point and is perpendicular to the predetermined plane. an irradiation optical system that irradiates the surface to be measured from two directions, a first photoelectric detector that receives reflected light in which one of the two light beams is reflected by the surface to be measured, and the other of the two light beams a second photoelectric detector that receives reflected light reflected by the surface to be measured; and outputting a position signal of the surface to be measured with respect to the predetermined plane based on each photoelectric output of the first and second photoelectric detectors. A position detection device comprising: a position detection circuit.
JP16716985A 1985-07-29 1985-07-29 Position detector Pending JPS6227613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16716985A JPS6227613A (en) 1985-07-29 1985-07-29 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16716985A JPS6227613A (en) 1985-07-29 1985-07-29 Position detector

Publications (1)

Publication Number Publication Date
JPS6227613A true JPS6227613A (en) 1987-02-05

Family

ID=15844696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16716985A Pending JPS6227613A (en) 1985-07-29 1985-07-29 Position detector

Country Status (1)

Country Link
JP (1) JPS6227613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129569A (en) * 1988-11-09 1990-05-17 Matsushita Electric Ind Co Ltd Sensitivity current testing device for leak breaker
JP2007147316A (en) * 2005-11-24 2007-06-14 Sharp Corp Printed matter information measuring device and printer
JP2008309532A (en) * 2007-06-13 2008-12-25 Lasertec Corp Three-dimensional measuring apparatus and inspection apparatus
JP2009145292A (en) * 2007-12-18 2009-07-02 Disco Abrasive Syst Ltd Device for detecting edge of workpiece, and laser processing machine
JP2016099122A (en) * 2014-11-18 2016-05-30 株式会社ミツトヨ Non-contact positioning method and non-contact positioning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956963A (en) * 1972-08-28 1974-06-03
JPS59158029A (en) * 1983-02-28 1984-09-07 松下電工株式会社 Reflection type photoelectric switch
JPS6036908A (en) * 1983-06-22 1985-02-26 エヌ・ヴイ−・オプテイ−シエ インダストリ−“ドウ アウド デイルフト” Survey system for measuring distance between point on surface of body and reference level in noncontacting manner by using measurement method based on triangulation principle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956963A (en) * 1972-08-28 1974-06-03
JPS59158029A (en) * 1983-02-28 1984-09-07 松下電工株式会社 Reflection type photoelectric switch
JPS6036908A (en) * 1983-06-22 1985-02-26 エヌ・ヴイ−・オプテイ−シエ インダストリ−“ドウ アウド デイルフト” Survey system for measuring distance between point on surface of body and reference level in noncontacting manner by using measurement method based on triangulation principle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129569A (en) * 1988-11-09 1990-05-17 Matsushita Electric Ind Co Ltd Sensitivity current testing device for leak breaker
JP2007147316A (en) * 2005-11-24 2007-06-14 Sharp Corp Printed matter information measuring device and printer
JP4559347B2 (en) * 2005-11-24 2010-10-06 シャープ株式会社 Printed material information measuring apparatus and printing apparatus
JP2008309532A (en) * 2007-06-13 2008-12-25 Lasertec Corp Three-dimensional measuring apparatus and inspection apparatus
JP2009145292A (en) * 2007-12-18 2009-07-02 Disco Abrasive Syst Ltd Device for detecting edge of workpiece, and laser processing machine
JP2016099122A (en) * 2014-11-18 2016-05-30 株式会社ミツトヨ Non-contact positioning method and non-contact positioning device

Similar Documents

Publication Publication Date Title
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
JPH05240640A (en) Optical distance measuring device
JPS61247944A (en) Measuring instrument for reflection factor
US5029261A (en) Apparatus for detecting position of light beam on object surface by comparing detection beams split near focal point
JPS6227613A (en) Position detector
JPS6161178B2 (en)
JPS6169011A (en) Automatic focusing device
JPH07294231A (en) Optical surface roughness sensor
JP2003161610A (en) Optical measurement device
JPS6331858B2 (en)
JPS6266111A (en) Optical distance detecting device
JPH0558483B2 (en)
CN106908386B (en) Optical pickup device
JPH04364414A (en) Distance-measuring device
JPS63138310A (en) Focus detector
JPH0465612A (en) Optical method and instrument for measuring surface roughness
JP2686323B2 (en) Focus error detection device
JPS6266112A (en) Position detector
JPH0275906A (en) Image formation type displacement gauge
JPS63206682A (en) Photoelectric switch
JPH0717047Y2 (en) Autofocus device for optical measuring instrument
JPS60169707A (en) Surface-state measuring device
JPS61134605A (en) Measuring device of surface height of object
JPH07117412B2 (en) Distance measuring method and device
JPH0331714A (en) Position detector