JPH07117412B2 - Distance measuring method and device - Google Patents

Distance measuring method and device

Info

Publication number
JPH07117412B2
JPH07117412B2 JP21962391A JP21962391A JPH07117412B2 JP H07117412 B2 JPH07117412 B2 JP H07117412B2 JP 21962391 A JP21962391 A JP 21962391A JP 21962391 A JP21962391 A JP 21962391A JP H07117412 B2 JPH07117412 B2 JP H07117412B2
Authority
JP
Japan
Prior art keywords
receiving element
light
light receiving
division
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21962391A
Other languages
Japanese (ja)
Other versions
JPH0560556A (en
Inventor
健夫 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Koki KK
Original Assignee
Shin Nippon Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Koki KK filed Critical Shin Nippon Koki KK
Priority to JP21962391A priority Critical patent/JPH07117412B2/en
Publication of JPH0560556A publication Critical patent/JPH0560556A/en
Publication of JPH07117412B2 publication Critical patent/JPH07117412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合焦程度を測定するこ
とによって被測定点までの距離を測定する方法の一つで
ある、非点収差式の距離測定方法及び装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an astigmatic distance measuring method and apparatus, which is one of the methods for measuring the distance to a point to be measured by measuring the degree of focusing.

【0002】[0002]

【従来の技術】従来、被測定点までの絶対距離や、被測
定点自身の基準位置からの移動距離(すなわち変位量)
を測定する方法として、非点収差法がよく知られてい
る。
2. Description of the Related Art Conventionally, an absolute distance to a measured point or a moving distance (that is, a displacement amount) of a measured point itself from a reference position.
The astigmatism method is well known as a method of measuring.

【0003】この方法の原理を図7に基づいて説明す
る。図において、Pは光軸1上に位置する被測定点であ
り、この被測定点Pからの光線束が対物レンズ2、さら
には円柱レンズ3を通して受光素子4に導かれる。ここ
で、上記光線束を円柱レンズ3に通すことにより非点収
差が生じるため、被測定点Pが所定の基準位置POにあ
る場合には、受光素子4に投射される像は図8(b)に
示すような円5となるが、被測定点Pが光軸1上におい
て上記基準位置POよりも対物レンズ2に近い位置PS
ある場合には、受光素子4に投射される像は図8(a)
に示すような横長楕円6となり、被測定点Pが光軸1上
において上記基準位置POよりも対物レンズ2から遠い
位置PLにある場合には、受光素子4に投射される像は
図8(c)に示すような縦長楕円7となる。従って、こ
のような像の変化を受光面が複数に分割された(例えば
4分割の)受光素子4で読み取ることにより、被測定点
Pが基準位置POを基準としてどの位置にあるかを測定
することが可能となる。
The principle of this method will be described with reference to FIG. In the figure, P is a measured point located on the optical axis 1, and the light flux from this measured point P is guided to the light receiving element 4 through the objective lens 2 and further the cylindrical lens 3. Here, since the astigmatism is generated by passing the light beam bundle through the cylindrical lens 3, when the measured point P is at a predetermined reference position P O , the image projected on the light receiving element 4 is as shown in FIG. Although it becomes a circle 5 as shown in b), when the measured point P is on the optical axis 1 at a position P S closer to the objective lens 2 than the reference position P O , it is projected on the light receiving element 4. The image is shown in Figure 8 (a).
When the measured point P is located on the optical axis 1 at a position P L farther from the objective lens 2 than the reference position P O , the image projected on the light receiving element 4 is as shown in FIG. A vertically elongated ellipse 7 as shown in FIG. Therefore, by reading such a change in the image with the light receiving element 4 whose light receiving surface is divided into a plurality of parts (for example, divided into four), it is possible to measure which position the measured point P is based on the reference position P O. It becomes possible to do.

【0004】このような非点収差の原理による測定方法
を実際に利用するに際しては、受光量の変化による誤差
を少なくするために、得られたデータを受光総量で除し
たり、受光総量が一定となるように発光量を制御したり
することが行われている。しかしながら、実際の被測定
点が旋削面等のように傾斜の比較的大きな曲面上や鋭い
エッジをもつ段差上に位置する場合の測定時には、回折
像の影響等によって特定の受光面にのみ局部的に非常に
強度の高い光が入射されるため、これに起因して被測定
面の断面曲線の振幅が実際よりも数倍から十数倍大きく
測定されるおそれがある。すなわち、単純な非点収差方
法による測定では、被測定面の表面状態の影響、換言す
れば受光線束の光強度分布のバラツキによる影響を大き
く受けるため、常に高精度の測定を行うことは困難とな
っている。
When actually using the measuring method based on the principle of such astigmatism, in order to reduce the error due to the change in the amount of received light, the obtained data is divided by the total amount of received light, or the total amount of received light is constant. The amount of light emission is controlled so that However, during measurement when the actual measured point is located on a curved surface with a relatively large inclination such as a turning surface or on a step with a sharp edge, due to the influence of the diffraction image, etc. Since very high-intensity light is incident on the beam, the amplitude of the cross-sectional curve of the surface to be measured may be measured several times to several tens of times larger than it actually is. That is, in the measurement by the simple astigmatism method, the surface state of the surface to be measured, in other words, is greatly affected by the variation in the light intensity distribution of the received light flux, so that it is difficult to always perform high-precision measurement. Has become.

【0005】そこで、特開昭62−2109号公報や特
開昭62−2110号公報には、被測定点からの受光線
束をビームスプリッタで2方向に分割し、一方の光線束
を従来の非点収差法と同様に円柱レンズを通して第1の
4分割受光素子上に入射し、他方の光線束を上記円柱レ
ンズと相対的に90°回転して配置された別の円柱レン
ズを通して第2の4分割受光素子上に入射し、第1の4
分割受光素子の出力A1,A2,A3,A4から得られ
る演算値 SA={(A1+A3)−(A2+A4)}/(A1+A2+A3+A4) と、第2の4分割受光素子の出力B1,B2,B3,B
4から得られる演算値 SB={(B1+B3)−(B2+B4)}/(B1+B2+B3+B4) との差動出力Sg(=SA−SB)を取ることにより、前
記影響の軽減を図るようにしたものが開示されるに至っ
ている。
Therefore, in JP-A-62-2109 and JP-A-62-2110, a light receiving line bundle from a point to be measured is divided into two directions by a beam splitter, and one light beam bundle is separated from the conventional one. Similar to the point aberration method, the light beam is incident on the first four-division light receiving element through a cylindrical lens, and the other light beam is passed through another cylindrical lens which is arranged by rotating 90 ° relative to the cylindrical lens and the second cylindrical lens. It is incident on the split photodetector and the first 4
The calculated value S A = {(A1 + A3)-(A2 + A4)} / (A1 + A2 + A3 + A4) obtained from the outputs A1, A2, A3, A4 of the divided light receiving element and the outputs B1, B2, B3 of the second four divided light receiving element. B
By taking the differential output S g (= S A −S B ) with the calculated value S B = {(B1 + B3) − (B2 + B4)} / (B1 + B2 + B3 + B4) obtained from 4, the above-mentioned influence can be reduced. What has been done has been disclosed.

【0006】[0006]

【発明が解決しようとする課題】上記方法によれば、特
定の受光面にのみ局部的に強度の高い(あるいは低い)
光が入射された場合に、この光線による測定精度への悪
影響を緩和することができる。しかしながら、このよう
な悪影響を完全に削除することは極めて困難であり、よ
り測定精度を高めることができる方法及び装置の開発が
大きな課題となっている。
According to the above method, the intensity is locally high (or low) only on a specific light receiving surface.
When light is incident, the adverse effect of this light beam on the measurement accuracy can be mitigated. However, it is extremely difficult to completely eliminate such adverse effects, and development of a method and an apparatus that can further improve the measurement accuracy has become a major issue.

【0007】本発明は、このような事情に鑑み、被測定
点より発せられる光線束の光強度分布にバラツキがある
場合にも、これによる影響を完全に相殺して高精度の距
離測定を行うことができる距離測定方法及び装置を提供
することを目的とする。
In view of such circumstances, the present invention completely cancels the influence of the variation in the light intensity distribution of the light flux emitted from the measured point to perform highly accurate distance measurement. An object of the present invention is to provide a distance measuring method and device capable of performing the distance measurement.

【0008】[0008]

【課題を解決するための手段】本発明は、光軸上の被測
定点から受ける光線束を少なくとも対物レンズ及び円柱
レンズを通して4分割受光素子に照射し、この受光素子
の出力に基づいて上記被測定点の距離を測定する非点収
差式の距離測定方法において、上記光線束を対物レンズ
に通した後にビームスプリッタで2方向に分割し、分割
した一方の光線束を円柱レンズに通して第1の4分割受
光素子に入射させるとともに、他方の光線束を円柱レン
ズを介さずに第2の4分割受光素子に入射させ、このと
きの上記第1の4分割受光素子の感知出力A1,A2,
A3,A4と、これらの感知出力A1,A2,A3,A
4にそれぞれ対応する第2の4分割受光素子の感知出力
B1,B2,B3,B4とにより与えられる下式の値 S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) を算出し、この値Sに基づいて上記被測定点の距離を演
算するものである。
According to the present invention, a light beam received from a point to be measured on the optical axis is applied to a four-division light receiving element through at least an objective lens and a cylindrical lens, and based on the output of this light receiving element, In an astigmatic distance measuring method for measuring the distance of a measurement point, the beam bundle is passed through an objective lens and then split into two directions by a beam splitter, and one of the split beam bundles is passed through a cylindrical lens to produce a first beam. And the other light flux is made incident on the second four-divided light receiving element without passing through the cylindrical lens, and the sensing outputs A1, A2, A2 of the first four-divided light receiving element at this time.
A3, A4 and their sensing outputs A1, A2, A3, A
The value S = (A1 + A3) / (B1 + B3)-(A2 + A4) / (B2 + B4) given by the sensing outputs B1, B2, B3, B4 of the second 4-division light receiving element corresponding to 4 is calculated. The distance of the measured point is calculated based on this value S.

【0009】また本発明は、上記方法を実現する装置で
あって、被測定点に光線を照射する光源と、上記被測定
点で反射されてきた光線束を通す対物レンズと、この対
物レンズを通った光線束を2方向に分割するビームスプ
リッタと、このビームスプリッタで分割された各光線束
がそれぞれ入射される位置に設けられた第1の4分割受
光素子及び第2の4分割受光素子と、第1の4分割受光
素子とビームスプリッタとの間に設けられた円柱レンズ
と、上記第1の4分割受光素子の感知出力A1,A2,
A3,A4とこれらの感知出力A1,A2,A3,A4
にそれぞれ対応する第2の4分割受光素子の感知出力B
1,B2,B3,B4とにより与えられる上記値Sを算
出し、この値Sに基づいて上記被測定点の距離を演算す
る距離演算手段とを備えたものである。
Further, the present invention is an apparatus for realizing the above method, which comprises a light source for irradiating a measured point with a light beam, an objective lens for passing a ray bundle reflected at the measured point, and this objective lens. A beam splitter that splits a bundle of passing light rays into two directions, and a first four-divided light receiving element and a second four-divided light receiving element that are provided at positions where the respective light bundles split by the beam splitter are incident, respectively. , A cylindrical lens provided between the first four-division light receiving element and the beam splitter, and sensing outputs A1, A2 of the first four-division light receiving element.
A3, A4 and their sensing outputs A1, A2, A3, A4
Output B of the second four-division light receiving element corresponding to
1, B2, B3, B4, and the distance calculation means for calculating the distance S of the measured point based on the value S.

【0010】[0010]

【作用】上記構成によれば、ビームスプリッタで2方向
に分割された光線束のうち、一方の光線束は円柱レンズ
を通して第1の4分割受光素子に入射され、他方の光線
束は円柱レンズを介さずに第2の4分割受光素子に入射
されるので、もし上記光線束の光強度分布にバラツキが
あって第1の4分割受光素子の特定面にのみ非常に強度
の高い(あるいは低い)光線が入射された場合には、こ
の受光面に対応する第2の4分割受光素子の受光面にも
同様に上記の強度の高い(あるいは低い)光線が入射さ
れることとなる。従って、後に実施例の項でも詳述する
ように、各部品間の光軸が十分に合致しており、各4分
割受光素子に入射される像に十分な対称性が認められる
場合には、上記第1の4分割受光素子の感知出力A1,
A2,A3,A4のうち楕円長軸(あるいは楕円短軸)
に対応する出力値同士の和(A1+A3)及び楕円短軸
(あるいは楕円長軸)に対応する出力値同士の和(A2
+A4)をそれぞれこれらに対応する第2の4分割受光
素子の感知出力の和(B1+B3),(B2+B4)で
除してその差をとった値、すなわち、下式の値 S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) を算出することにより、この値Sに基づいて上記被測定
点の距離を高精度で演算することができる。
According to the above construction, one of the light beams split in two directions by the beam splitter is incident on the first 4-division light receiving element through the cylindrical lens, and the other light beam is transmitted through the cylindrical lens. Since the light is incident on the second four-division light receiving element without passing through it, if the light intensity distribution of the light beam has variations, the intensity is extremely high (or low) only on a specific surface of the first four-division light receiving element. When a light ray is incident, the light ray having high intensity (or low intensity) is similarly incident on the light receiving surface of the second four-division light receiving element corresponding to this light receiving surface. Therefore, as will be described later in detail in the section of Examples, when the optical axes of the respective parts are sufficiently aligned and the images incident on the four-divided photodetectors have sufficient symmetry, The sensing output A1, of the first four-division light receiving element
Ellipse major axis (or ellipse minor axis) of A2, A3, A4
Of the output values corresponding to (A1 + A3) and the output values corresponding to the minor axis of the ellipse (or the major axis of the ellipse) (A2
+ A4) divided by the sum (B1 + B3), (B2 + B4) of the sensing outputs of the second four-division light receiving element corresponding to each of them, the difference is obtained, that is, the value S = (A1 + A3) / By calculating (B1 + B3)-(A2 + A4) / (B2 + B4), the distance of the measured point can be calculated with high accuracy based on this value S.

【0011】[0011]

【実施例】本発明方法の一実施例を図1に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of the present invention will be described with reference to FIG.

【0012】まず、図示のように光軸1上に位置する被
測定点Pから発せられた光線束10を対物レンズ12に
通し、ビームスプリッタ14で2方向(図例では右方と
下方)に分割する。分割した一方の光線束16について
は、これを円柱レンズ18に通して非点収差を生じさせ
てから第1の4分割受光素子20Aの各受光面に入射さ
せる。これにより、この第1の4分割受光素子20Aの
受光面には、被測定点Pの位置に応じて図に斜線で示す
ような楕円形あるいは円形の像が形成され、各受光面に
ついて個別に感知出力A1,A2,A3,A4が得られ
る。これに対し、分割した他方の光線束22について
は、これを円柱レンズを介さずに第2の4分割受光素子
20Bの各受光面に入射させる。これにより、この第2
の4分割受光素子20Bの受光面には、被測定点Pの位
置にかかわらず図に斜線で示すような円形の像が形成さ
れ、各受光面について個別に、上記出力A1,A2,A
3,A4に対応する感知出力B1,B2,B3,B4が
得られる。
First, as shown in the drawing, a light beam bundle 10 emitted from a measured point P located on the optical axis 1 is passed through an objective lens 12, and a beam splitter 14 moves in two directions (rightward and downward in the illustrated example). To divide. One of the divided light beam bundles 16 is passed through a cylindrical lens 18 to generate astigmatism, and then is made incident on each light receiving surface of the first four-divided light receiving element 20A. As a result, on the light receiving surface of the first 4-division light receiving element 20A, an elliptical or circular image as shown by the diagonal lines in the figure is formed according to the position of the measured point P, and each light receiving surface is individually provided. The sensing outputs A1, A2, A3, A4 are obtained. On the other hand, the other divided ray bundle 22 is made incident on each light receiving surface of the second four-division light receiving element 20B without passing through the cylindrical lens. This makes this second
On the light receiving surface of the four-divided light receiving element 20B, a circular image as shown by the diagonal lines in the figure is formed regardless of the position of the measured point P, and the outputs A1, A2, A
Sensing outputs B1, B2, B3, B4 corresponding to 3, A4 are obtained.

【0013】なお、上記各4分割受光素子20A,20
Bとしては、例えば4分割フォトダイオード等、4つの
受光面を有し、かつ各受光面の受光量を個別に電気信号
に変換する種々のものが適用可能である。また図1で
は、各4分割受光素子20A,20Bのさらに後方にそ
れぞれの受光面をそのまま後方へ倒した状態の図を描い
てある。
The four-divided light receiving elements 20A, 20
As B, for example, a four-divided photodiode or the like, which has four light receiving surfaces and which individually converts the amount of light received by each light receiving surface into an electric signal, is applicable. Further, in FIG. 1, a drawing is shown in which the respective light-receiving surfaces are tilted rearward as they are, further behind the respective four-divided light-receiving elements 20A, 20B.

【0014】上記測定動作において、仮に、光線束10
の一部に非常に強い(あるいは弱い)光線(以下、特異
な光線と称する。)24が混じっていたとし、この特異
な光線24が4分割受光素子20Aの感知出力A1に影
響する部分26Aに至ったとすると、これと同時に、上
記特異な光線24はビームスプリッタ14で分割された
後に第2の4分割受光素子20Bの感知出力B1に影響
する部分26Bにも必ず至ることとなる。従って、上記
特異な光線24が第1の4分割受光素子20Aのどの受
光面に入射されたとしても、各部品間の光軸が十分に合
致しており、第1の4分割受光素子20Aに投射される
像に十分な対称性が認められる場合には、1の4分割受
光素子20Aの出力値A1〜A4のうち、楕円長軸(ま
たは短軸)に対応する出力同士の和(A1+A3)、及
び楕円短軸(または長軸)に対応する出力同士の和(A
2+A4)、をそれぞれの出力に対応する出力同士の和
(B1+B3),(B2+B4)で除すことにより、光強
度分布のバラツキを完全に相殺することができ、よっ
て、次の式及び式により、例えば対物レンズ12か
ら被測定点Pまでの距離Lを光強度分布のバラツキに関
係なく正確に算出することができる。 L=F(S)≒Lo +kS … S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) … なお、式においてLo は基準距離、すなわち第1の4
分割受光素子20Aに投影される像が円形となるときの
対物レンズ12から被測定点Pまでの距離であり、kは
比例定数である。
In the above measurement operation, it is assumed that the light beam 10
It is assumed that a very strong (or weak) light beam (hereinafter, referred to as a peculiar light beam) 24 is mixed in a part of the above, and this peculiar light beam 24 is applied to a portion 26A that affects the sensing output A1 of the four-division light receiving element 20A. If it arrives, at the same time, the peculiar light ray 24 is always split into the beam splitter 14 and then reaches the portion 26B that affects the sensing output B1 of the second 4-split light-receiving element 20B. Therefore, no matter which light-receiving surface of the first 4-division light-receiving element 20A the unique light beam 24 is incident on, the optical axes of the components are sufficiently aligned, and the first 4-division light-receiving element 20A If sufficient symmetry is recognized in the projected image, the sum (A1 + A3) of the outputs corresponding to the ellipse major axis (or minor axis) among the output values A1 to A4 of the four-division light receiving element 20A of 1 , And the sum of outputs corresponding to the ellipse minor axis (or major axis) (A
2 + A4) is divided by the sum (B1 + B3) and (B2 + B4) of the outputs corresponding to the respective outputs, the variation in the light intensity distribution can be completely canceled out. Therefore, according to the following formula and formula, For example, the distance L from the objective lens 12 to the measured point P can be accurately calculated regardless of the variation in the light intensity distribution. L = F (S) ≈Lo + kS ... S = (A1 + A3) / (B1 + B3)-(A2 + A4) / (B2 + B4) ... In the equation, Lo is the reference distance, that is, the first 4
It is the distance from the objective lens 12 to the measured point P when the image projected on the divided light receiving element 20A is circular, and k is a proportional constant.

【0015】次に、上記式の演算により光線束10の
光強度のバラツキによる影響が相殺されることを理論的
に証明する。
Next, it will be theoretically proved that the influence of the variation in the light intensity of the light bundle 10 is canceled by the calculation of the above equation.

【0016】まず、第2の4分割受光素子20Bにおけ
る各感知出力B1,B2,B3,B4は、それぞれ、被
測定点Pからの受光線束10の断面光強度分布及び受光
面積に比例するが、受光像が円形であるため各受光面の
受光面積は全て等しいとみなすことができ、よって各出
力B1〜B4は断面光強度分布のみに比例することとな
る。そこで、各受光面の受光線束の光強度をb1,b2
3,b4、比例定数をkBとすると、各出力B1〜B4
は B1=kB1;B2=kB2;B3=kB3;B4=kB4 … と表すことができる。
First, the sensing outputs B1, B2, B3, B4 of the second four-division light receiving element 20B are proportional to the cross-sectional light intensity distribution and the light receiving area of the light receiving line bundle 10 from the measured point P, respectively. Since the light-receiving image is circular, it can be considered that the light-receiving areas of the respective light-receiving surfaces are all equal, and therefore the outputs B1 to B4 are proportional to only the sectional light intensity distribution. Therefore, the light intensities of the light receiving line bundles on the respective light receiving surfaces are set to b 1 , b 2 ,
If b 3 and b 4 and the proportional constant are k B , then the respective outputs B1 to B4
The B1 = k B b 1; can be expressed B4 = k B b 4 ... and; b 3 B3 = k B; B2 = k B b 2.

【0017】これに対し、第1の4分割受光素子20A
における各感知出力A1,A2,A3,A4は、それぞ
れ、上記光強度b1,b2,b3,b4及び受光面積に比例
するので、各受光面積をa1,a2,a3,a4、比例定数
をkAとすると、 A1=kA11;A2=kA22;A3=kA33;A4=kA44 … と表すことができる。ここで、各部品間の光軸が十分に
合致しており、第1の4分割受光素子20Aに投射され
る像に十分な対称性が認められる場合には、a3=a1
4=a2とおくことができる。これを上記式に代入す
ると、 A1=kA11;A2=kA22;A3=kA13;A4=kA24 …´ となる。この´式及び上記式を上記式に代入する
ことにより、次式が得られる。 S=(kA/kB)(a1−a2) … この式から明らかなように、上記断面光強度分布b1
4は相殺され、Sは受光面積a1,a2の差に比例する
関数となるので、このSに基づき、断面光強度のバラツ
キに影響を受けることなく前記式により正確な距離L
を演算することができる。
On the other hand, the first four-division light receiving element 20A
Each sensing output A1, A2, A3, A4 in each, the light intensity b 1, b 2, b 3 , b 4 and is proportional to the light receiving area, each light receiving area a 1, a 2, a 3 , a 4, a proportionality constant is k a, A1 = k a a 1 b 1; A2 = k a a 2 b 2; A3 = k a a 3 b 3; A4 = k a a 4 b 4 ... and be represented You can Here, when the optical axes of the respective parts are sufficiently matched and sufficient symmetry is recognized in the image projected on the first four-division light receiving element 20A, a 3 = a 1 ,
It can be set that a 4 = a 2 . Substituting this into the above equation gives: A1 = k A a 1 b 1 ; A2 = k A a 2 b 2 ; A3 = k A a 1 b 3 ; A4 = k A a 2 b 4 ... By substituting this equation and the above equation into the above equation, the following equation is obtained. S = (k A / k B ) (a 1 −a 2 ) ... As is apparent from this equation, the cross-sectional light intensity distribution b 1 to
b 4 is canceled out, and S is a function proportional to the difference between the light receiving areas a 1 and a 2. Therefore, based on this S, the accurate distance L can be obtained by the above equation without being affected by the variation in the cross-sectional light intensity.
Can be calculated.

【0018】さらに、図1に示すようにビームスプリッ
タ14の前方に適当な直径の円形開口部をもつ絞り28
を設け、光線束10の周辺部の不安定光線束を除去する
ようにすれば、4分割受光素子20A,20Bに至る光
線束16,22がよりシャープなものとなり、測定値を
さらに安定させることができる。
Further, as shown in FIG. 1, a diaphragm 28 having a circular opening of an appropriate diameter is provided in front of the beam splitter 14.
By disposing the unstable light ray bundle around the light ray bundle 10 to make the light ray bundles 16 and 22 reaching the four-divided light receiving elements 20A and 20B sharper, the measured values can be further stabilized. You can

【0019】また図1では、ビームスプリッタ14を透
過した光線束16を円柱レンズ18に通してから第1の
4分割受光素子20Aに入射させ、ビームスプリッタ1
4で反射された光線束22を直接、第2の4分割受光素
子20Bに入射させるようにしたものを示したが、逆
に、ビームスプリッタ14で透過した光線束を直接4分
割受光素子に入射させ、ビームスプリッタ14で反射さ
れた光線束を円柱レンズ18に通してから上記4分割受
光素子と異なる4分割受光素子に入射させるようにして
もよい。この場合、前者の4分割受光素子を第2の4分
割受光素子、後者の4分割受光素子を第1の4分割受光
素子として上記実施例と同様に式、式の演算を行う
ことにより、正確な距離を求めることができる。
Further, in FIG. 1, the light beam bundle 16 transmitted through the beam splitter 14 is passed through a cylindrical lens 18 and then made incident on the first four-division light receiving element 20A, and the beam splitter 1
Although the light beam 22 reflected by the beam splitter 4 is directly incident on the second 4-division light receiving element 20B, the light beam transmitted by the beam splitter 14 is directly incident on the 4-division light receiving element. Then, the light beam reflected by the beam splitter 14 may be passed through the cylindrical lens 18 and then incident on a four-division light receiving element different from the above-mentioned four-division light receiving element. In this case, the former four-divided light receiving element is used as the second four-divided light receiving element, and the latter four-divided light receiving element is used as the first four-divided light receiving element to perform the equations and calculations of the equations in the same manner as in the above-described embodiment, thereby accurately It is possible to find the appropriate distance.

【0020】また、図1のビームスプリッタ14と円柱
レンズ18との間または円柱レンズ18と4分割受光素
子20Aとの間、及びビームスプリッタ14と4分割受
光素子20Bとの間などの適当な位置に適当な焦点距離
の凸レンズや凹レンズ(いずれも図示せず)を入れるこ
とによって、それぞれの4分割受光素子20A,20B
の位置をそれぞれの光軸上の望ましい位置に定めること
も可能である。
Further, between the beam splitter 14 and the cylindrical lens 18 in FIG. 1 or between the cylindrical lens 18 and the four-divided light receiving element 20A, and between the beam splitter 14 and the four-divided light receiving element 20B, etc. By inserting a convex lens or a concave lens (neither of which is shown) having an appropriate focal length into each of the four split light receiving elements 20A and 20B.
It is also possible to set the position of each to a desired position on each optical axis.

【0021】また、対物レンズ12等からの被測定点P
の絶対距離Lではなく、基準位置からの被測定点Pの変
位量(すなわち移動距離)uを求めたい場合には、次式 u=f(s)≒kS … により上記変位量uを容易に求めることができる。
Further, the measured point P from the objective lens 12 etc.
If it is desired to obtain the displacement amount (that is, the moving distance) u of the measured point P from the reference position, instead of the absolute distance L, the displacement amount u can be easily calculated by the following equation u = f (s) ≈kS. You can ask.

【0022】次に、上記方法を実施するのに好適な装置
の一例を図2に示す。
Next, an example of an apparatus suitable for carrying out the above method is shown in FIG.

【0023】この装置は、レーザ発光体等で構成される
光源30を備え、その前方(図では左方)に、非球面レ
ンズ32、凹レンズ34、ピンホール36、偏光ビーム
スプリッタ38、λ/4波長板40、及び対物レンズ1
2が順に配設されている。上記偏光ビームスプリッタ3
8の下方には、絞り28、ビームスプリッタ14、及び
第2の4分割受光素子20Bが順に配され、ビームスプ
リッタ14の後方(図では右方)には、円柱レンズ18
及び第1の4分割受光素子20Aが順に配設されてお
り、以上の部品は図外のフレーム内に組み込まれてい
る。2つの4分割受光素子20A,20Bは演算処理装
置(距離演算手段)50に接続されており、各受光素子
20A,20Bの感知出力A1〜A4,B1〜B4が演
算処理装置50に入力されるようになっている。
This device is provided with a light source 30 composed of a laser light emitter or the like, and in front of it (on the left side in the figure), an aspherical lens 32, a concave lens 34, a pinhole 36, a polarization beam splitter 38, and λ / 4. Wave plate 40 and objective lens 1
2 are arranged in order. The polarization beam splitter 3
A diaphragm 28, a beam splitter 14, and a second four-division light receiving element 20B are sequentially arranged below the beam splitter 8, and a cylindrical lens 18 is provided behind the beam splitter 14 (to the right in the figure).
And the first four-division light receiving element 20A are sequentially arranged, and the above components are incorporated in a frame (not shown). The two 4-divided light receiving elements 20A, 20B are connected to an arithmetic processing unit (distance calculating means) 50, and the sensing outputs A1 to A4, B1 to B4 of the respective light receiving elements 20A, 20B are input to the arithmetic processing unit 50. It is like this.

【0024】演算処理装置50は、一例として図3に示
すような演算回路を備えている。図において、51〜5
4は加算器、55,56は除算器、57は減算器、58
は演算出力である。この回路により、演算処理装置50
は前記式に示した値Sを演算し、この値Sに基づき距
離Lや変位量uの演算を行うように構成されている。
The arithmetic processing unit 50 includes an arithmetic circuit as shown in FIG. 3 as an example. In the figure, 51 to 5
4 is an adder, 55 and 56 are dividers, 57 is a subtractor, 58
Is the operation output. With this circuit, the arithmetic processing unit 50
Is configured to calculate the value S shown in the above equation and calculate the distance L and the displacement amount u based on the value S.

【0025】次に、この装置の作用を説明する。Next, the operation of this device will be described.

【0026】光源30から発せられた光線束42は、非
球面レンズ32で集束され、凹レンズ34で所定の焦点
長を有する光線束に修形された後、ピンホール36でシ
ャープな断面真円状の光線束43に整形され、偏光ビー
ムスプリッタ38、λ/4波長板40、対物レンズ12
を順次経て被測定面44上の被測定点Pに集光される。
この被測定点Pで反射された光は、あたかも被測定点自
身Pから発せられたかのように光線束10となって対物
レンズ12及びλ/4波長板40を通り、偏光ビームス
プリッタ38で下方に反射される。この光線束は、絞り
28で不安定成分が除去された後、ビームスプリッタ1
4で下方と後方との2方向に分割される。分割された一
方の光線束16は、円柱レンズ18で非点収差を生じた
後に第1の4分割受光素子20Aに至り、他方の光線束
22はそのまま第2の4分割受光素子20Bに至る。各
受光素子20A,20Bの感知出力A1〜A4,B1〜
B4は演算処理装置50に入力され、この演算処理装置
50で演算された距離Lや変位量uの値に関する信号は
図外の表示装置や別の演算処理装置等へ出力されること
となる。
A ray bundle 42 emitted from the light source 30 is converged by an aspherical lens 32, shaped into a ray bundle having a predetermined focal length by a concave lens 34, and then a pinhole 36 forms a sharp circular cross section. Of the light beam 43, the polarization beam splitter 38, the λ / 4 wavelength plate 40, and the objective lens 12
Then, the light is focused on the measured point P on the measured surface 44.
The light reflected at the measured point P becomes a bundle of rays 10 as if it were emitted from the measured point P itself, passes through the objective lens 12 and the λ / 4 wavelength plate 40, and is directed downward by the polarization beam splitter 38. Is reflected. After the unstable component is removed by the diaphragm 28, this beam bundle is beam splitter 1
At 4, it is divided into two directions, downward and backward. One of the divided light beam bundles 16 reaches the first four-divided light receiving element 20A after astigmatism is generated by the cylindrical lens 18, and the other light ray bundle 22 reaches the second four-divided light receiving element 20B as it is. Sensing outputs A1 to A4 and B1 of the respective light receiving elements 20A and 20B
B4 is input to the arithmetic processing device 50, and the signals regarding the values of the distance L and the displacement amount u calculated by the arithmetic processing device 50 are output to a display device (not shown), another arithmetic processing device, or the like.

【0027】なお、図2には明示していないが、外乱光
の影響をなるべく小さくするためには、光学系の途中、
例えば対物レンズ12の前後や絞り28の前後に光源3
0の発光波長に応じた干渉フィルタを挿入したり、光源
30に変調をかけて使用したりすることが必要である。
Although not shown in FIG. 2, in order to reduce the influence of ambient light as much as possible, in the middle of the optical system,
For example, the light sources 3 are provided before and after the objective lens 12 and before and after the diaphragm 28.
It is necessary to insert an interference filter according to the emission wavelength of 0 or to modulate the light source 30 for use.

【0028】また、測定範囲全域で安定した測定結果を
得るためには、被測定点Pの直径を可能な限り小さく
し、被測定点Pが対物レンズ12に対して前後に移動し
ても被測定点Pの大きさが変わらないようにすることが
望ましいので、対物レンズ12を通って被測定点Pに至
る光線束43がなるべく断面直径が小さく平行な光線束
となるように光源30、非球面レンズ32、凹レンズ3
4、ピンホール36等の位置や焦点距離、径等を適当に
定めることが望ましい。
Further, in order to obtain a stable measurement result over the entire measurement range, the diameter of the measured point P is made as small as possible, and even if the measured point P moves back and forth with respect to the objective lens 12, Since it is desirable that the size of the measurement point P does not change, the light source 30 and the non-light source 30 are arranged so that the light beam bundle 43 passing through the objective lens 12 and reaching the measured point P has a cross-sectional diameter as small as possible and a parallel light beam bundle. Spherical lens 32, concave lens 3
4. It is desirable to appropriately determine the position of the pinhole 36 and the like, the focal length, the diameter and the like.

【0029】また、このような断面極小で平行な光線束
43を形成する場合には、図2に示したピンホール36
や高価な偏光ビームスプリッタ38を用いる代わりに、
図4に示すような鏡板70を用いることも可能であり、
これによって高価なλ/4波長板40を省略することも
可能になる。この鏡板70は、45°傾斜した小さな貫
通孔72を中央に有しており、従って、この貫通孔72
の開口形状は45°の楕円となっている。このような鏡
70を図4に示すように45°傾けた状態で上記偏光ビ
ームスプリッタ38に代えてこれと同位置に配設するこ
とにより、光線束42は上記貫通孔72を通って光線束
43となって被測定点Pへ照射され、反射されて戻って
きた光線束10、すなわち上記光線束43よりも断面積
が非常に大きくなっている光線束10は、その大部分が
上記貫通孔72以外の領域で下方に反射され、ビームス
プリッタ14へ導入されることとなる。
Further, in the case of forming a parallel light flux 43 having such a minimum cross section, the pinhole 36 shown in FIG.
Instead of using an expensive polarization beam splitter 38,
It is also possible to use an end plate 70 as shown in FIG.
This makes it possible to omit the expensive λ / 4 wave plate 40. The end plate 70 has a small through hole 72 inclined at 45 ° in the center, and therefore, the through hole 72 is formed.
The opening shape is a 45 ° ellipse. By disposing such a mirror 70 at the same position as the polarization beam splitter 38 in a state of being inclined by 45 ° as shown in FIG. 4, the light beam bundle 42 passes through the through hole 72 and the light beam bundle 42 passes. The bundle of rays 10 which has become 43 and is irradiated to the point P to be measured, reflected and returned, that is, the bundle of rays 10 whose cross-sectional area is much larger than the bundle of rays 43, is mostly the through hole. The light is reflected downward in the area other than 72 and is introduced into the beam splitter 14.

【0030】このような鏡板70を使用した場合には、
図5(a)〜(c)及び同図(d)に示すように、第1
の4分割受光素子20Aの受光面上に形成される像7
6,77,78及び第2の4分割受光素子20Bの受光
面上に形成される像79の中央に中空部76´,77
´,78´,79´が形成されることとなるが、これら
の中空部76´〜79´の形状は像76〜79の形状に
それぞれ対応しているので、発光強度がある程度高けれ
ば、測定精度にほとんど影響を及ぼすことはない。ただ
し、前記実施例で示したような偏光ビームスプリッタ3
8及びλ/4波長板40を用いるようにすれば、反射し
てきた光線束10の一部が光源30に逆戻りすることを
ほぼ完全に防ぐことができ、これにより光源30の発光
をより安定させることが可能である。
When such an end plate 70 is used,
As shown in FIGS. 5A to 5C and FIG. 5D, the first
Image 7 formed on the light receiving surface of the four-division light receiving element 20A
6, 77, 78 and a hollow portion 76 ', 77 in the center of the image 79 formed on the light receiving surface of the second four-divided light receiving element 20B.
′, 78 ′, 79 ′ are formed, but since the shapes of these hollow portions 76 ′ -79 ′ correspond to the shapes of the images 76-79, respectively, if the emission intensity is high to a certain degree, It has little effect on accuracy. However, the polarization beam splitter 3 as shown in the above embodiment
If the 8 and λ / 4 wave plates 40 are used, it is possible to almost completely prevent a part of the reflected light beam bundle 10 from returning to the light source 30, thereby further stabilizing the light emission of the light source 30. It is possible.

【0031】なお、本発明では、各光線束の方向を問わ
ず、例えば被測定点に対して下方から光線を照射するよ
うな装置にも上記実施例と同様にして容易に適用するこ
とができる。
The present invention can be easily applied to an apparatus for irradiating a point to be measured with a ray from below, regardless of the direction of each ray bundle, in the same manner as in the above embodiment. .

【0032】また本発明では、ビームスプリッタの種類
を問わず、図1,2に示す直角プリズム式のものの他、
受光線束を2方向に分割する種々のビームスプリッタが
適用可能である。
Further, in the present invention, regardless of the type of beam splitter, in addition to the rectangular prism type shown in FIGS.
Various beam splitters that divide the light-receiving line bundle into two directions are applicable.

【0033】また、対物レンズ12のゆがみや絞り28
の不整形等により、第1の4分割受光素子20Aに投射
される像に完全な対称性が認められない場合でも、前記
式で示した値Sに代え、次の´式に示す値S´を用
いることにより、上記対称性を害することによる測定結
果への悪影響を抑えることが可能である。 S´=(A1/B1+A3/B3)−(A2/B2+A4/B4) …´ すなわち、この値S´は、その感知出力A1〜A4をこ
れに対応する第2の4分割受光素子20Bの感知出力B
1〜B4で除することにより、上記特異な光線24によ
る測定精度への影響を相殺し、各比A1/B1,A2/
B2,A3/B3,A4/B4,を用いて第1の4分割
受光素子20Aにおける長軸と短軸との寸法差の度合い
を表したものである。
Further, the distortion of the objective lens 12 and the diaphragm 28
Even when perfect symmetry is not recognized in the image projected on the first four-division light receiving element 20A due to irregularity of the above, etc., the value S ′ shown in the following equation is replaced with the value S ′ shown in the following equation. By using, it is possible to suppress the adverse effect on the measurement result due to the impairment of the symmetry. S '= (A1 / B1 + A3 / B3)-(A2 / B2 + A4 / B4) ...' That is, this value S'represents the sensing outputs A1 to A4 corresponding to the sensing outputs of the second four-division light receiving element 20B. B
By dividing by 1 to B4, the influence of the peculiar ray 24 on the measurement accuracy is canceled out, and each ratio A1 / B1, A2 /
B2, A3 / B3, A4 / B4 are used to represent the degree of dimensional difference between the major axis and the minor axis in the first four-divided light receiving element 20A.

【0034】この´式は、第1の4分割受光素子20
Aに入射される対称性にかかわらず光強度分布の影響が
完全に相殺されているものであり、以下にその証明を行
う。まず、第1の4分割受光素子20Aの出力A1〜A
4及び第2の4分割受光素子20Bの出力B1〜B4は
前記実施例と同様に B1=kB1;B2=kB2;B3=kB3;B4=kB4 … A1=kA11;A2=kA22;A3=kA33;A4=kA44 … で表される。これらを前記´式に代入すると、次式が
得られる。 S´=(kA/kB){(a1+a3)−(a2+a4)} …´ ここに示される値S´は、前記式で示された値Sと同
様に光強度分布b1〜b4と無関係で、受光面積a1
2,a3,a4のみの関数となっており、第1の4分割
受光素子20Aの受ける像の長軸と短軸との差によって
決まる値である。よって、この値S´を用いても光強度
分布に影響を受けない正確な距離が得られるのは明らか
である。また、この´式においてa3=a1、a4=a2
とすれば、次式 S´=2(kA/kB)(a1−a2) … が得られるが、この値S´と、上記式で与えられる値
Sとが等価であることは明らかである。
This equation is for the first four-division light receiving element 20.
The influence of the light intensity distribution is completely canceled regardless of the symmetry incident on A, and the proof will be given below. First, the outputs A1 to A of the first four-division light receiving element 20A
The output of the 4 and a second quarter-split light receiving element 20B B1 to B4 is the embodiment similarly to B1 = k B b 1; B2 = k B b 2; B3 = k B b 3; B4 = k B b 4 ... A1 = k A a 1 b 1 ; A2 = k A a 2 b 2; A3 = k A a 3 b 3; A4 = k A a 4 b 4 ... represented by. Substituting these into the above equation, the following equation is obtained. S ′ = (k A / k B ) {(a 1 + a 3 ) − (a 2 + a 4 )} ... ′ The value S ′ shown here is the same as the value S shown in the above formula, that is, the light intensity distribution. Irrespective of b 1 to b 4 , the light receiving area a 1 ,
It is a function of only a 2 , a 3 , and a 4 , and is a value determined by the difference between the long axis and the short axis of the image received by the first 4-division light receiving element 20A. Therefore, it is obvious that even if this value S ′ is used, an accurate distance that is not affected by the light intensity distribution can be obtained. Further, in this equation, a 3 = a 1 , a 4 = a 2
Then, the following equation S ′ = 2 (k A / k B ) (a 1 −a 2 ) ... Is obtained, but this value S ′ is equivalent to the value S given by the above equation. it is obvious.

【0035】なお、上記´式の演算を行うには、例え
ば図6に示すような演算回路を用いるようにすればよ
い。なお、同図において61〜64は除算器、65,6
6は加算器、67は減算器、68は演算出力である。
In order to carry out the operation of the above equation, for example, an operation circuit as shown in FIG. 6 may be used. In the figure, 61 to 64 are dividers, 65 and 6
6 is an adder, 67 is a subtractor, and 68 is a calculation output.

【0036】この図6と前記図3とを比較して明らかな
ように、前記式に示した演算方式によれば、後の´
式に示した演算方式と比べて高価な除算器を半分の2個
に済ますことができ、その分コストの削減を図ることが
可能である。また、感知出力B1〜B4のうちのいずれ
かの出力値が極端に微弱である場合、この出力値がその
まま分母となる´式の演算では非常に不安定な出力が
得られることになるが、上記式による演算方式では、
感知出力B1,B3の和(B1+B3)、及び感知出力
B2,B4の和(B2+B4)がそれぞれ分母となるの
で、感知出力B1〜B4のうちのいずれか1つが極端に
微弱であっても分母の値までが微弱となることはほとん
どなく、従って演算出力値をより安定させることができ
る。
As is apparent from a comparison between FIG. 6 and FIG. 3, according to the arithmetic method shown in the equation,
It is possible to reduce the number of expensive dividers to two, which is half that of the operation method shown in the equation, and it is possible to reduce the cost accordingly. Also, if any of the sensing outputs B1 to B4 is extremely weak, an extremely unstable output can be obtained by the calculation of the equation where the output value is the denominator as it is. In the calculation method by the above formula,
Since the sum (B1 + B3) of the sensing outputs B1 and B3 and the sum (B2 + B4) of the sensing outputs B2 and B4 are denominators, respectively, even if any one of the sensing outputs B1 to B4 is extremely weak, There is almost no weakness up to the value, so the calculated output value can be made more stable.

【0037】ただし、前記´式に示した演算方式によ
れば、受光像の対称性に誤差がある場合にも、これによ
る測定結果への影響を削減することができる利点があ
る。
However, according to the calculation method shown in the above equation, even if there is an error in the symmetry of the received light image, there is an advantage that it is possible to reduce the influence on the measurement result.

【0038】[0038]

【発明の効果】以上のように本発明は、被測定点から受
ける光線束を対物レンズに通した後にビームスプリッタ
で2方向に分割し、一方の光線束を円柱レンズを通して
第1の4分割受光素子に、他方の光線束を円柱レンズを
介さずに第2の4分割受光素子にそれぞれ入射させ、上
記第1の4分割受光素子の感知出力A1〜A4と、これ
らの感知出力にそれぞれ対応する第2の4分割受光素子
の感知出力B1〜B4とにより与えられる次式の値 S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) に基づいて上記被測定点の距離を演算するものであるの
で、被測定点から受ける光線束の光強度分布にバラツキ
がある場合でも、その影響を完全に相殺することがで
き、これにより高精度の距離測定を行うことができる効
果がある。
As described above, according to the present invention, the light flux received from the measured point is passed through the objective lens and then split into two directions by the beam splitter, and one light flux is passed through the cylindrical lens to receive the first four-divided light. The other light flux is made incident on the second four-division light receiving element without passing through the cylindrical lens, and the sensor outputs corresponding to the sensing outputs A1 to A4 of the first four-division light receiving element and these sensing outputs, respectively. The distance of the measured point is calculated based on the value S = (A1 + A3) / (B1 + B3)-(A2 + A4) / (B2 + B4) given by the sensing outputs B1 to B4 of the second 4-division light receiving element. Therefore, even if there is a variation in the light intensity distribution of the light flux received from the point to be measured, the effect can be completely offset, and this has the effect of enabling highly accurate distance measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例を説明するための光学系
の構成図である。
FIG. 1 is a configuration diagram of an optical system for explaining an embodiment of a method of the present invention.

【図2】上記方法を実現するための距離測定装置の一例
を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a distance measuring device for realizing the above method.

【図3】上記方法における演算に要する回路を示した図
である。
FIG. 3 is a diagram showing a circuit required for calculation in the above method.

【図4】上記距離測定装置において偏向ビームスプリッ
タの代用となり得る鏡板の断面正面図である。
FIG. 4 is a cross-sectional front view of an end plate that can be used as a substitute for the deflecting beam splitter in the distance measuring device.

【図5】(a)(b)(c)は上記鏡板を使用した時に
第1の4分割受光素子の受光面に形成される像を示す正
面図、(d)は上記鏡板を使用した時に第2の4分割受
光素子の受光面に形成される像を示す正面図である。
5 (a), (b) and (c) are front views showing an image formed on the light receiving surface of the first four-division light receiving element when the above-mentioned end plate is used, and (d) is a case where the above-mentioned end plate is used. It is a front view which shows the image formed in the light-receiving surface of a 2nd 4-part dividing light receiving element.

【図6】他の方法における演算に要する回路を示した図
である。
FIG. 6 is a diagram showing a circuit required for calculation in another method.

【図7】非点収差法の原理を説明するための光学系の構
成図である。
FIG. 7 is a configuration diagram of an optical system for explaining the principle of the astigmatism method.

【図8】(a)(b)(c)は非点収差により4分割受
光素子の受光面に形成される像を示す図である。
8A, 8B, and 8C are diagrams showing images formed on a light receiving surface of a four-division light receiving element due to astigmatism.

【符号の説明】[Explanation of symbols]

10 被測定点から受ける光線束 12 対物レンズ 14 ビームスプリッタ 18 円柱レンズ 20A 第1の4分割受光素子 20B 第2の4分割受光素子 30 光源 50 演算処理装置(距離演算手段) A1〜A4 第1の4分割受光素子の感知出力 B1〜B4 第2の4分割受光素子の感知出力 P 被測定点 10 Ray bundle received from measured point 12 Objective lens 14 Beam splitter 18 Cylindrical lens 20A First four-division light receiving element 20B Second four-division light receiving element 30 Light source 50 Arithmetic processing device (distance computing means) A1 to A4 First Sensing output of 4-division light receiving element B1 to B4 Sensing output of second 4-division light receiving element P Point to be measured

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光軸上の被測定点から受ける光線束を少
なくとも対物レンズ及び円柱レンズを通して4分割受光
素子に照射し、この受光素子の出力に基づいて上記被測
定点の距離を測定する非点収差式の距離測定方法におい
て、上記光線束を対物レンズに通した後にビームスプリ
ッタで2方向に分割し、分割した一方の光線束を円柱レ
ンズに通して第1の4分割受光素子に入射させるととも
に、他方の光線束を円柱レンズを介さずに第2の4分割
受光素子に入射させ、このときの上記第1の4分割受光
素子の感知出力A1,A2,A3,A4と、これらの感
知出力A1,A2,A3,A4にそれぞれ対応する第2
の4分割受光素子の感知出力B1,B2,B3,B4と
により与えられる下式の値 S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) を算出し、この値Sに基づいて上記被測定点の距離を演
算することを特徴とする距離測定方法。
1. A non-measurement device for irradiating a four-division light receiving element with a light beam received from a point to be measured on an optical axis through at least an objective lens and a cylindrical lens and measuring the distance of the point to be measured based on the output of the light receiving element. In the point aberration type distance measuring method, the light beam bundle is passed through an objective lens and then split into two directions by a beam splitter, and one of the split light beam bundles is passed through a cylindrical lens and made incident on the first four-division light receiving element. At the same time, the other ray bundle is made incident on the second 4-division light-receiving element without passing through the cylindrical lens, and the sensing outputs A1, A2, A3, A4 of the first 4-division light-receiving element at this time and their detection The second corresponding to the outputs A1, A2, A3, A4, respectively
The value S = (A1 + A3) / (B1 + B3)-(A2 + A4) / (B2 + B4) given by the sensing outputs B1, B2, B3, B4 of the four-division light receiving element of is calculated, and based on this value S A distance measuring method, characterized in that the distance between the points to be measured is calculated.
【請求項2】 被測定点に光線を照射する光源と、上記
被測定点で反射されてきた光線束を通す対物レンズと、
この対物レンズを通った光線束を2方向に分割するビー
ムスプリッタと、このビームスプリッタで分割された各
光線束がそれぞれ入射される位置に設けられた第1の4
分割受光素子及び第2の4分割受光素子と、第1の4分
割受光素子とビームスプリッタとの間に設けられた円柱
レンズと、上記第1の4分割受光素子の感知出力A1,
A2,A3,A4とこれらの感知出力A1,A2,A
3,A4にそれぞれ対応する第2の4分割受光素子の感
知出力B1,B2,B3,B4とにより与えられる下式
の値 S=(A1+A3)/(B1+B3)−(A2+A4)/(B2+B4) を算出し、この値Sに基づいて上記被測定点の距離を演
算する距離演算手段とを備えたことを特徴とする距離測
定装置。
2. A light source for irradiating a measured point with a light beam, and an objective lens for passing a bundle of light rays reflected at the measured point.
A beam splitter that splits a light beam that has passed through this objective lens into two directions, and a first beam splitter that is provided at a position where each light beam split by this beam splitter is incident.
The divided light receiving element and the second four-divided light receiving element, the cylindrical lens provided between the first four-divided light receiving element and the beam splitter, and the sensing output A1 of the first four-divided light receiving element.
A2, A3, A4 and their sensing outputs A1, A2, A
The value S = (A1 + A3) / (B1 + B3)-(A2 + A4) / (B2 + B4) given by the sensing outputs B1, B2, B3, B4 of the second 4-division light receiving element corresponding to 3 and A4, respectively, A distance measuring device comprising: a distance calculating unit that calculates and calculates the distance of the measured point based on the value S.
JP21962391A 1991-08-30 1991-08-30 Distance measuring method and device Expired - Lifetime JPH07117412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21962391A JPH07117412B2 (en) 1991-08-30 1991-08-30 Distance measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21962391A JPH07117412B2 (en) 1991-08-30 1991-08-30 Distance measuring method and device

Publications (2)

Publication Number Publication Date
JPH0560556A JPH0560556A (en) 1993-03-09
JPH07117412B2 true JPH07117412B2 (en) 1995-12-18

Family

ID=16738432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21962391A Expired - Lifetime JPH07117412B2 (en) 1991-08-30 1991-08-30 Distance measuring method and device

Country Status (1)

Country Link
JP (1) JPH07117412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3134709A4 (en) * 2014-04-22 2018-01-03 BASF (China) Company Ltd. Detector for optically detecting at least one object

Also Published As

Publication number Publication date
JPH0560556A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US20090021750A1 (en) Method and Arrangement for a Rapid and Robust Chromatic Confocal 3D Measurement Technique
US9823119B2 (en) System and method for analyzing a light beam guided by a beam guiding optical unit
US11054305B2 (en) Method and device for beam analysis
JP2001504592A (en) Distance measuring method and distance measuring device
JPH01503330A (en) Compact continuous wave wavefront sensor
CN101116141A (en) Spot size focus error detection for multiple beam optical scanning device
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
TWI582449B (en) Measuring arrangement for use when determining trajectories of flying objects
JPH07117412B2 (en) Distance measuring method and device
JPH07117411B2 (en) Distance measuring method and device
JPS60200108A (en) Optical type thickness measuring method and apparatus thereof
JP3491464B2 (en) Laser beam divergence angle measuring device
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
JPS6227613A (en) Position detector
JPH01233310A (en) Optical method and optical probe for measuring shape of surface
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPS598762B2 (en) How to use the information
JP2686323B2 (en) Focus error detection device
JPH0642163Y2 (en) Optical shape measuring device
JPH0262181B2 (en)
KR880004297Y1 (en) Optical sensor for focusing control
JPH08304694A (en) Focus detector
JPH03225248A (en) Instrument for adjusting optical axis and measuring beam diameter
JPS63153442A (en) Measuring instrument for optical characteristic of beam splitter
JPS63138310A (en) Focus detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702