JPS62274780A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62274780A
JPS62274780A JP11946886A JP11946886A JPS62274780A JP S62274780 A JPS62274780 A JP S62274780A JP 11946886 A JP11946886 A JP 11946886A JP 11946886 A JP11946886 A JP 11946886A JP S62274780 A JPS62274780 A JP S62274780A
Authority
JP
Japan
Prior art keywords
type
drain region
source region
region
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11946886A
Other languages
Japanese (ja)
Inventor
Eigo Fuse
布施 英悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11946886A priority Critical patent/JPS62274780A/en
Publication of JPS62274780A publication Critical patent/JPS62274780A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce short-channel effect in a semiconductor device and improve the device in its back-gate feature by a method wherein source and drain regions of one conductivity type are provided respectively in opposite-conductivity islands of high impurity concentration. CONSTITUTION:A P-channel MOS transistor 10 is constituted of a source region 3A, drain region 3B, gate oxide film 4, and gate electrode 5, which are P-type impurity layers formed on an N-type semiconductor substrate 1. As for the source region 3A and drain region 3B, they are formed in their respective N<+>- type diffusion islands 2. In the source region 3A and drain region 3B, lateral diffusion at their shallow portions are similar to that in their deeper portions, and lateral expansion in their structures is smaller than that in a conventional design. In this way, the device may be greatly improved in its short-channel effect, and in its back-gate feature, etc., because there is no N<+>-type well layer that is required in a conventional structure.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は半導体装置に関する。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

周知のように半導体集積回路はLSI化され、それを構
成する半導体素子は益々微細化が要求されている。微細
化に伴なう色々な問題のうち代表的なものとしてMO8
半導体素子の短チャンネル化による短チャンネル効果が
ある。
As is well known, semiconductor integrated circuits have been made into LSIs, and the semiconductor elements constituting them are required to be increasingly miniaturized. Among the various problems associated with miniaturization, MO8 is a typical one.
There is a short channel effect due to the short channel of semiconductor devices.

特にPチャンネルMO8トランジスタのソース及びドレ
イン領域となるP型拡散層はNチャンネルMOSトラン
ジスタのソースおよびドレイン領域となるN型拡散層に
比べ高熱処塩工程による拡散の横広がりが大きくなるこ
とは、周知の通りである。又、PチャンネルMO8ト9
ンジスタ形成領域のN型基板不純物濃度が低い場合はこ
の横広がりも大きくなることも良く知られている。
In particular, it is well known that the lateral spread of diffusion in the P-type diffusion layer that becomes the source and drain regions of a P-channel MO8 transistor is greater than that of the N-type diffusion layer that becomes the source and drain region of an N-channel MOS transistor due to the high-temperature salt treatment process. It is as follows. Also, P channel MO8 to 9
It is also well known that when the N-type substrate impurity concentration in the transistor formation region is low, this lateral spread becomes large.

従来この横広がりが原因でソース領域とドレイン領域間
がパンチスルーを起したシ、シきい値電圧全変動させる
等電気的特性を不安定にすることが多い。従って短チャ
ンネル化が要求される昨今では上記横広がりが、重要な
問題となる。
Conventionally, this lateral spread often causes punch-through between the source region and the drain region, causes the threshold voltage to completely fluctuate, and otherwise destabilizes the electrical characteristics. Therefore, in these days when there is a demand for shorter channels, the above-mentioned lateral spread becomes an important problem.

これ全解消する手段としてソース・ドレイン領域にイオ
ン注入する際、イオン注入量を少くしたり、イオン注入
加速電圧を下げる方法等があるが、イオン注入iを少く
することによシンース・)−L/イン領域の層抵抗が高
くな)MOSトランジスタの飽和電流が小さくなる等電
気的特性に悪影響を及ぼす新たな問題が生じる。又加速
電圧を下げる方法も装置上の限界が30Key程度と装
置にょシ制限される場合が多い。
There are ways to completely eliminate this problem, such as reducing the amount of ions implanted or lowering the ion implantation acceleration voltage when implanting ions into the source/drain region. New problems arise that adversely affect the electrical characteristics, such as a decrease in the saturation current of the MOS transistor (high layer resistance in the in-region) and a decrease in the saturation current of the MOS transistor. Furthermore, the method of lowering the accelerating voltage is often limited by the device, with a limit of about 30 keys.

他に熱処理低温化等の方法もあるが、ゲート電極を覆う
層間膜にPSG膜を使用することがら平坦化重要視のた
め950’C以下の低温化は不可能であシ、たとえ低温
化し九としても層間膜上層の配線が断線する等信頼性上
の問題をひき起す場合が多い。
There are other methods such as heat treatment to lower the temperature, but since a PSG film is used as the interlayer film covering the gate electrode and flattening is important, it is impossible to lower the temperature below 950'C. However, reliability problems such as disconnection of wiring in the upper layer of the interlayer film often occur.

従って従来は、第3図に示すように、PチャンネルMO
8トランジスタ1oの場合は素子形成領域にN型半導体
基板1またはN型エピタキシャル層に不純物濃度の高い
N+型ウェル層9を形成してP型拡散層からなるソース
領域3Aとドレイン領域3Bの横広がりを抑制する方法
が用いられていた。
Therefore, conventionally, as shown in FIG.
In the case of an 8 transistor 1o, an N+ type well layer 9 with a high impurity concentration is formed in the N type semiconductor substrate 1 or an N type epitaxial layer in the element formation region, and the source region 3A and drain region 3B made of a P type diffusion layer are expanded laterally. methods were used to suppress this.

また第4図に示すように、NチャンネルMOSトランジ
スタ20についても同様に、不純物濃度の高いP 型ウ
ェル層11を形成してN型拡散層からなるソース領域7
Aとドレイン領域7Bの横広がシを抑制する方法が用い
られていた。
Similarly, as shown in FIG. 4, for the N-channel MOS transistor 20, a P-type well layer 11 with a high impurity concentration is formed, and a source region 7 made of an N-type diffusion layer is formed.
A method of suppressing the lateral expansion of the drain region 7B and the drain region 7B has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来構造を有する半導体装置においては、しき
い値電圧の高い側で使用する素子では、短チャンネル効
果を抑制することが出来るがしきい値電圧の低い側で使
用する素子ではN+型ウェル層9−!たはP+型ウェル
層11の表面不純物濃度を低くしなければならず、ソー
ス・ドレイン領域の浅い部分での拡散横広がシを抑制す
ることは困難であった。
In the semiconductor device having the conventional structure described above, the short channel effect can be suppressed in devices used on the high threshold voltage side, but the N+ type well layer is suppressed in devices used on the low threshold voltage side. 9-! Otherwise, it is necessary to lower the surface impurity concentration of the P+ type well layer 11, and it is difficult to suppress the lateral spread of diffusion in the shallow portions of the source/drain regions.

又、各ウェル層の不純物濃度を高くすることでバックゲ
ート特性が悪化し電気的特性に悪影響を及はす問題点も
あった。
Furthermore, there is also the problem that increasing the impurity concentration in each well layer deteriorates back gate characteristics, which adversely affects electrical characteristics.

本発明の目的は、ソース領域及びドレイン領域の横広が
りを抑制し短チャンネル効果を軽減すると共にバックゲ
ート特性の向上した半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that suppresses lateral expansion of source and drain regions, reduces short channel effects, and improves back gate characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板上に形成された一導
電型不純物層からなるソース領域及びドレイン領域と、
このソース領域及びドレイン領域間上に形成されたゲー
ト酸化膜と、ゲート酸化膜上く形成されたゲート電極と
からなるMOS トランジスタを有する半導体装置であ
って、前記ソース領域及びドレイン領域はそれぞれ別の
逆導電型の高濃度不純物層島内に形成されているもので
ある。
A semiconductor device of the present invention includes a source region and a drain region formed on a semiconductor substrate and made of an impurity layer of one conductivity type;
A semiconductor device having a MOS transistor including a gate oxide film formed between the source region and the drain region and a gate electrode formed on the gate oxide film, wherein the source region and the drain region are separated from each other. It is formed within a highly concentrated impurity layer island of opposite conductivity type.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図であシ、本発明
をPチャンネルMO8ト、2ンジスタに適用した場合を
示している。
FIG. 1 is a sectional view of a first embodiment of the present invention, and shows the case where the present invention is applied to a P-channel MO8 transistor.

第1図においてPチャンネルMO8トランジスタ10は
、N型半尋体基板1上に形成されたP型不純物層からな
るソース領域3A、  ドレイン領域3B、ゲート酸化
膜4及びゲート電極5とから構成されている。そし1、
特にソース領域3Aとドレイン領域3Bとはそれぞれ別
の虻型拡散層島2内に形成されている。
In FIG. 1, a P-channel MO8 transistor 10 is composed of a source region 3A made of a P-type impurity layer formed on an N-type semicircular substrate 1, a drain region 3B, a gate oxide film 4, and a gate electrode 5. There is. Soshi 1,
In particular, the source region 3A and the drain region 3B are formed in separate dovetail-shaped diffusion layer islands 2, respectively.

このよりに構成された本実施例においては、ソース領域
3人及びドレイン領域3Bの浅い部分での拡散横広がり
は、深い部分と同じになシ、かつ第3図に示した従来の
構造の横広がシよりも小さくすることができる。従って
短チャンネル効果を大幅に改善することができる。また
、従来構造におけるN+型ウェル層が不要となるためバ
ックゲート特性等も改善される。
In this embodiment constructed in this manner, the lateral spread of diffusion in the shallow portions of the three source regions and the drain region 3B is the same as that in the deep portions, and the lateral spread of the diffusion in the shallow portions of the three source regions and the drain region 3B is the same as that in the deep portions, and that of the conventional structure shown in FIG. It can be made smaller than the width. Therefore, short channel effects can be significantly improved. Furthermore, since the N+ type well layer in the conventional structure is not required, back gate characteristics and the like are also improved.

合を示している。It shows that the

この第2の実施例においても、NチャンネルMOSトラ
ンジスタ20を構成するN型不純物層からなるソース領
域7A及びドレイン領域7Bは、P型ウェル層8中に設
けられたP+型拡散1島6内に形成されているため、第
1図の場合と同様に横広が9は小さくなる。
In this second embodiment as well, a source region 7A and a drain region 7B made of an N-type impurity layer constituting an N-channel MOS transistor 20 are located within a P+ type diffusion island 6 provided in a P-type well layer 8. Because of this, the lateral spread 9 becomes smaller as in the case of FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、−4電型のソース領域及
びドレイン領域をそれぞれ別の逆導電型の高濃度不純物
層島内に形成することによシ、半導体装置の短チャンネ
ル効果を軽減し、バックゲート特性を向上させうる効果
がある。
As explained above, the present invention reduces the short channel effect of a semiconductor device by forming source regions and drain regions of -4 conductivity type in separate high-concentration impurity layer islands of opposite conductivity type. This has the effect of improving back gate characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1及び第2の実施例の断
面図、第3図及び第4図は従来の半導体装置の断面図で
ある。 1・・N型半導体基板、2・・−N+型拡散層島、3A
・・・ソース領域、3B・・・ドレイン領域、4・・・
ゲート酸化膜、5・・ゲート電極、6・・戸型拡散層島
、7人・・・ソース領域、7B・・・ドレイン領域、8
・・・P型ウェル層、9・・N+型タウエル層10・・
・PチャンネルMO8トランジスタ、11・・・P十型
ウェル層、  20・・・NチャンネルMO8トランジ
スタ。 予1図 Z1
1 and 2 are sectional views of first and second embodiments of the present invention, and FIGS. 3 and 4 are sectional views of a conventional semiconductor device. 1...N-type semiconductor substrate, 2...-N+ type diffusion layer island, 3A
... Source region, 3B... Drain region, 4...
Gate oxide film, 5... Gate electrode, 6... Door-shaped diffusion layer island, 7... Source region, 7B... Drain region, 8
...P-type well layer, 9...N+ type tauwell layer 10...
・P-channel MO8 transistor, 11...P ten-type well layer, 20...N-channel MO8 transistor. Preliminary drawing 1 Z1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された一導電型不純物層からなるソ
ース領域及びドレイン領域と、該ソース領域及びドレイ
ン領域間上に形成されたゲート酸化膜と、該ゲート酸化
膜上に形成されたゲート電極とからなるMOSトランジ
スタを有する半導体装置において、前記ソース領域及び
ドレイン領域はそれぞれ別の逆導電型の高濃度不純物層
島内に形成されていることを特徴とする半導体装置。
A source region and a drain region made of one conductivity type impurity layer formed on a semiconductor substrate, a gate oxide film formed between the source region and the drain region, and a gate electrode formed on the gate oxide film. 1. A semiconductor device having a MOS transistor comprising a MOS transistor, wherein the source region and the drain region are formed in separate islands of high concentration impurity layers of opposite conductivity types.
JP11946886A 1986-05-23 1986-05-23 Semiconductor device Pending JPS62274780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11946886A JPS62274780A (en) 1986-05-23 1986-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11946886A JPS62274780A (en) 1986-05-23 1986-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62274780A true JPS62274780A (en) 1987-11-28

Family

ID=14762074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11946886A Pending JPS62274780A (en) 1986-05-23 1986-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62274780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949136A (en) * 1988-06-09 1990-08-14 University Of Connecticut Submicron lightly doped field effect transistors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626471A (en) * 1979-08-10 1981-03-14 Matsushita Electric Ind Co Ltd Mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626471A (en) * 1979-08-10 1981-03-14 Matsushita Electric Ind Co Ltd Mos type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949136A (en) * 1988-06-09 1990-08-14 University Of Connecticut Submicron lightly doped field effect transistors

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5548143A (en) Metal oxide semiconductor transistor and a method for manufacturing the same
US4924277A (en) MIS transistor device
KR910002037B1 (en) Semiconductor device and manufacture thereof
US5936287A (en) Nitrogenated gate structure for improved transistor performance and method for making same
JPS6055665A (en) Manufacture of semiconductor device
JPH0730107A (en) High voltage withstand transistor and its manufacture
JP2001308321A (en) Semiconductor device and its manufacturing method
US5623154A (en) Semiconductor device having triple diffusion
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
US6635925B1 (en) Semiconductor device and method of manufacturing the same
JPH04127540A (en) Insulated-gate field-effect transistor
JPS6251216A (en) Manufacture of semiconductor device
JP3468621B2 (en) Semiconductor device and manufacturing method thereof
JPS62274780A (en) Semiconductor device
US6507058B1 (en) Low threshold compact MOS device with channel region formed by outdiffusion of two regions and method of making same
JPS60175458A (en) Semiconductor device and manufacture thereof
JP2917301B2 (en) Semiconductor device and manufacturing method thereof
EP1225627A2 (en) Semiconductor integrated circuit device and manufacture method therefor
JPS60241259A (en) Manufacture of read only memory
JPH0344075A (en) Manufacture of semiconductor device
JPH0461269A (en) Semiconductor device
JPH11224945A (en) Semiconductor device
JPH0377377A (en) Manufacture of semiconductor device
JPH0346272A (en) Manufacture of semiconductor device