JPS62274621A - Ion implantation - Google Patents

Ion implantation

Info

Publication number
JPS62274621A
JPS62274621A JP11952586A JP11952586A JPS62274621A JP S62274621 A JPS62274621 A JP S62274621A JP 11952586 A JP11952586 A JP 11952586A JP 11952586 A JP11952586 A JP 11952586A JP S62274621 A JPS62274621 A JP S62274621A
Authority
JP
Japan
Prior art keywords
ion
ions
implanted
layer
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11952586A
Other languages
Japanese (ja)
Inventor
Noriyuki Yano
谷野 憲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11952586A priority Critical patent/JPS62274621A/en
Publication of JPS62274621A publication Critical patent/JPS62274621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a thin ion implanted layer without decreasing implanted energy, by setting the incident angle of the ions to a semiconductor substrate at a specified value or more, and performing the ion implantation. CONSTITUTION:As a semiconductor substrate 1, GaAs is used. Si ions are implanted. Implantation energy is 30 keV. An incident angle THETA is 60 deg.. In this case, the thickness of an ion-implanted layer (d) becomes 338 Angstrom . In order to obtain the thickness of 338 Angstrom for the same ion-implanted layer 2, it is necessary to use implantation energy of 22 keV, which is close to the limit of an ion- implanting apparatus at the incident angle of 0 deg. of the ions. By setting the incident angle of the ions at 30 deg. or more in this way, the thin ion-implanted layer 2 can be readily obtained with good reproducibility without decreasing the implanted energy. When this method is applied to the formation of the operating layer of a GaAs field effect transistor, the thickness of the operating layer can be made thin. Therefore, a high-performance field-effect transistor having a large mutual conductance gm can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、イオン注入方法に関するものである。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to an ion implantation method.

〔従来の技術〕[Conventional technology]

第3図は従来のイオン注入方法を示す断面図である。こ
の図において、1は半導体基板、2はこの半導体基板1
の主面に形成されたイオン注入層、3は)主入するイオ
ンである。
FIG. 3 is a cross-sectional view showing a conventional ion implantation method. In this figure, 1 is a semiconductor substrate, and 2 is this semiconductor substrate 1.
The ion implantation layer 3 formed on the main surface of the ion implantation layer 3) is the main ion implantation layer.

次に、イオン注入方法について説明する。Next, the ion implantation method will be explained.

イオン3の半導体基板1に対する入射角を、所望のイオ
ン3の注入エネルギーに対するチャネリングの臨界角近
傍に設定し、イオン注入層26!形成する。チャネリン
グの臨界角は高々15°である。
The incident angle of the ions 3 to the semiconductor substrate 1 is set near the critical angle of channeling for the desired implantation energy of the ions 3, and the ion implantation layer 26! Form. The critical angle for channeling is at most 15°.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のイオン注入方法では、イオン3の入射角は高々1
5°であり、半導体基板1に対してはほぼ垂直(入射角
0°)にイオン3を注入するので、浅いイオン注入層を
形成するためには注入エネルギーを低くする必要があっ
た。しかし、注入エネルギーには従来のイオン注入装置
では最低10KeV  の装置限界があること、また注
入エネルギーを低くするとチャネリングを生じ易いなど
の問題点があった。
In the conventional ion implantation method, the incident angle of ion 3 is at most 1
5 degrees, and the ions 3 are implanted almost perpendicularly to the semiconductor substrate 1 (incident angle of 0 degrees), so it was necessary to lower the implantation energy in order to form a shallow ion implantation layer. However, there have been problems in that conventional ion implanters have an equipment limit of at least 10 KeV when it comes to implantation energy, and that lower implantation energy tends to cause channeling.

この発明は、上記のような問題点を解消するためになさ
れたもので、注入エネルギーを低くすることなく薄いイ
オン注入層を形成できろイオン注入方法を得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an ion implantation method that can form a thin ion implantation layer without lowering the implantation energy.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るイオン注入方法は、半導体基板に対ずろ
入射角を309以上として、注入エネルギーを低くする
ことなく薄いイオン注入層を形成するものである。
The ion implantation method according to the present invention forms a thin ion implantation layer without lowering the implantation energy by setting the azimuth angle of incidence to the semiconductor substrate at 309 or more.

〔作用〕[Effect]

この発明においては、イオンの入射角を30゜以上と大
きくすることにより、非常に薄いイオン注入層を形成す
ることができろ。
In this invention, by increasing the ion incidence angle to 30° or more, it is possible to form a very thin ion implantation layer.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図について説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において、1は半導体基板、2はイオン注入層、
3はイオンである。イオン3の半導体基板1に対する入
射をθとする。
In FIG. 1, 1 is a semiconductor substrate, 2 is an ion implantation layer,
3 is an ion. The incidence of the ions 3 on the semiconductor substrate 1 is assumed to be θ.

次に、半導体基板1をG aA s、注入イオンをSi
Next, the semiconductor substrate 1 is made of GaAs, and the implanted ions are made of Si.
.

注入エネルギーを30KeV、入射角θを600とした
場合を例にとり、第2図を参照してイオン注入層2の厚
さdを従来方法と比較して述べる。
Taking as an example the case where the implantation energy is 30 KeV and the incident angle θ is 600, the thickness d of the ion implantation layer 2 will be described in comparison with the conventional method with reference to FIG.

LSS理論によれば、イオン3の照射飛程RPは262
人、標準偏差ΔRPは170人、横方内拡がりΔX p
 、は226スである。
According to the LSS theory, the irradiation range RP of ion 3 is 262
people, standard deviation ΔRP is 170 people, lateral inward spread ΔX p
, is 226th.

従来方法による入射角0°の場合は、第4図に示すとお
りで、イオン注入層2の厚さdは、d = RP+ΔR
1=432人 となる。
When the incident angle is 0° according to the conventional method, the thickness d of the ion implantation layer 2 is as shown in FIG. 4, d = RP + ΔR.
1 = 432 people.

一方、この発明による入射角60°の場合は、第2図に
示すとおりで、イオン注入層2の厚さdは、 d = Rp eoso十r d=338六となる。
On the other hand, in the case of the incident angle of 60° according to the present invention, as shown in FIG. 2, the thickness d of the ion implantation layer 2 is d=Rpeoso+rd=3386.

これと同じイオン注入層2の厚さ338六を得るために
、従来方法であるイオンの入射角0°で注入を行うには
、注入エネルギーを22KeV  とする必要があるが
、このような低エネルギーはイオン注入装置限界に近く
、再現性よく注入を行うことは困難である。また注入エ
ネルギーを低くすればするほどチャネリングを生じ易く
、イオン注入層2の厚さdのばらつき原因になるなどの
問題点がある。
In order to obtain the same thickness of 3386 for the ion implantation layer 2, the implantation energy must be set to 22KeV to perform implantation at an ion incidence angle of 0°, which is the conventional method, but such a low energy is close to the limit of the ion implanter, and it is difficult to perform implantation with good reproducibility. Further, the lower the implantation energy is, the more likely channeling is to occur, which causes problems such as variations in the thickness d of the ion implantation layer 2.

しかしながら、この発明によれば、注入エネルギーを低
くすることなく、薄いイオン注入層2を再現性よく容易
に得ることができろ。
However, according to the present invention, a thin ion implantation layer 2 can be easily obtained with good reproducibility without lowering the implantation energy.

この発明をGaAs電界効果l・ランンスタの動作層形
成に適用すれば、動作層の厚みを薄くすることができる
ので、相互コンダクタンスgmが大きい高性能な電界効
果トランジスタを得ることができる。
If this invention is applied to the formation of the active layer of a GaAs field-effect l-lanster, the thickness of the active layer can be reduced, and a high-performance field-effect transistor with a large mutual conductance gm can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、半導体基板に対するイ
オンの入射角を30°以上としたので、イオン注入装置
の安定な注入エネルギー範囲において、注入エネルギー
を低くすることな(、十分薄いイオン注入層を形成でき
る効果がある。
As explained above, this invention sets the incident angle of ions to the semiconductor substrate at 30° or more, so that it is possible to form a sufficiently thin ion implantation layer without lowering the implantation energy within the stable implantation energy range of the ion implanter. There is an effect that can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の一実施例のイオン注入方法
を示す図、第3図、第4図は従来のイオン注入方法を示
す図である。 図において、1は半導体基板、2はイオン注入層、3は
イオンである。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第2図 第3図 第4図 ―
1 and 2 are diagrams showing an ion implantation method according to an embodiment of the present invention, and FIGS. 3 and 4 are diagrams showing a conventional ion implantation method. In the figure, 1 is a semiconductor substrate, 2 is an ion implantation layer, and 3 is an ion. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2 Figure 3 Figure 4 -

Claims (1)

【特許請求の範囲】[Claims] 半導体基板にイオンを注入するに際し、前記半導体基板
に対するイオンの入射角を30°以上としてイオン注入
を行うことを特徴とするイオン注入方法。
An ion implantation method characterized in that when implanting ions into a semiconductor substrate, the ion implantation is performed with an incident angle of the ions to the semiconductor substrate being 30° or more.
JP11952586A 1986-05-22 1986-05-22 Ion implantation Pending JPS62274621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11952586A JPS62274621A (en) 1986-05-22 1986-05-22 Ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11952586A JPS62274621A (en) 1986-05-22 1986-05-22 Ion implantation

Publications (1)

Publication Number Publication Date
JPS62274621A true JPS62274621A (en) 1987-11-28

Family

ID=14763435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11952586A Pending JPS62274621A (en) 1986-05-22 1986-05-22 Ion implantation

Country Status (1)

Country Link
JP (1) JPS62274621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281248A (en) * 1986-05-28 1987-12-07 Tokyo Electron Ltd Ion implantation method
US5013673A (en) * 1989-06-30 1991-05-07 Matsushita Electric Industrial Co., Ltd. Implantation method for uniform trench sidewall doping by scanning velocity correction
US5719082A (en) * 1995-08-25 1998-02-17 Micron Technology, Inc. Angled implant to improve high current operation of bipolar transistors
US7199447B2 (en) 1995-08-25 2007-04-03 Micron Technology, Inc. Angled implant to improve high current operation of bipolar transistors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281248A (en) * 1986-05-28 1987-12-07 Tokyo Electron Ltd Ion implantation method
US5013673A (en) * 1989-06-30 1991-05-07 Matsushita Electric Industrial Co., Ltd. Implantation method for uniform trench sidewall doping by scanning velocity correction
US5719082A (en) * 1995-08-25 1998-02-17 Micron Technology, Inc. Angled implant to improve high current operation of bipolar transistors
US5982022A (en) * 1995-08-25 1999-11-09 Micron Technology, Inc. Angled implant to improve high current operation of transistors
US6440812B2 (en) 1995-08-25 2002-08-27 Micron Technology, Inc. Angled implant to improve high current operation of bipolar transistors
US7199447B2 (en) 1995-08-25 2007-04-03 Micron Technology, Inc. Angled implant to improve high current operation of bipolar transistors

Similar Documents

Publication Publication Date Title
JPH01125935A (en) Manufacture of semiconductor device
JPS6112077A (en) Method of producing semiconductor structure
JPS62274621A (en) Ion implantation
JPS6395669A (en) Manufacture of semiconductor integrated circuit device
JPS59119870A (en) Manufacture of semiconductor device
JPH03175678A (en) Manufacture of semiconductor device
JPH04329632A (en) Manufacture of semiconductor device
JPS60733A (en) Semiconductor device and manufactur thereof
JPH03272176A (en) Semiconductor device, substrate, and manufacture thereof
JP3371600B2 (en) Method for manufacturing MIS transistor
JPH0752769B2 (en) Method for manufacturing semiconductor device
JPS63226922A (en) Manufacture of semiconductor device
JPH02201922A (en) Manufacture of semiconductor device
JPH01232718A (en) Manufacture of semiconductor device
JPS6057619A (en) Manufacture of semiconductor device
JPH0342873A (en) Semiconductor device
JPH0577176B2 (en)
JPH03156918A (en) Manufacture of semiconductor device
JPH04249317A (en) Manufacture of semiconductor device
JPH01122167A (en) Manufacture of semiconductor device
JPS61240682A (en) Manufacture of semiconductor device
JPH05102164A (en) Heat treatment of gaas
JPH05136165A (en) Manufacture of semiconductor device
JPH02267964A (en) Manufacture of semiconductor device
JPS6390125A (en) Formation of semiconductor active layer