JPH0342873A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0342873A
JPH0342873A JP17850989A JP17850989A JPH0342873A JP H0342873 A JPH0342873 A JP H0342873A JP 17850989 A JP17850989 A JP 17850989A JP 17850989 A JP17850989 A JP 17850989A JP H0342873 A JPH0342873 A JP H0342873A
Authority
JP
Japan
Prior art keywords
groove
source
drain
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17850989A
Other languages
Japanese (ja)
Inventor
Yutaka Maruo
丸尾 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17850989A priority Critical patent/JPH0342873A/en
Publication of JPH0342873A publication Critical patent/JPH0342873A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the areas of source/drain regions and to highly integrate a semiconductor device by forming a second groove in the bottom of a first groove formed on a substrate, forming source/drain on the side faces of both the grooves, and forming a gate electrode on the bottom of the first groove through a PSG film. CONSTITUTION:A silicon substrate 101 is etched to form first and second grooves, a silicon oxide film 108 is formed by thermally oxidizing, and a threshold voltage is regulated by B ion implanting. Then, after a polycrystalline silicon film is deposited, As ions are implanted. Thereafter, after a ramp annealing is conducted in a nitrogen atmosphere, the polycrystalline silicon is dry etched except a gate electrode 104. Then, As ions are implanted under predetermined conditions, and source/drain 102, 103 are formed. Subsequently, after a PSG film is formed as an interlayer insulating film 106, it is isotropically etched, and the side faces of the first groove are opened. After aluminum is sputtered, aluminum wirings 105 are patterned, a passivation 107 of a silicon oxide film is eventually deposited to obtain a MOSFET structure.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、半導体装置に関し、特に電界効果型トランジ
スタ構造に関する。 〔従来の技術1 従来の溝掘りを利用した電界効果型トランジスタ(以降
、MOSFETと称す)構造は、第2図に示すように、
半導体基板上に溝を掘り、半導体基板(以降、ウェハー
と称す)平面に対して垂直な面にゲート電極を形成し、
ウェハーに平行な面にソース/ドレインを形成していた
。 〔発明が解決しようとする課題1 しかし、前述の従来技術では、ゲーt−i極は、ウェハ
ー平面に対して垂直な面に形成され、MOSFETの面
積を小さくできるものの、ソース/ドレイン領域は、ウ
ェハー平面と平行な面に形成されていたため、集積化に
対して、大きな効果を上げることができなかった。 そこで、本発明は、このような課題を解決するもので、
その目的とするところは、ソース/ドレイン領域の面積
を低減することによって、集積化を可能としたMOS・
FETの構造を提供するところにある。 【課題を解決するための手段] 本発明の半導体装置は、半導体基板上に形成された第1
の溝の底面に、更に第2の溝を形成し、前記第1の溝の
側面と前記第2の溝の側面にドレインまたはソースを形
成し、前記第1の溝の側面と前記第2の溝の側面との間
の前記第1の溝の底面上にゲート絶縁膜を介してゲート
電極を形成したことを特徴とする。 〔作 用1 本発明の上記の構造によれば、ソース/ドレイン領域は
、ウェハー平面に対して垂直な面に形成されるためウェ
ハー平面上において占める面積は非常に小さい、一般的
にゲート電極の占める面積より、ソース/ドレイン領域
の占める面積の方が大きいため、ゲート電極の面積を縮
小するより、ソース/ドレイン領域の面積を縮小する方
が、より面積の縮小化が画れる。 [実 施 例] 第1図は、本発明の一実施例における断面図であり、以
下に製造方法について順次説明していく。 まず、ウェハー表面を写真食刻法により、第1の溝を形
成する領域を開口する。 次に、エツチングガスとしてCF、(四フッ化炭素)を
用い、圧力25Omtorr下において、250Wのパ
ワーの条件でシリコン基板をエツチングし、第3図(2
)の構造を得る。 そして、再度、写真食刻法により、第2の溝を形成する
領域を開口する。次に、第1の溝を形成する時と同様に
、エツチングガスCF4を用い、圧力250mtorr
下において、250Wのパワーで、シリコン基板をエツ
チングし、第2の溝を形成し、第3図(b)に示す構造
を得る。 それから、1100℃の酸素雰囲気中で、約10分間の
熱酸化を行ない約300六のシリコン酸化膜108を形
成した後、トランジスタのしきい値電圧の調整のために
、B(ボロン)をイオン注入する。 次いでCVD法により、全面に約4000Aの多結晶性
シリコン膜を堆積させた後、As(ヒ素)イオンをエネ
ルギー60keV、ドーズ量8xlO”cm−”の条件
でイオン注入を行なう。 それから、窒素雰囲気中で、1040℃15秒のランプ
アニールを行なう。 そして、写真食刻法により、ゲート電極104以外の多
結晶性シリコンをCF4によりドライエツチングし、第
3図(C)の構造を得る。 次に、As(ヒ素)イオンをエネルギー100keV、
ドーズ量8X10”cm−”の条件でイオン注入を行な
い、第3図(d)の構造となる。 次いで、第3図(e)に示すようにCVD法により、層
間絶縁11i306としてPSG膜を形成した後、フッ
酸で等方エツチングを行ない、ソース/ドレインである
第1の溝の側面を開口する。 そして、AR(アルミニウム)をスパッタしたのち、写
真食刻法によるアルミ配線105のパクーニングを行な
い、第3図(f)の構造を得る。 最後に、シリコン酸化膜のパッシベーション107を堆
積し、第1図のMOSFET構造を得る。 このように、構成されたMOSFETは、ソース/ドレ
イン領域をウェハー平面に対して垂直な面に形成される
ため、一つのMOSFETの面積を考えた場合、小面積
で形成できる。 [発明の効果〕 以上、述べたように本発明によれば、従来のMOSFE
T構造より、小面積で形成可能なため、高集積化が可能
となる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a field effect transistor structure. [Conventional technology 1] The conventional field effect transistor (hereinafter referred to as MOSFET) structure using trenching is as shown in Fig. 2.
A trench is dug on the semiconductor substrate and a gate electrode is formed on a plane perpendicular to the plane of the semiconductor substrate (hereinafter referred to as wafer).
The source/drain was formed on a plane parallel to the wafer. [Problem to be Solved by the Invention 1] However, in the prior art described above, although the gate t-i pole is formed on a plane perpendicular to the wafer plane and the area of the MOSFET can be reduced, the source/drain region is Since it was formed on a plane parallel to the wafer plane, it was not possible to achieve a great effect on integration. Therefore, the present invention is intended to solve such problems,
The purpose of this is to reduce the area of the source/drain regions to enable integration of MOS/Drain regions.
It provides the structure of the FET. [Means for Solving the Problems] A semiconductor device of the present invention includes a first semiconductor device formed on a semiconductor substrate.
A second groove is further formed in the bottom surface of the groove, a drain or a source is formed on the side surface of the first groove and the side surface of the second groove, and a drain or source is formed on the side surface of the first groove and the second groove. The present invention is characterized in that a gate electrode is formed on the bottom surface of the first trench between the side surfaces of the trench and a gate insulating film therebetween. [Function 1] According to the above structure of the present invention, the source/drain region is formed on a plane perpendicular to the wafer plane, so the area occupied on the wafer plane is very small. Since the area occupied by the source/drain region is larger than the area occupied by the source/drain region, the area can be reduced more by reducing the area of the source/drain region than by reducing the area of the gate electrode. [Example] FIG. 1 is a cross-sectional view of an example of the present invention, and the manufacturing method will be sequentially explained below. First, a region where a first groove will be formed is opened on the wafer surface by photolithography. Next, using CF (carbon tetrafluoride) as an etching gas, the silicon substrate was etched under a pressure of 25 Omtorr and a power of 250 W.
) to obtain the structure. Then, the area where the second groove will be formed is opened again by photolithography. Next, in the same way as when forming the first groove, etching gas was used at a pressure of 250 mtorr.
Below, the silicon substrate is etched with a power of 250 W to form a second groove, resulting in the structure shown in FIG. 3(b). After that, thermal oxidation was performed for about 10 minutes in an oxygen atmosphere at 1100° C. to form a silicon oxide film 108 of about 300° C., and then B (boron) was ion-implanted to adjust the threshold voltage of the transistor. do. Next, a polycrystalline silicon film of approximately 4000 A is deposited on the entire surface by CVD, and then As (arsenic) ions are implanted at an energy of 60 keV and a dose of 8xlO cm-. Then, lamp annealing is performed at 1040° C. for 15 seconds in a nitrogen atmosphere. Then, by photolithography, the polycrystalline silicon other than the gate electrode 104 is dry-etched with CF4 to obtain the structure shown in FIG. 3(C). Next, As (arsenic) ions were irradiated with an energy of 100 keV.
Ion implantation is carried out at a dose of 8.times.10"cm.sup.-", resulting in the structure shown in FIG. 3(d). Next, as shown in FIG. 3(e), a PSG film is formed as an interlayer insulator 11i306 by the CVD method, and then isotropic etching is performed with hydrofluoric acid to open the side surfaces of the first trenches that are the source/drain. . After sputtering AR (aluminum), the aluminum wiring 105 is patterned by photolithography to obtain the structure shown in FIG. 3(f). Finally, a passivation film 107 of silicon oxide is deposited to obtain the MOSFET structure shown in FIG. Since the MOSFET thus configured has its source/drain regions formed in a plane perpendicular to the wafer plane, it can be formed with a small area when considering the area of one MOSFET. [Effects of the Invention] As described above, according to the present invention, the conventional MOSFE
Since it can be formed in a smaller area than the T structure, higher integration is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のMOSFET構造の断面図。 第2図は、従来の満掘り技術を用いたMOSFET構造
の断面図。 第3図は、本発明のMOSFETの製造方法の一例を製
造順に沿った断面図。 101.201.301・・・シリコン基板102、1
03、202、203、302.303・・・・・・・
・・ ・・ソース/ドレイン 104.204.304・・・ゲート電極105.20
5.305・・・アルミ配線106. 107. 108. 306 ・ ・ ・ ・ ・ ・ 207. 307 ・ 208. 308 ・ ・ ・層間絶縁膜 ・パッシベーショ ン膜 ・ゲート絶縁膜 以 上
FIG. 1 is a cross-sectional view of the MOSFET structure of the present invention. FIG. 2 is a cross-sectional view of a MOSFET structure using conventional full-hole technology. FIG. 3 is a cross-sectional view showing an example of the method for manufacturing a MOSFET according to the present invention along the manufacturing order. 101.201.301...Silicon substrate 102, 1
03, 202, 203, 302.303...
... Source/drain 104.204.304... Gate electrode 105.20
5.305...Aluminum wiring 106. 107. 108. 306 ・ ・ ・ ・ ・ 207. 307 ・208. 308 ・ ・ ・ Interlayer insulation film, passivation film, gate insulation film or more

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された第1の溝の底面に、更に、第
2の溝を形成し、前記第1の溝の側面と前記第2の溝の
側面にドレインまたはソースを形成し、前記第1の溝の
側面と前記第2の溝の側面との間の前記第1の溝の底面
上にゲート絶縁膜を介してゲート電極を形成したことを
特徴とする半導体装置。
A second groove is further formed in the bottom surface of the first groove formed on the semiconductor substrate, a drain or a source is formed on a side surface of the first groove and a side surface of the second groove, and a drain or a source is formed on a side surface of the first groove and a side surface of the second groove. 1. A semiconductor device, wherein a gate electrode is formed on a bottom surface of the first trench between a side surface of the first trench and a side surface of the second trench, with a gate insulating film interposed therebetween.
JP17850989A 1989-07-11 1989-07-11 Semiconductor device Pending JPH0342873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17850989A JPH0342873A (en) 1989-07-11 1989-07-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17850989A JPH0342873A (en) 1989-07-11 1989-07-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0342873A true JPH0342873A (en) 1991-02-25

Family

ID=16049714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17850989A Pending JPH0342873A (en) 1989-07-11 1989-07-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0342873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324673A (en) * 1992-11-19 1994-06-28 Motorola, Inc. Method of formation of vertical transistor
US6894343B2 (en) 2001-05-18 2005-05-17 Sandisk Corporation Floating gate memory cells utilizing substrate trenches to scale down their size
US6936887B2 (en) 2001-05-18 2005-08-30 Sandisk Corporation Non-volatile memory cells utilizing substrate trenches

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324673A (en) * 1992-11-19 1994-06-28 Motorola, Inc. Method of formation of vertical transistor
US5414288A (en) * 1992-11-19 1995-05-09 Motorola, Inc. Vertical transistor having an underlying gate electrode contact
US6894343B2 (en) 2001-05-18 2005-05-17 Sandisk Corporation Floating gate memory cells utilizing substrate trenches to scale down their size
US6936887B2 (en) 2001-05-18 2005-08-30 Sandisk Corporation Non-volatile memory cells utilizing substrate trenches
US7087951B2 (en) 2001-05-18 2006-08-08 Sandisk Corporation Non-volatile memory cells utilizing substrate trenches
US7491999B2 (en) 2001-05-18 2009-02-17 Sandisk Corporation Non-volatile memory cells utilizing substrate trenches

Similar Documents

Publication Publication Date Title
JP3025277B2 (en) Power semiconductor device and method of manufacturing the same
US4182023A (en) Process for minimum overlap silicon gate devices
US5693974A (en) Elevated source/drain with solid phase diffused source/drain extension for deep sub-micron MOSFETS
US5019522A (en) Method of making topographic pattern delineated power MOSFET with profile tailored recessed source
US5182234A (en) Profile tailored trench etch using a SF6 -O2 etching composition wherein both isotropic and anisotropic etching is achieved by varying the amount of oxygen
JPS6336147B2 (en)
JPH06350090A (en) Manufacture of semiconductor device
JPH04180673A (en) Manufacture of mos fet integrated circuit for memory
US20030096484A1 (en) Method of fabricating MOS transistor having shallow source/drain junction regions
JPH10209445A (en) Mosfet and manufacture thereof
US4948744A (en) Process of fabricating a MISFET
US4350991A (en) Narrow channel length MOS field effect transistor with field protection region for reduced source-to-substrate capacitance
JPS63257231A (en) Manufacture of semiconductor device
JPH0342873A (en) Semiconductor device
KR100244272B1 (en) Method for forming isolation hayer in semiconductor device
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JPS63275181A (en) Manufacture of semiconductor device
JP3376305B2 (en) Method for manufacturing semiconductor device
JP2919659B2 (en) Method for manufacturing insulated gate field effect transistor
JPH0348428A (en) Semiconductor device
JPH0616559B2 (en) Method for manufacturing semiconductor device
JPH01191476A (en) Semiconductor device
JPH01125977A (en) Mos semiconductor device
JPS6410952B2 (en)