JPS6227341A - Production of fused glass - Google Patents

Production of fused glass

Info

Publication number
JPS6227341A
JPS6227341A JP16388485A JP16388485A JPS6227341A JP S6227341 A JPS6227341 A JP S6227341A JP 16388485 A JP16388485 A JP 16388485A JP 16388485 A JP16388485 A JP 16388485A JP S6227341 A JPS6227341 A JP S6227341A
Authority
JP
Japan
Prior art keywords
glass
press molding
sintering
obtd
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16388485A
Other languages
Japanese (ja)
Other versions
JPH0662308B2 (en
Inventor
Gotaro Tanaka
豪太郎 田中
Futoshi Mizutani
太 水谷
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60163884A priority Critical patent/JPH0662308B2/en
Publication of JPS6227341A publication Critical patent/JPS6227341A/en
Publication of JPH0662308B2 publication Critical patent/JPH0662308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a fused glass body having high purity and high homogeneity with less foam in the titled process for production consisting in sintering pulverous particle glass obtd. by a vapor chemical reaction after press molding by thoroughly heating and drying the above-mentioned glass prior to the press molding. CONSTITUTION:The glass having the extremely small grain size and high purity is obtd. when the pulverous particle glass is synthesized by the gaseous phase oxidation reaction. The soot prior to the press molding is preliminarily and thoroughly heated and dried at >=100 deg.C and at the sintering initiation temp. at which the growth of a neck starts or below by using such pulverous particle glass. The adsorption of the atmospheric gas such as H2O in the reaction stage, etc. is thereby decreased. The atmosphere in the drying stage is preferably of an inert gas such as Ar, or N2 or O2 which does not react with or is not adsorbed to the glass. The drying under the reduced pressure is also possible. The intended fused glass body is obtd. when the soot is calcined after the press molding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶はガラスの製造方法に関するもので、特に詳
しくは光ファイバ等に用い得る高純度で均質度の高い溶
融ガラス成形体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing molten glass, and more specifically, a method for producing a molten glass molded body with high purity and high homogeneity that can be used for optical fibers, etc. Regarding.

〔従来の技術〕[Conventional technology]

従来、特開昭52−156640.53−48536各
号公報等に提案されるガラスの製造方法として、気相化
学反応等により得た微粒子状ガラスを、一旦プレス等に
より加圧成形しておいてから、これを焼結して溶融ガラ
ス体を得る方法がある。
Conventionally, as a glass manufacturing method proposed in JP-A-52-156640.53-48536, etc., fine particulate glass obtained by vapor phase chemical reaction etc. is once pressure-formed using a press or the like. There is a method of obtaining a molten glass body by sintering this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記各号公報に記載される従来法を詳細に検
討したところ、出発ガラスの粒子径が大きいと、焼結後
アワが残留し易く、また均質度が劣るという問題点があ
った。一方、この出発ガラスの粒子径が小さいと加圧成
形体にヒビ割れが発生し易く、良好な成形体を得ること
が難しかった。
However, when the conventional methods described in the above-mentioned publications were examined in detail, it was found that when the particle size of the starting glass is large, there are problems in that bubbles tend to remain after sintering and the degree of homogeneity is poor. On the other hand, if the particle size of the starting glass is small, cracks are likely to occur in the press-molded product, making it difficult to obtain a good molded product.

本発明は以上の様な欠点のないガラス成形体の製造方法
を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a glass molded article that does not have the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は微粒子状ガラスを加圧成形後焼結することによ
り溶融ガラス体を得る方法において、該微粒子状ガラス
として気相酸化反応により得られるガラスを用い、かつ
該微粒子状ガラスを加圧成形する前に予め、100℃以
上かつネツり成長の始まる焼結開始温度以下で十分加熱
乾燥することを特徴とする溶融ガラス体の製造方法によ
り、上記目的を達成するものである。
The present invention provides a method for obtaining a molten glass body by pressure forming and sintering particulate glass, in which glass obtained by a gas phase oxidation reaction is used as the particulate glass, and the particulate glass is pressure molded. The above object is achieved by a method for manufacturing a molten glass body, which is characterized in that the glass body is sufficiently heated and dried at a temperature of 100° C. or higher and a temperature below the sintering start temperature at which sintering growth begins.

以下本発明をその理論から詳細に説明する。The present invention will be explained in detail below based on its theory.

気相酸化反応で得られるスートとしては、例えば5ic
z4等の710ゲン化物を酸水素炎中あるいはプラズマ
炎中に導入して、下記(1)式あるいは12)式のよう
に反応して得られる、Sin、粒子を用いることができ
る。
The soot obtained by the gas phase oxidation reaction is, for example, 5ic
Sin particles obtained by introducing a 710 genide such as z4 into an oxyhydrogen flame or a plasma flame and reacting as shown in the following formula (1) or formula 12) can be used.

酸水素炎の場合 S i C4+ 2Hz + O鵞→8i0!+4HC
t    ・・・(1)プラズマ炎の場合 5iC4+O,→ SiO意+2C’t、      
・・・(2)ところでガラス成形体の焼結による収縮率
は、下記(3)式に示されるように、その粒子径に大き
く依存している。
In case of oxyhydrogen flame S i C4+ 2Hz + 0 → 8i0! +4HC
t...(1) In the case of plasma flame, 5iC4+O, → SiO+2C't,
(2) By the way, the shrinkage rate of a glass molded body due to sintering largely depends on its particle size, as shown by the following equation (3).

I、    dη k :比例定数 d :粒子径 η :粘性係数 γ :表面エネルギ t :時間 そしてガラス成形体の焼結速度は下記(4)式で示され
る。
I, dη k : proportionality constant d : particle diameter η : viscosity coefficient γ : surface energy t : time and the sintering rate of the glass molded body is expressed by the following equation (4).

つまシ、粒子径が小さくなる程収縮は早く生じ、よって
焼結速度が速くな夛、よシ低温・短時間で焼結・溶融化
が完了し、透明ガラス体が得られ易い。気相反応で微粒
子ガラスを合成すると、通常粒径が1μm以下の極めて
粒径の小さな又高純度な材料が得られる。即ち、気相反
応による微粒子状ガラスを焼結すれば、純度が極めて高
く、またアワの少ないガラス体が得られるが、スートの
加圧成形時にひび割れが発生するという欠点があった。
However, the smaller the particle size, the faster the shrinkage occurs, so the faster the sintering speed is, the faster the sintering and melting can be completed at a lower temperature and in a shorter time, making it easier to obtain a transparent glass body. When fine particle glass is synthesized by a gas phase reaction, a highly pure material with extremely small particle size, usually 1 μm or less, can be obtained. That is, if fine particulate glass is sintered by a gas phase reaction, a glass body with extremely high purity and less foxing can be obtained, but there is a drawback that cracks occur during pressure molding of soot.

本発明者らは、この原因及び解決策を鋭意検討したとこ
ろ、気相反応で得られるスートは粒径が小さく、このた
め比表面積が大きくなっており、H80など反応時の雰
囲気ガスの吸着量が多く、この吸着ガスが加圧後圧力の
解放される時に成形体をひび割れさせることを知った。
The inventors of the present invention have intensively investigated the causes and solutions for this problem, and have found that the soot obtained in the gas phase reaction has a small particle size, and therefore has a large specific surface area, which increases the adsorption amount of atmospheric gases such as H80 during the reaction. It was learned that this adsorbed gas causes cracks in the compact when the pressure is released after pressurization.

また、この対策として、加圧成形前のスートを十分に乾
燥しておくとこのひび割れが防げることがわかった。こ
の乾燥条件としては、温度100℃以上で、かつ粒子の
ネック成長(所定時間の加熱後、粒子の接している箇所
に卦いて、物質の移動が起り、焼結しはじめる状態)の
始まるまでの温度条件下で行うのが好ましい。
It was also found that as a countermeasure to this problem, this cracking can be prevented by sufficiently drying the soot before pressure molding. The drying conditions include a temperature of 100°C or higher, and a temperature up to the point at which particle neck growth (a state in which after heating for a predetermined period of time, material transfer occurs to the areas where the particles are in contact and sintering begins). Preferably, it is carried out under temperature conditions.

100℃以下であれば、主たる吸着物質のH,0がとれ
ず、またネック成長の生じる条件下で乾燥させると、後
工程の加圧成形時に均一な成形体を得ることが難かしく
なるからである。
If it is below 100°C, H,0 of the main adsorbed substance cannot be removed, and if it is dried under conditions that cause neck growth, it will be difficult to obtain a uniform molded product during pressure molding in the subsequent process. be.

なお、ネック成長の始まる温度は、例えば約(L1μm
 径の810鵞スートの場合には、900℃程度である
。この温度の目安としては、気相反応で得られるような
ガラス粒子の場合には、その粘性値ηで代表することが
でき、η中101S程度となる温度である。
Note that the temperature at which neck growth starts is, for example, approximately (L1 μm
In the case of a suit with a diameter of 810 mm, the temperature is about 900°C. As a guideline for this temperature, in the case of glass particles obtained by a gas phase reaction, it can be represented by its viscosity value η, and is a temperature at which η is about 101S.

また、乾燥する雰囲気としては、Ar、 He。Further, the drying atmosphere is Ar or He.

N意のような不活性ガス雰囲気、又はO3のようなガラ
スと反応しない、もしくはガラスに吸着しないガス雰囲
気にて行うことが好ましい。さらにまた、減圧下でも乾
燥することができるっ〔実施例〕 実施例1 酸水素バーナ中へ5iC4を導入することにより得られ
た粒径(11〜α01μm の5i02スートを、温度
250℃のオープンの中に3時間保持した。この時乾燥
N、を1t/分の割合で流した。
It is preferable to carry out the process in an inert gas atmosphere such as N, or in a gas atmosphere such as O3 that does not react with or adsorb to glass. Furthermore, drying can also be carried out under reduced pressure. [Example] Example 1 5i02 soot with a particle size (11 to α01 μm) obtained by introducing 5iC4 into an oxyhydrogen burner was dried in an open oven at a temperature of 250°C. The reactor was kept in the reactor for 3 hours, during which time dry N was flowed at a rate of 1 t/min.

このスートを円筒状のゴム製容器に流しこみ、該ゴム容
器内を減圧、密封した後、静圧成形装置で300気圧か
けて成形したところ、ひび割れのない成形体が得られた
。この成形体を熱処理炉に入れ、He  及びC4ガス
雰囲気下にて脱水処理を行なった後、温度1600℃に
て溶融ガラス化を行った。
This soot was poured into a cylindrical rubber container, the inside of the rubber container was reduced in pressure and sealed, and then molded using a static pressure molding machine under 300 atmospheres, resulting in a molded product without cracks. This molded body was placed in a heat treatment furnace, dehydrated in an atmosphere of He and C4 gases, and then melted and vitrified at a temperature of 1600°C.

得られた溶融ガラス体は完全に透明なガラスであシ、ま
た殆んどアワがなかった。このガラスをコア材料として
プラスチッククラッドファイバを作成し念ところ、0.
8μm 波長で伝送損失はf OdB/krnという良
好な特性であシ、このガラスが光フアイバ用材料として
用いうろことが判った。
The resulting molten glass body was completely transparent glass and had almost no wrinkles. A plastic clad fiber was made using this glass as a core material, and just in case, the 0.
The transmission loss at a wavelength of 8 μm was f OdB/krn, a good characteristic, and it was found that this glass could be used as a material for optical fibers.

比較例1 実施例1と同様のSin、スートを加熱乾燥することな
く、その他の条件は実施例1と同様の条件下で加圧成形
したところ、成形体には多数のひび割れが生じており、
また、外力を加えると多くの小さな破片に分かれた。
Comparative Example 1 When the same Sin and soot as in Example 1 were pressure-molded under the same conditions as in Example 1 without being heat-dried, the molded product had many cracks.
Also, when external force was applied, it broke into many small pieces.

比較例2 市販品として入手できる400メツシユ(粒径約64μ
rn)のS 10z粉末を加熱乾燥することなく、その
他の条件は実施例1と同様の条件下で加圧成形したとこ
ろ良好な成形体が得られた。
Comparative Example 2 Commercially available 400 mesh (particle size approximately 64 μm)
When the S 10z powder of rn) was pressure-molded under the same conditions as in Example 1 without being heat-dried, a good molded body was obtained.

これを実施例1と同様な操作で溶融ガラス化を行ったが
完全に透明なガラス体とはならず、又、目視でわかる気
泡が散在していた。
This was melted and vitrified in the same manner as in Example 1, but a completely transparent glass body was not obtained, and bubbles were scattered that were visible to the naked eye.

〔発明の効果〕〔Effect of the invention〕

本発明によると極めて高純度で均質度の高い溶融ガラス
を、生産性よく得ることができる。
According to the present invention, molten glass with extremely high purity and high homogeneity can be obtained with good productivity.

Claims (1)

【特許請求の範囲】[Claims] 微粒子状ガラスを加圧成形後焼結することにより溶融ガ
ラス体を得る方法において、該微粒子状ガラスとして気
相酸化反応により得られるガラスを用い、かつ該微粒子
状ガラスを加圧成形する前に予め、100℃以上かつネ
ック成長の始まる焼結開始温度以下で十分加熱乾燥する
ことを特徴とする溶融ガラス体の製造方法。
In a method of obtaining a molten glass body by sintering fine particulate glass after pressure forming, the particulate glass is glass obtained by a gas phase oxidation reaction, and before pressure forming the particulate glass, , a method for producing a molten glass body, which comprises sufficiently heating and drying at a temperature of 100° C. or higher and below a sintering start temperature at which neck growth begins.
JP60163884A 1985-07-26 1985-07-26 Method for producing molten glass body Expired - Lifetime JPH0662308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163884A JPH0662308B2 (en) 1985-07-26 1985-07-26 Method for producing molten glass body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163884A JPH0662308B2 (en) 1985-07-26 1985-07-26 Method for producing molten glass body

Publications (2)

Publication Number Publication Date
JPS6227341A true JPS6227341A (en) 1987-02-05
JPH0662308B2 JPH0662308B2 (en) 1994-08-17

Family

ID=15782627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163884A Expired - Lifetime JPH0662308B2 (en) 1985-07-26 1985-07-26 Method for producing molten glass body

Country Status (1)

Country Link
JP (1) JPH0662308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037807A1 (en) * 2001-10-30 2003-05-08 Nippon Sheet Glass Co., Ltd. Method for producing silica glass
US10494291B2 (en) 2014-10-23 2019-12-03 Corning Incorporated Hygroscopic additives for silica soot compacts and methods for forming optical quality glass
US10793466B2 (en) 2015-02-27 2020-10-06 Corning Incorporated Nanoparticle additives for silica soot compacts and methods for strengthening silica soot compacts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137325A (en) * 1983-01-27 1984-08-07 ワツカ−・ヘミトロニク・ゲゼルシヤフト・フユア・エレクトロニク・グルントシユトツフエ・ミツト・ベシユレンクテル・ハフツング Manufacture of high purity synthetic quartz glass products
JPS605030A (en) * 1983-05-10 1985-01-11 エアトナ・テレコミユニケイシヨンズ・ラボラトリ−ズ High purity glass powder and apparatus and method for manufacturing glass products thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137325A (en) * 1983-01-27 1984-08-07 ワツカ−・ヘミトロニク・ゲゼルシヤフト・フユア・エレクトロニク・グルントシユトツフエ・ミツト・ベシユレンクテル・ハフツング Manufacture of high purity synthetic quartz glass products
JPS605030A (en) * 1983-05-10 1985-01-11 エアトナ・テレコミユニケイシヨンズ・ラボラトリ−ズ High purity glass powder and apparatus and method for manufacturing glass products thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037807A1 (en) * 2001-10-30 2003-05-08 Nippon Sheet Glass Co., Ltd. Method for producing silica glass
GB2398564A (en) * 2001-10-30 2004-08-25 Nippon Sheet Glass Co Ltd Method for producing silica glass
GB2398564B (en) * 2001-10-30 2005-07-20 Nippon Sheet Glass Co Ltd Method for producing silica glass
US10494291B2 (en) 2014-10-23 2019-12-03 Corning Incorporated Hygroscopic additives for silica soot compacts and methods for forming optical quality glass
US10793466B2 (en) 2015-02-27 2020-10-06 Corning Incorporated Nanoparticle additives for silica soot compacts and methods for strengthening silica soot compacts

Also Published As

Publication number Publication date
JPH0662308B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US6319550B1 (en) Method and apparatus for treating silica granules using porous graphite crucible
JP3092675B2 (en) Oxynitride glass and method for producing the same
WO1987005286A1 (en) Process for manufacturing glass
JPS6227341A (en) Production of fused glass
JPS62202826A (en) Production of glass
JPS61227936A (en) Manufacture of glass body
JPH10502324A (en) Sintered quartz glass product and method for producing the same
JPS5842136B2 (en) Manufacturing method of optical fiber base material
JP5053206B2 (en) Method of forming quartz glass material using mold material
JP2732643B2 (en) Manufacturing method of high purity and high viscosity silica glass
JPH042625A (en) Production of highly homogeneous silica glass
JPH0517122A (en) Production of synthetic silica powder
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH0264029A (en) Production of oxynitride glass and production of oxynitride glass-coated optical fiber
JPS60108325A (en) Production of glass
JPS6230634A (en) Production of quartz glass
JPS6065735A (en) Production of quartz glass
JPH0226835A (en) Manufacture of porous glass
JPH035329A (en) Production of synthetic quartz glass
JPH0253377B2 (en)
JPH0986919A (en) Production of synthetic quartz glass powder
JPH04338122A (en) Production of anhydrous synthetic quartz glass
JPH09295826A (en) Production of high-purity transparent silica glass
JPS61106433A (en) Production of optical fiber base material
JPH0222183A (en) Production of porous ceramics