JPS62202826A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS62202826A
JPS62202826A JP4379786A JP4379786A JPS62202826A JP S62202826 A JPS62202826 A JP S62202826A JP 4379786 A JP4379786 A JP 4379786A JP 4379786 A JP4379786 A JP 4379786A JP S62202826 A JPS62202826 A JP S62202826A
Authority
JP
Japan
Prior art keywords
silicon dioxide
phase
phase transition
glass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4379786A
Other languages
Japanese (ja)
Inventor
Hiroshi Morishita
博司 森下
Hiroshi Namikawa
並河 洋
Yasushi Furuguchi
古口 容士
Shinichi Miyake
新一 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP4379786A priority Critical patent/JPS62202826A/en
Priority to US07/126,104 priority patent/US4828594A/en
Priority to PCT/JP1987/000124 priority patent/WO1987005285A1/en
Priority to EP87901656A priority patent/EP0258455B1/en
Priority to DE8787901656T priority patent/DE3771963D1/en
Publication of JPS62202826A publication Critical patent/JPS62202826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce high-quality glass in high efficiency, by producing SiO2 powder containing a phase-transition promoter by a specific method, heat- treating the powder to obtain grown cristobalite crystal phase and melting the phase by heating in vacuum. CONSTITUTION:SiO2 powder containing excess phase-transfer promoter necessary in crystallization (e.g. metallic component such as Na2O, MgO, etc.) is uniformly mixed with SiO2 powder free from the promoter to obtain SiO2 containing prescribed amount of the phase-transition promoter. The obtained SiO2 is filled in a vessel and heated to obtain a sintered form containing cristobalite crystal phase. The sintered material is vitrified by heating and melting in vacuum. Since the amount of the promoter for crystallization can be controlled and uniformly distributed by this process, a high-quality transparent or functional glass can be easily produced at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二酸化珪素を原料とし、真空溶融法によってガ
ラスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing glass by a vacuum melting method using silicon dioxide as a raw material.

(従来の技術) 一般に工業製品としてのガラスは、所定の割合で調合さ
れた原料粉末をルツボあるいはタンク窯などで液相温度
以上に加熱し、均一な溶液状f&としたものを冷TJ1
′?lることによって製造される。その際、原料粉末に
吸着しているガス、反応時に発生するガスにより融液中
に生じた気泡は、融液の温度を充分に上げて融液の粘度
を下げ、表面に浮上させて除去する等の手段により透明
化するのが言過である。
(Prior art) Generally, glass as an industrial product is produced by heating raw material powder prepared in a predetermined ratio above the liquidus temperature in a crucible or tank kiln to form a uniform solution f&.
′? Manufactured by l. At this time, bubbles generated in the melt due to gases adsorbed to the raw material powder or gases generated during the reaction are removed by raising the temperature of the melt sufficiently to lower the viscosity of the melt and allowing it to float to the surface. It would be an exaggeration to try to make things transparent by such means.

しかし、二酸化1F素を原料としてガラスを製造する場
合は、高粘性であること、融点が高いためルツボ、炉の
耐火物などの制約が脱泡にh効な温度まで上げることが
できないこと、温度を上げずざると、原料自身の揮発、
原料とルツボなどとの反応によりガスが発生し、逆に気
泡が生ずるなどのことから上記方法は採用できない。こ
のようなことから二酸化■索を原料として透明な石英ガ
ラスを得るには、一般に ■ 二酸化珪素粉をアルゴン−酸素、プラズマ炎あるい
は酸水素炎中に少しづつ供給して溶融してガラス化し、
これを台の上にMt栢さけてゆく方法。このとき発生す
るガスは表面から放散される。(ベルヌーイ法) ■ 二酸化珪素の微粉子からなる多孔体を作っておき、
それを一端から帯状に溶かしてガラス化してゆく方法。
However, when producing glass using 1F elemental dioxide as a raw material, it is difficult to raise the temperature to a temperature that is effective for degassing due to constraints such as crucible and furnace refractories due to its high viscosity and high melting point. If you do not raise the temperature, the raw material itself will volatilize,
The above method cannot be adopted because gas is generated due to the reaction between the raw material and the crucible, and conversely bubbles are generated. For this reason, in order to obtain transparent quartz glass using carbon dioxide as a raw material, generally silicon dioxide powder is fed little by little into an argon-oxygen, plasma flame, or oxyhydrogen flame, and then melted and vitrified.
How to make this on a stand. The gas generated at this time is dissipated from the surface. (Bernoulli method) ■ A porous body made of fine powder of silicon dioxide is made,
A method of melting it into a strip from one end and turning it into glass.

発生ガスは、未溶融の多孔体を通って逃げてゆく。(常
溶融法)■ 粒径100J1+11程度に調整された水
晶粉をルツボに入れ真空加熱炉で溶融しガラス化させる
方法で発生ガスは強制的に除去する。(真空溶融法) のいずれかによっている。
The generated gas escapes through the unmolten porous body. (Normal melting method) ■ Quartz crystal powder adjusted to a particle size of about 100J1+11 is placed in a crucible and melted in a vacuum heating furnace to vitrify it, and the generated gas is forcibly removed. (vacuum melting method).

しかし■、■の方法はいずれも一個のガラスブロックを
製造するのに極めて長時間を要し生産性の悪いことは周
知であるし、殊にベルヌーイ法の場合、原料効率が30
〜40%と極めて悪い。又、アルゴン−酸素プラズマ炎
を熱源とした場合は、残存−〇 H基が少なく、かつ比
較内泡も少ないガラスを得られるがエネルギーコストが
高くなり、エネルギーコス]・の安い酸水素炎を用いた
場合は残存−OH基の多い製品しか得られない問題点が
ある。しかも製造可能なインゴットの形状は丸くかつ細
いbのに限られるから、以後の処理工程に難点がある。
However, it is well known that both methods (1) and (2) require an extremely long time to produce one glass block and have poor productivity.In particular, in the case of the Bernoulli method, the raw material efficiency is 30%.
~40%, which is extremely poor. In addition, if an argon-oxygen plasma flame is used as the heat source, a glass with less residual -〇H groups and comparatively fewer internal bubbles can be obtained, but the energy cost is high, and an oxyhydrogen flame with a low energy cost is used. If it is, there is a problem that only a product with a large amount of residual -OH groups can be obtained. Moreover, the shape of the ingot that can be manufactured is limited to round and narrow shapes, which poses difficulties in subsequent processing steps.

次に■の真空溶融法によると、残存−〇 8塁が少なく
、高温における粘性も高い等の特徴をもら、比較的大型
のインゴットが得られるが、原料粉をルツボ等容器に充
填したものを溶融し、ガラス化するため脱ガスに難点が
あり、しかも容器との接触による反応ガス発生等のこと
から比較内泡が多く高品質のものは得られない。又、水
晶粉を使用するため、資源枯渇による原料供給上の難点
もある。
Next, according to the vacuum melting method (■), a comparatively large ingot can be obtained with characteristics such as a small amount of residual -〇8 bases and high viscosity at high temperatures. Since it is melted and vitrified, it is difficult to degas it, and moreover, it produces a lot of internal bubbles due to reaction gas generation due to contact with the container, making it difficult to obtain high-quality products. In addition, since crystal powder is used, there are also difficulties in supplying raw materials due to resource depletion.

以上のことに鑑み、本出願人は、高品質な透明又は機能
性をもつガラスを安価なコスl−で容易に製造できる方
法を開発した。これは、二酸化珪素粉を適宜な容器に充
填し、アルカリ金属成分等の相転移促進剤の存在下加熱
して融点直下の結晶相に統一した連続気孔をもつ多孔体
に成型した後、真空化溶融してガラス化することを特徴
とする特のである(特願昭59−181586号、特願
昭59−181587丹、特願昭59−181588号
、特願昭60−170663号、特願昭60−1706
64号)。
In view of the above, the applicant has developed a method for easily manufacturing high-quality transparent or functional glass at an inexpensive cost. This is done by filling a suitable container with silicon dioxide powder, heating it in the presence of a phase transition accelerator such as an alkali metal component, forming it into a porous body with continuous pores that has a uniform crystalline phase just below the melting point, and then vacuuming. It is characterized by being melted and vitrified. 60-1706
No. 64).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明に係るガラスのyJ@法は、上記したように二酸
化珪素粉を加熱処理してクリストバライト結晶相の成型
体とする工程と、該成型体を真空下加熱溶融してガラス
化する工程とからなるものである。
The yJ@ method for glass according to the present invention includes the steps of heat-treating silicon dioxide powder to form a molded body having a cristobalite crystal phase as described above, and vitrifying the molded body by heating and melting the molded body under vacuum. It is what it is.

ところで周知のように結晶質二酸化珪素は加熱過程にお
いて加熱される温度により低温域の石英相からトリジマ
イト相、クリストバライト相へと相転移が行なわれる。
By the way, as is well known, crystalline silicon dioxide undergoes a phase transition from a quartz phase in a low temperature range to a tridymite phase and a cristobalite phase depending on the temperature at which it is heated during the heating process.

この相転移は、二酸化珪素単独では起り難く、L i 
20.Naz O,に20゜M(JO,Cab、P20
S 、[3203′8の金属成分を相転移促進剤として
用いると有効なことは知られている。一方非晶質二酸化
11累ム単独では直接溶解してしまうので、クリストバ
ライト相に結晶化するためには、上記のような金属添加
物を必要とする。従って、本発明方法においても二酸化
珪素粉をクリストバライト結晶相とする過程で前記金属
成分が利用されるが、前記従来技術の説明からも容易に
理解されるように一般にガラスの製造法においては、原
料中に上記の如き金属成分が含まれることは、水分等と
同様最終製品の純麿低下をもたらす要因となり好ましく
ない。即ち、従来のガラス製造法においては、純瓜のれ
い石英ガラスを得ることと、原料中に不純物を添加する
、あるいは不純物を含む原料を採用することとは相反す
る関係にある。
This phase transition is difficult to occur with silicon dioxide alone, and Li
20. Naz O, 20°M (JO, Cab, P20
It is known that it is effective to use a metal component of S, [3203'8 as a phase transition accelerator. On the other hand, since amorphous 11-cumulium dioxide alone is directly dissolved, metal additives such as those mentioned above are required in order to crystallize it into a cristobalite phase. Therefore, in the method of the present invention, the metal component is also used in the process of converting silicon dioxide powder into a cristobalite crystal phase, but as can be easily understood from the explanation of the prior art, generally in the glass manufacturing method, the raw material is The presence of metal components such as those mentioned above is undesirable because it causes a decrease in the purity of the final product, similar to moisture and the like. That is, in conventional glass manufacturing methods, there is a contradictory relationship between obtaining pure silica glass and adding impurities to raw materials or using raw materials containing impurities.

このようなことから二酸化珪素に相転移促進剤を添加さ
せる、もしくは相転移に有効な成分を含有した二酸化[
f素を選択して原料とする本発明に係るガラス製造法は
従来概念にないWJ造方法であるが、この方法によって
従来法に比し容易に高品質のガラスが得られる所以は、
クリストバライト結晶相の焼結成型体がもつ特性が貞空
溶融法の採用と相俟って多くの効果をもたらすことにあ
る。
For this reason, it is necessary to add a phase transition accelerator to silicon dioxide, or to add silicon dioxide containing a component effective for phase transition.
The glass manufacturing method according to the present invention, which uses f elements as raw materials, is a WJ manufacturing method that has not been previously conceived, but the reason why high-quality glass can be easily obtained by this method compared to the conventional method is as follows.
The characteristics of the sintered body of the cristobalite crystal phase, together with the use of the pure air melting method, bring about many effects.

即ら、クリストバライト結晶相の焼結体は、周知のよう
に融点が一意的なものであるから該融点直下の温度まで
加熱し、かつ脱気処理かできること、およびクリストバ
ライト結晶相の焼結体は連続量気孔をbつ多孔体ぐある
こと等により脱気が充分にしかも容易に行なえることに
よる。従って融点以下の温度で容易に分解し、離1B2
 II気されるNa等の金属成分を相転移促進剤として
採用づれば、不純物(相転移促進剤を含めて)のほぼ完
全に除去された透明な石英ガラスが得られるし、当該融
点で分解除去しない促進剤を選択すれば該促進剤のみが
含有され、他の不純物が除去された機能性ガラスを得る
ことができる。
That is, as is well known, the sintered body of the cristobalite crystal phase has a unique melting point, so it can be heated to a temperature just below the melting point and then subjected to deaeration treatment. This is because deaeration can be carried out sufficiently and easily due to the porous body having a continuous amount of pores. Therefore, it decomposes easily at temperatures below the melting point and separates 1B2.
If a metal component such as Na, which is highly sensitive to metals, is used as a phase transition accelerator, transparent quartz glass from which impurities (including phase transition accelerators) are almost completely removed can be obtained, and it will not be decomposed and removed at the melting point. By selecting a promoter, it is possible to obtain a functional glass that contains only the promoter and removes other impurities.

本発明に係るガラスの製造法は上記した如く、結晶化工
程をもつこと、結晶化のために相転移促進剤を利用する
ことに大きな特徴をもつものであるがガラス化工程にお
いて、不純物を除去する関係上原料である二酸化珪素粉
に添加される相転移促進剤は必要不可大量であり、かつ
均一化されることが望ましい。これは、透明な石英ガラ
スを得る場合、殊に重要であり、しかも本発明に係るガ
ラスの製造法は、比較的大型のガラスインゴットを得ら
れることが特徴であることと相俟って問題になる。
As mentioned above, the method for producing glass according to the present invention is characterized in that it includes a crystallization step and that a phase transition accelerator is used for crystallization, but in the vitrification step, impurities are removed. For this reason, the phase transition accelerator added to the silicon dioxide powder, which is a raw material, is in an unnecessary amount, and it is desirable that it be uniform. This is particularly important when obtaining transparent quartz glass, and the glass manufacturing method according to the present invention is characterized by the ability to obtain relatively large glass ingots, making this a problem. Become.

本発明は、このJ:うなことがら必要不可欠損の相転移
促進剤が、容易に均一化され、高品質のガラスが、効率
よく生産できる方法を提供することを目的としだらので
ある。
The object of the present invention is to provide a method in which this phase transition accelerator, which is an essential loss, can be easily homogenized and high-quality glass can be efficiently produced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するため、結晶化に必要な
相転移促進剤を過剰に合む二酸化珪素粉と、該促進剤を
実質的に含まない二酸化Ij素粉を調合し、かつ均一に
混合し、得られた所望量の相転移促進剤を含む二酸化珪
素粉を容器に充填した後、加熱することによりクリスト
バライト結晶相をもった焼結成型体とし、ついでこれを
真空下加熱溶融してガラス化することを特徴とするもの
である。
In order to solve the above-mentioned problems, the present invention blends silicon dioxide powder containing an excessive amount of phase transition accelerator necessary for crystallization and Ij dioxide raw powder that does not substantially contain the accelerator, and uniformly The obtained silicon dioxide powder containing the desired amount of phase transition accelerator is filled into a container and heated to form a sintered molded body having a cristobalite crystal phase, which is then heated and melted under vacuum. It is characterized by being vitrified.

上記したように本発明に係るガラスの製造法は、相転移
促進剤を含む二酸化珪素粉を加熱処理してクリストバラ
イト結晶相をもつ焼結成型体を得るが、二酸化珪素粉へ
の相転移促進剤への添加方法としては、通常、該促進剤
含有溶液中に原料粉を混入し、撹拌する手段による。即
ち、相転移促進剤として例えばNa成分を使用した場合
、該成分NaOH水溶液の形で水−二酸化混合液に添加
し、撹拌、混合した後、水分を除去し、かつ乾燥させて
、相転移促進剤を実質的に含有した二酸化珪素粉を得る
。このとぎ、添加されるNa成分聞は、原料粉に対する
重量比として100 DDI〜2,000901であり
、500 pp1m〜1.000EIDl程度のNa成
分を含有した二酸化珪素粉が得られることが望ましい。
As described above, in the method for producing glass according to the present invention, a sintered molded body having a cristobalite crystal phase is obtained by heat-treating silicon dioxide powder containing a phase transition accelerator. The method of addition to the accelerator is usually by mixing raw material powder into the accelerator-containing solution and stirring the mixture. That is, when a Na component is used as a phase transition accelerator, the component is added to a water-dioxide mixture in the form of an aqueous NaOH solution, stirred and mixed, and then water is removed and dried to accelerate the phase transition. A silicon dioxide powder substantially containing the agent is obtained. At this time, it is desirable that the weight ratio of the Na component added to the raw material powder be 100 DDI to 2,000901, and that silicon dioxide powder containing about 500 pp1m to 1.000 EIDl of Na component can be obtained.

しかるに前記したNaOH水溶液中で二酸化珪素粉を混
合、撹拌して均一化を図る場合、所望mのNa成分を添
加したのでは撹拌性が悪く、容易に均一化しないことが
知見された。
However, when mixing and stirring silicon dioxide powder in the above-mentioned NaOH aqueous solution to achieve homogenization, it has been found that adding a desired amount of Na component results in poor stirring performance and does not easily homogenize the mixture.

図は、撹拌機によりN a O日永溶液中で二酸化珪素
粉を混合撹拌した場合におけるNa添加量と撹拌トルク
との関係を実験的に求めたものであるが、該図より明ら
かな如く、所望添加Jaの近傍が最大トルクを示し、以
後、添加量が増加するに従いトルクが減少し、約2.3
001)fl−の添加量でほぼ最小値となる。このよう
なことから、撹拌性の向上と均一化を図るため、Naf
f1加吊を過剰とし、トルクの少ない状態で撹拌するか
、所望量のNaを添加して撹拌し、混合不均一の状態で
使用せざるを得なかった。従って、Na成分を過剰に添
加した場合はガラス化工程において、脱気効率が悪い、
あるいは、脱気不十分な製品となる要因になるし、混合
不均一な原料粉を用いた場合も高品質な製品を得ること
ができない。
The figure shows the experimentally determined relationship between the amount of Na added and the stirring torque when silicon dioxide powder is mixed and stirred in an NaO Hinaga solution using a stirrer.As is clear from the figure, The vicinity of the desired addition Ja shows the maximum torque, and thereafter, as the addition amount increases, the torque decreases to about 2.3
001) It becomes almost the minimum value at the addition amount of fl-. For this reason, in order to improve the stirring performance and make it uniform, Naf
Either the f1 load was set excessively and stirring was performed with low torque, or the desired amount of Na was added and stirred, and the mixture had to be used in a non-uniform state. Therefore, if excessive Na component is added, the deaeration efficiency will be poor in the vitrification process.
Alternatively, it may result in a product with insufficient degassing, and even if raw material powders that are mixed non-uniformly are used, a high-quality product cannot be obtained.

本発明方法は、このような知見に基づくもので、以下に
透明な石英ガラスを製造する場合の一例を説明すると、
脱イオン水中に二酸化珪素粉を投入しW1社混合づる。
The method of the present invention is based on such knowledge, and an example of manufacturing transparent quartz glass will be described below.
Add silicon dioxide powder to deionized water and mix with W1.

次に相転移促進剤としてNa成分をN a OH水溶液
の形で添加し、撹拌するが、Na成分の添加量は、前記
知見より、過剰a1(例えば、二酸化珪素粉に対する重
量比として2.300 pOm以上)であり、HlJf
、トルクの少ないmが添加される。撹拌操作を十分した
後、固液混合液を凍結し、ついで解凍することにより固
液分llIItるか、あるいはフィルタープレス等圧押
手段により固液分離し、得られた固体物を乾燥して粉末
化し、Na成分が過剰量含有した二酸化珪素粉末を得る
。一方、脱イオン水に二酸化珪素粉末を投入し、撹拌、
混合したものを前記固液分離手段を用いて分離し、乾燥
することにより、相転移促進剤を含まない二酸化珪素の
二次粉末を得る。ここで相転移促進剤の添加は勿論、添
加しない二酸化珪素粉に上記処理を行なう理由は、クリ
ストバライト結晶相の焼結成型体が、自立性をもも、か
つより多孔状物になるようにするためである。
Next, a Na component is added as a phase transition accelerator in the form of an aqueous NaOH solution and stirred. Based on the above findings, the amount of Na component added is determined by the excess a1 (for example, 2.300 as a weight ratio to the silicon dioxide powder). pOm or more), and HlJf
, m with less torque is added. After a sufficient stirring operation, the solid-liquid mixture is frozen and then thawed to form a solid-liquid fraction, or solid-liquid separation is performed using a pressing means such as a filter press, and the resulting solid is dried to form a powder. to obtain silicon dioxide powder containing an excessive amount of Na component. Meanwhile, add silicon dioxide powder to deionized water, stir,
The mixture is separated using the solid-liquid separation means and dried to obtain a secondary powder of silicon dioxide containing no phase transition accelerator. The reason for performing the above treatment on the silicon dioxide powder without or without addition of a phase transition accelerator is to make the sintered molded body of the cristobalite crystal phase self-supporting and more porous. It's for a reason.

このようにして得られたそれぞれの二酸化珪素粉を混合
するが、混合比は、実質的に混合粉に対し、重量比でN
a成分が5001)Elm 〜1 、0001)I’1
m含有されるよう調整される。ついで該混合二酸化珪素
粉を容器に充填した後、任意の加熱手段で1,000℃
以上に加熱してクリストバライト結晶相をもつ焼結成型
体とする。この焼結物は、充填容器に対応した形状で連
続開気孔をもつ多孔質状の成型物であり、自立および移
送等に不都合のない基持強度をもっている。つぎにこの
焼結物は、皿状のトレイに載せ真空加熱炉において0゜
5+eb以下の減圧下で1,740℃以上に加熱されて
ガラス化されるが、前記したように焼結物は、連続開気
孔をもつ多孔質のものであるから含有不純成分および原
料粉中に添加されたNa成分等は、それぞれの熱分解温
度まで加熱されることにより容易に離脱し、排気される
。又、焼結物は、融点直下のクリストバライト結晶相で
あり、かつ融点が一意的であることより脱ガス処理が極
めて有効的に作用する。即ち、融解が段階的に生ずると
、部分的に多孔状態が崩れ、脱ガスが不十分になるが融
点が一意的なためこのような不都合がないし、又、分解
反応が起こらぬ限り高温度程、吸着1反応残留ガスを除
去するのに有効であるが、融点直下の温度まで4温して
脱ガスできるので有効である。従って前記真空加熱処理
により焼結物の内部は溶融されるまでにほぼ真空化され
、結晶化のために添加されたNa成分も最終的には数E
lf)l以下までになり、不純物の少ないかつ気泡のな
い透明石英ガラスを得ることができる。
The respective silicon dioxide powders obtained in this way are mixed, and the mixing ratio is substantially N to the mixed powder in terms of weight ratio.
a component is 5001) Elm ~1 , 0001) I'1
Adjusted to contain m. Then, after filling the mixed silicon dioxide powder into a container, it is heated to 1,000°C by any heating means.
It is heated to the above temperature to form a sintered molded body having a cristobalite crystal phase. This sintered product is a porous molded product with continuous open pores in a shape corresponding to a filled container, and has enough base strength to be self-supporting and transportable. Next, this sintered product is placed on a dish-shaped tray and heated to 1,740°C or higher under reduced pressure of 0°5+eb or less in a vacuum heating furnace to vitrify it, but as mentioned above, the sintered product is Since it is porous with continuous open pores, the impurity components contained and the Na components added to the raw material powder are easily separated and exhausted by being heated to their respective thermal decomposition temperatures. Further, the sintered product is a cristobalite crystal phase just below the melting point, and since the melting point is unique, degassing treatment is extremely effective. That is, if melting occurs in stages, the porous state partially collapses and degassing becomes insufficient, but since the melting point is unique, there is no such problem, and as long as a decomposition reaction does not occur, high temperatures are not required. , Adsorption 1 is effective for removing residual gas from the reaction, and is effective because it can be heated to a temperature just below the melting point to degas it. Therefore, by the vacuum heat treatment, the inside of the sintered product is almost evacuated before it is melted, and the Na component added for crystallization is finally reduced to several E.
lf) l or less, and transparent quartz glass with few impurities and no bubbles can be obtained.

以上は、透明な石英ガラスを得る場合であるが、相転移
促進剤と共に機能化のための周知成分を添加し、機能化
成分のみを残留させ、他の不純成分および相転移V進用
を除去することにより高品質のmtw化ガラスを得るこ
とができる。又、機能化と共に結晶化を促進する金属成
分を選択使用し、これをVIViA的に除去せず調整す
ることによっても可能である。
The above is a case of obtaining transparent quartz glass, but a well-known component for functionalization is added together with a phase transition accelerator, leaving only the functionalized component and removing other impurity components and phase transition V progression. By doing so, high quality mtw glass can be obtained. It is also possible to selectively use a metal component that promotes crystallization as well as functionalization, and adjust it without removing it using VIViA.

なお、所望量の相転移促進剤を均一に添加するにあたり
、上記説明では、該促進剤を過剰に添加した二酸化珪素
粉と、全く含まないものとを混合したが、図の説明から
明らかなように撹拌トルクの少ない添加量で処理したも
のを適宜調合することによっても可能である。即ち、2
.ooowt、pplの粉と、100wt、ppmとの
粉とを混合しても混合比により所望量の相転移促進剤を
含む原料粉を得ることができる。又、相転移促進剤を含
まない二酸化珪素粉は上記処理をせずに使用してもよい
In addition, in order to uniformly add the desired amount of phase transition accelerator, in the above explanation, silicon dioxide powder containing an excessive amount of the accelerator was mixed with silicon dioxide powder containing no accelerator at all, but as is clear from the explanation of the figure. It is also possible to do this by appropriately preparing a mixture that has been treated with a small amount of stirring torque. That is, 2
.. Even if powder of ooowt, ppl is mixed with powder of 100wt, ppm, a raw material powder containing a desired amount of phase transition accelerator can be obtained depending on the mixing ratio. Furthermore, silicon dioxide powder containing no phase transition accelerator may be used without the above treatment.

〔実施例〕〔Example〕

内径260#+1.内容1?4134のステンレス製円
筒容器に脱イオン水5Jを入れ、常温、常圧下で脱イオ
ン水を撹拌しつつ非晶質二酸化珪素粉500gを加えて
水−二酸化珪素混合系を得た。つぎに相転移促進剤とし
てNa成分を1規定N a OH水溶液の形で50d添
加した。Na成分の添加ωは、二酸化珪素に対する重量
化で2,300111)1であり、撹拌トルクはほぼ最
低値であった。撹拌操作を約60分行なった後、この固
液分散系をフィルタープレスによって固液分離し、つい
で乾燥してNa成分を1.50011pl稈度含む二酸
化珪素粉を得た。
Inner diameter 260#+1. 5 J of deionized water was put into a 1-4134 stainless steel cylindrical container, and 500 g of amorphous silicon dioxide powder was added while stirring the deionized water at room temperature and under normal pressure to obtain a water-silicon dioxide mixed system. Next, 50 d of Na component was added as a phase transition accelerator in the form of a 1N NaOH aqueous solution. The addition ω of the Na component was 2,300111)1 in terms of weight relative to silicon dioxide, and the stirring torque was approximately the lowest value. After stirring for about 60 minutes, this solid-liquid dispersion was separated into solid and liquid using a filter press, and then dried to obtain silicon dioxide powder containing 1.50011 pl of Na component.

一方、前記と開鎖の非晶質二酸化珪素粉を脱イオン水中
で撹拌し、t7られた水−二酸化珪素の混合液を固液分
離し、ついで乾燥したちのを作り、前記Na成分を含む
二酸化珪素粉に加え混合した。
On the other hand, the open-chain amorphous silicon dioxide powder was stirred in deionized water, the t7-treated water-silicon dioxide mixture was subjected to solid-liquid separation, and then dried powder was prepared. It was added to silicon powder and mixed.

ついでこの混合粉を内径1201N11、高ざ150#
111のムライi−質でなる円筒容器に充填した後、電
気炉で1,100℃まで加熱した。これにより76履φ
×91jIIlのクリストバライト結晶相をもつ円柱状
の焼結体が得られたので、これを500℃以上に保持し
て真空炉に搬入し、0.5+eb以1・の真空下で1.
750℃まで加熱してガラス化した。
Next, this mixed powder was made into a powder with an inner diameter of 1201N11 and a height of 150#.
After filling a cylindrical container made of No. 111 Murai I-quality, the mixture was heated to 1,100° C. in an electric furnace. As a result, 76 shoesφ
A cylindrical sintered body having a cristobalite crystal phase of ×91jIIl was obtained, which was maintained at a temperature of 500°C or higher, transported into a vacuum furnace, and heated under a vacuum of 0.5 + eb or less to 1.
It was heated to 750°C to vitrify it.

この時の昇温バランスとしては、1.600℃まで3時
間、1,750℃で1時間であり、これにより80m1
Iφ×45履で重td約500gの透明石英ガラスが得
られた。
The temperature increase balance at this time is 3 hours to 1,600℃ and 1 hour to 1,750℃, which results in 80m1
A transparent quartz glass with a weight of about 500 g was obtained using Iφ×45 glasses.

〔発明の効果〕〔Effect of the invention〕

本発明は係るガラス製造法によると、従来のベルヌーイ
法等が避けることのできなかった原料効率の悪さ、もし
くは長いガラス化時間を必要とした生産効率の悪さが解
消でき、しかも格別高価な熱源を必要としないため安価
に生産できる。特徴をもつが、本発明方法により、その
効果が一層助長される。即ら、上記説明から明らかなよ
うに高品質なガラスを冑る要因として、ガラス化工程に
おける脱気処理が充分行なえることがあげられるが、本
発明方法によれば、結晶化のための促進剤添加量が制御
でき、かつ均一化できるので容易にこの要求を満たすこ
とが可能になる。
According to the glass manufacturing method of the present invention, it is possible to eliminate the poor raw material efficiency that was unavoidable with the conventional Bernoulli method, or the poor production efficiency that required a long vitrification time, and moreover, it does not require an extremely expensive heat source. Since it is not required, it can be produced at low cost. However, the method of the present invention further enhances its effects. That is, as is clear from the above explanation, one of the factors contributing to the production of high-quality glass is that the degassing treatment in the vitrification process can be carried out sufficiently, but according to the method of the present invention, the promotion of crystallization is Since the amount of additive added can be controlled and made uniform, this requirement can be easily met.

【図面の簡単な説明】[Brief explanation of drawings]

図はNa添添加と撹拌トルクの関係を示ず図である。 The figure does not show the relationship between Na addition and stirring torque.

Claims (1)

【特許請求の範囲】 1、結晶化に必要な相転移促進剤を過剰に含む二酸化珪
素粉と、該促進剤を実質的に含まない二酸化珪素粉を調
合し、かつ均一に混合し、得られた所望量の相転移促進
剤を含む二酸化珪素粉を容器に充填した後加熱するとこ
とにより、クリストバライト結晶相をもった焼結成型体
とし、ついでこれを真空下加熱溶融してガラス化するこ
とを特徴とするガラスの製造法。 2、前記相転移促進剤がNa成分であることを特徴とす
る特許請求の範囲第1項記載のガラスの製造法。 3、前記相転移促進剤を含む二酸化珪素粉が相転移促進
剤を所望量以上含有された溶液中に混合され、かつ脱水
乾燥処理されたものであることを特徴とする特許請求の
範囲第1項又は第2項記載のガラスの製造法。 4、前記相転移促進剤を実質的に含まない二酸化珪素粉
が未処理のものか、もしくは水中に混合され、かつ脱水
、乾燥処理されたものであることを特徴とする特許請求
の範囲第1項又は第2項記載のガラスの製造法。
[Claims] 1. A silicon dioxide powder containing an excess of a phase transition accelerator necessary for crystallization and a silicon dioxide powder substantially free of the accelerator are prepared and uniformly mixed. By filling a container with silicon dioxide powder containing a desired amount of phase transition accelerator and heating it, a sintered molded body having a cristobalite crystal phase is obtained, which is then heated and melted under vacuum to vitrify it. Characteristic glass manufacturing method. 2. The method for producing glass according to claim 1, wherein the phase transition accelerator is an Na component. 3. Claim 1, characterized in that the silicon dioxide powder containing the phase transition accelerator is mixed in a solution containing a desired amount or more of the phase transition accelerator, and subjected to dehydration and drying treatment. A method for manufacturing the glass according to item 1 or 2. 4. Claim 1, characterized in that the silicon dioxide powder that does not substantially contain the phase transition accelerator is untreated or mixed in water and subjected to dehydration and drying treatment. A method for manufacturing the glass according to item 1 or 2.
JP4379786A 1986-02-28 1986-02-28 Production of glass Pending JPS62202826A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4379786A JPS62202826A (en) 1986-02-28 1986-02-28 Production of glass
US07/126,104 US4828594A (en) 1986-02-28 1987-02-27 Process for the production of glass
PCT/JP1987/000124 WO1987005285A1 (en) 1986-02-28 1987-02-27 Process for manufacturing glass
EP87901656A EP0258455B1 (en) 1986-02-28 1987-02-27 Process for manufacturing glass
DE8787901656T DE3771963D1 (en) 1986-02-28 1987-02-27 METHOD FOR PRODUCING GLASS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4379786A JPS62202826A (en) 1986-02-28 1986-02-28 Production of glass

Publications (1)

Publication Number Publication Date
JPS62202826A true JPS62202826A (en) 1987-09-07

Family

ID=12673736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4379786A Pending JPS62202826A (en) 1986-02-28 1986-02-28 Production of glass

Country Status (1)

Country Link
JP (1) JPS62202826A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026908A1 (en) * 1995-02-28 1996-09-06 Heraeus Quarzglas Gmbh Cristobalite-contained silica glass, method of producing same and silica glass jig made of same
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026908A1 (en) * 1995-02-28 1996-09-06 Heraeus Quarzglas Gmbh Cristobalite-contained silica glass, method of producing same and silica glass jig made of same
EP0854116A2 (en) * 1995-02-28 1998-07-22 Heraeus Quarzglas GmbH Cristobalite-contained silica glass, and silica glass jig made of same
EP0854116A3 (en) * 1995-02-28 1999-01-07 Heraeus Quarzglas GmbH Cristobalite-contained silica glass, and silica glass jig made of same
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
EP0173961B1 (en) Process for the production of glass
EP0463543B1 (en) Manufacture of quartz glass crucible for use in the manufacture of single crystal in silicon
CN100341780C (en) Silicon purifying method, slag for purifying silicon, and purified silicon
US5302556A (en) Synthetic silica glass articles and a method for manufacturing them
US4828594A (en) Process for the production of glass
JPS62202826A (en) Production of glass
JPH072513A (en) Production of synthetic quartz glass powder
EP0258457B1 (en) Process for manufacturing glass
US4828595A (en) Process for the production of glass
US5154905A (en) Method for producing unsintered cristobalite particles
JPS62212233A (en) Production of glass
CN104058405A (en) Method for removing impurities phosphorus and boron in silicon metal
JPS62212235A (en) Production of glass
JPS62212236A (en) Production of glass
JPH0575703B2 (en)
JPS6230633A (en) Production of glass
JPS6158823A (en) Preparation of transparent quartz glass
JPH03275527A (en) Porous silica glass powder
JPS62202827A (en) Production of glass
JPS6230634A (en) Production of quartz glass
CA1306870C (en) Process for the production of glass
JPH0132165B2 (en)
JPH0451498B2 (en)
JPH09295826A (en) Production of high-purity transparent silica glass
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same