JPS6230634A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS6230634A
JPS6230634A JP17066485A JP17066485A JPS6230634A JP S6230634 A JPS6230634 A JP S6230634A JP 17066485 A JP17066485 A JP 17066485A JP 17066485 A JP17066485 A JP 17066485A JP S6230634 A JPS6230634 A JP S6230634A
Authority
JP
Japan
Prior art keywords
powder
phase
silicon dioxide
quartz glass
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17066485A
Other languages
Japanese (ja)
Inventor
Koji Seki
関 宏次
Hiroshi Morishita
博司 森下
Kiyoshi Ono
清 大野
Hiroshi Yokota
宏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP17066485A priority Critical patent/JPS6230634A/en
Priority to DE8585110852T priority patent/DE3581455D1/en
Priority to EP85110852A priority patent/EP0173961B1/en
Priority to NO860553A priority patent/NO168096C/en
Priority to CA000502622A priority patent/CA1306870C/en
Publication of JPS6230634A publication Critical patent/JPS6230634A/en
Priority to US07/277,452 priority patent/US4871695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a high-purity ingot having relatively large size, without problems of the supply of raw materials, by using SiO2 powder as a raw material, carrying out the secondary pulverization of the raw material in the presence of a phase-transition accelerator, converting secondary powder to a sintered material having cristobalite phase, and producing a quartz glass from the sintered material by vacuum-melting process. CONSTITUTION:SiO2 powder is mixed to a solution containing a phase-transition accelerator, the mixture is frozen and thawed to effect the separation of the SiO2 powder dispersion into solid phase and liquid phase and the supernatant water is discarded. The coagulated SiO2 powder settled at the bottom is dried by dehydration means. The dried powder is pulverized again, and the particle size is adjusted by a simple crushing means. The powder produced by the secondary pulverization process is filled in a vessel having sufficient strength at high temperature and calcined to obtain a porous sintered product having cristobalite crystal phase. The sintered product is vitrified by heating and melting in vacuum. The deaeration in melting process can be carried out easily and completely by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二酸化珪素を原料とし、真空溶融法によって
石英ガラスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass using a vacuum melting method using silicon dioxide as a raw material.

〔従来の技術〕[Conventional technology]

現状において透明石英ガラスを製造する方法としては、
二酸化珪素粉をアルゴン−酸素プラズマ炎、あるいは酸
水素炎に少しづつ供給して石じゅんを生成させるベルヌ
ーイ法、珪素のアルコキシドを加水分解して得られた活
性なシリカゲルを1゜100℃前後で焼結するゾルゲル
法、水晶粉をグラファイトルツボに入れ真空下で溶融し
てガラス化する真空溶融法、四塩化珪素等の理水化合物
を気相中で加水分解してガラス微粉を得、これを直接タ
ーゲット上に付着させ多孔質ガラス体を得た後、1,5
00℃前後で焼結するC、V、D、法等が周知である。
Currently, the methods for manufacturing transparent quartz glass are as follows:
The Bernoulli method involves feeding silicon dioxide powder little by little into an argon-oxygen plasma flame or an oxy-hydrogen flame to generate a stone. The sol-gel method involves placing quartz powder in a graphite crucible and melting it under vacuum to turn it into glass. After depositing on the target to obtain a porous glass body, 1,5
Methods such as C, V, D, etc. in which sintering is performed at around 00°C are well known.

(発明が解決しようとする問題点〕 しかし、前記ベルヌーイ法によると、アルゴン−酸素プ
ラズマ炎を熱源とすると残存−〇 H基が少なく比較内
泡も少ないものが得られるが、エネルギーコストが高く
なる欠点がある。又熱源として酸水素炎を用いた場合は
、エネルギーコストは安価になるが、残存−01111
が多い製品しかええられない。しかもこの方法は前記し
たように原料供給の速さに限度があり、生産性が悪いこ
と、得られるインゴットが細丸状のものに限られる等の
不都合がある。次に前記ゾルゲル法は再加熱工程で亀裂
が生じ破損し易く目的とするガラス塊が得難い等技術的
に確立されていないと云われている。
(Problems to be Solved by the Invention) However, according to the Bernoulli method, if an argon-oxygen plasma flame is used as a heat source, a product with fewer residual -0 H groups and fewer internal bubbles can be obtained, but the energy cost is high. There are disadvantages.Also, if an oxyhydrogen flame is used as a heat source, the energy cost will be lower, but the residual -01111
You can only buy products with a lot of Moreover, as described above, this method has disadvantages such as a limit on the speed of raw material supply, poor productivity, and the ingots obtained are limited to thin round ingots. Next, it is said that the sol-gel method is not technically established, as it is prone to cracking and breakage during the reheating process, and it is difficult to obtain the desired glass lump.

また、前記真空溶融法は、工業的規模で実施されており
、残存OH−基が少なくかつ高温における粘性も高い等
の特徴をもつが、ベルヌーイ法に比し泡が多く原料が水
晶粉のため高純度のものが期待できない。しかも周知の
ように原料そのものの枯渇の問題があり、原料の供給に
難点がめる。又C,V、O,法は、光フ?イバー母材の
製造法として周知な方法であるが生産製が゛悪いことも
よく知られている。
In addition, the vacuum melting method is carried out on an industrial scale and has the characteristics of having few residual OH- groups and high viscosity at high temperatures. High purity cannot be expected. Moreover, as is well known, there is a problem of depletion of the raw materials themselves, making it difficult to supply them. Also, C, V, O, law is light fu? Although this is a well-known method for producing the fiber base material, it is also well known that the production quality is poor.

本発明は、このようなことから、原料供給に不安のない
二酸化珪素粉を使用すること、高純度でしかも比較的大
型のインゴットが得られることに加え、製造用意かつ生
産性の高い透明ガラスの製造法を提供することを目的と
するものである。
For these reasons, the present invention uses silicon dioxide powder with no concerns about raw material supply, provides high purity and relatively large ingots, and provides transparent glass that is easy to manufacture and has high productivity. The purpose is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するため、原料として資源
的制約のない二酸化珪素を使用し、真空溶融法によって
石英ガラスを製造する方法に係り、二酸化珪素粉をNa
等、相転移促進剤の含有溶液中に混合せしめた後、凍結
した上解凍し、ついで脱水、乾燥せしめて相転移促進剤
を含む二酸化珪素粉とする二次粉末化工程と該工程で得
られた粉末を容器に充填して加熱し、β−クリストバラ
イト結晶相をもった多孔質な焼結成型体とする仮焼工程
と、該工程で得られた焼結成型体をα−クリストバライ
結晶相への転移湿度以上に保持して真空上加熱、溶融す
るガラス化工程とからなることを特徴とするものである
In order to solve the above-mentioned problems, the present invention relates to a method of producing quartz glass by a vacuum melting method using silicon dioxide, which has no resource constraints, as a raw material.
A secondary powdering process in which silicon dioxide powder containing a phase transition accelerator is obtained by mixing it in a solution containing a phase transition accelerator, freezing it, thawing it, dehydrating it, and drying it to obtain a silicon dioxide powder containing a phase transition accelerator; A calcination step in which the powder is filled in a container and heated to form a porous sintered molded body having a β-cristobalite crystal phase; This process is characterized by a vitrification step of heating and melting in a vacuum while maintaining the temperature above the transition humidity to .

〔実施例〕〔Example〕

以下、本発明に係るガラス製造法を詳細に説明する。 Hereinafter, the glass manufacturing method according to the present invention will be explained in detail.

前記したように二酸化珪素を原料としてガラスを製造す
る場合、比較的高品質のものが得られる前記ベルヌーイ
法では、生産性等に難点がある。
As described above, when producing glass using silicon dioxide as a raw material, the Bernoulli method, which produces relatively high quality glass, has drawbacks such as productivity.

一方比較的大型のインゴットの得られる前記真空溶融法
においては脱ガスに難点があり、高品質のものが得られ
ない。本発明者等は、前記真空溶融法の特徴を生かして
、従来方法が解決し得なかった脱ガスの即題および水晶
粉を使用するが故の原料供給難の問題につき種々考究し
た結果、二酸化珪素を原料とし、これをクリストバライ
ト結晶相をもつ焼結成型体とした後、真空溶融すること
により充分な脱ガス処理が可能となることを見出したも
のである。
On the other hand, in the vacuum melting method, which allows relatively large ingots to be obtained, there is a difficulty in degassing, and high quality ingots cannot be obtained. The present inventors took advantage of the characteristics of the vacuum melting method and conducted various studies on the immediate problem of degassing, which could not be solved by conventional methods, and the problem of raw material supply difficulties due to the use of quartz powder. It has been discovered that sufficient degassing can be achieved by using silicon as a raw material, forming a sintered molded body having a cristobalite crystal phase, and then melting it in a vacuum.

周知のように、結晶質二酸化珪素は、加熱過程において
加熱される湿度により低温域の石英相からトリジマイト
相、クリストバライト相へと相転移が行なわれる。この
相転移は、二酸化珪素単独では起り難いが成極の金属元
素を添加するかあるいは金属元素が含有されている二酸
化珪素によると容易に相転移でき、例えばLi2O,N
a2O。
As is well known, crystalline silicon dioxide undergoes a phase transition from a quartz phase in a low temperature range to a tridymite phase and a cristobalite phase due to the humidity heated during the heating process. This phase transition is difficult to occur with silicon dioxide alone, but it can be easily achieved by adding a polarizing metal element or using silicon dioxide containing a metal element. For example, Li2O, N
a2O.

k20. MGO,cao、 P20S 、 8203
などが相転移促進剤として有効であることは知られてい
る。一方、非晶質二酸化珪素も単独では直接溶解してし
まうのでクリストバライト相に結晶化するためには、上
記のような金属添加物を必要とする。しかし乍ら、前記
従来技術の説明からも容易に理解できるように従来法に
おいては、原料中に上記の如き金属元素を含むことは水
分等の他の不純物と同様最終製品の純度低下をもたらす
要因となり、好ましくない。即ち、従来法においては純
度の高い石英ガラスを得ることと、原料中に不純物を添
加することとは相反する関係にあるから、純度の高い原
料が要求される。従って本発明方法の如く、原料中に金
属元素を含有させるか、あるい金属元素が含有されてい
る原料を使用する概念は従来技術にはないことである。
k20. MGO, cao, P20S, 8203
It is known that these are effective as phase transition accelerators. On the other hand, since amorphous silicon dioxide alone is directly dissolved, metal additives such as those mentioned above are required in order to crystallize it into a cristobalite phase. However, as can be easily understood from the explanation of the prior art, in the conventional method, the inclusion of the above-mentioned metal elements in the raw materials is a factor that causes a decrease in the purity of the final product, similar to other impurities such as moisture. This is not desirable. That is, in the conventional method, obtaining a highly pure quartz glass and adding impurities to the raw material are in a contradictory relationship, so a raw material with a high purity is required. Therefore, the concept of containing a metal element in a raw material or using a raw material containing a metal element, as in the method of the present invention, does not exist in the prior art.

このようなことから二酸化珪素に相転移促進剤を激化さ
せるか、もしくは相転移に有効な成分を含有した二酸化
珪素を選択使用する本発明方法は、特異なものと云える
が、クリストバライト結晶相の焼結成型体がもつ特性が
真空溶融法の採用と相俟って多くの効果をもたらす。即
ち、クリストバライト結晶法の焼結成型体は、周知のよ
うに融点が一意的なものであるから該融点直下の湿度ま
で加熱し、かつ脱気処理ができること、およびクリスト
バライト結晶相の焼結体は連続量気孔をもつ多孔体であ
ること等により脱気が充分に、しかも容易に行なえる。
For this reason, the method of the present invention, in which silicon dioxide is intensified with a phase transition accelerator, or silicon dioxide containing an effective component for phase transition is selectively used, can be said to be unique. The characteristics of the sintered molded body, combined with the adoption of the vacuum melting method, bring about many effects. That is, as is well known, the sintered body of the cristobalite crystal phase has a unique melting point, so it can be heated to a humidity just below the melting point and deaerated, and the sintered body of the cristobalite crystal phase is Since it is a porous body having a continuous amount of pores, deaeration can be carried out sufficiently and easily.

又、相転移促進剤の成極のものは融点以下の湿度で容易
にl11tJ112排気されるのでこれらを選択使用す
れば、不純物がほぼ完全に除去された透明な石英ガラス
が得られるし、分解除去されない促進剤を選択すれば、
該促進剤のみが含有された橢能性ガラスを得ることがで
きる。要するに従来技術においては不純物とされる金属
成分が本発明においては不可欠であり、発明の実施に有
効に働く。
In addition, polarized phase transition accelerators are easily exhausted at humidity below the melting point, so if these are selected and used, transparent quartz glass from which impurities are almost completely removed can be obtained, and they can be decomposed and removed. If you choose an accelerator that does not
A hydrophilic glass containing only the accelerator can be obtained. In short, metal components that are considered impurities in the prior art are indispensable to the present invention and work effectively for carrying out the invention.

次に実施例として、非晶質の二酸化珪素粉を原料として
、透明な石英ガラスのインボッ1−を製造する方法を説
明する。
Next, as an example, a method for manufacturing a transparent quartz glass ink bottle 1- will be described using amorphous silicon dioxide powder as a raw material.

例えば、四塩化珪素を酸化して得られる非晶質二酸化珪
素の微粉に相転移促進剤を添加混合する。
For example, a phase transition accelerator is added to and mixed with fine powder of amorphous silicon dioxide obtained by oxidizing silicon tetrachloride.

相転移促進剤としてはアルカリ金属の中の一種が選ばれ
るが、本発明者等は透明石英ガラスを得る場合、最も脱
気が容易なものとしてNa成分が有効なことを知見して
いる。又、Na成分の添加邑はクリストバライト結晶相
の焼結成型体を得るに容易な潰であり、本発明者等の実
験によると原料粉に対する重量比として100 Fl、
1)、1.〜2,00Of)、1)、1.の範囲で実施
可能であり、これ以下であると結晶化に、以上であると
脱気処理にそれぞれ問題がある。従って作業性等ら勘案
すると原料粉に対する重量比1 、0001)、El、
1.程度のNa成分を含有した非晶質二酸化珪素粉を合
成することが望ましい。
One type of alkali metal is selected as the phase transition accelerator, and the present inventors have found that when obtaining transparent quartz glass, the Na component is effective as it is the easiest to degas. In addition, the addition of Na component is easy to obtain a sintered molded body of cristobalite crystal phase, and according to the experiments of the present inventors, the weight ratio to the raw material powder is 100 Fl,
1), 1. ~2,00Of), 1), 1. If it is less than this, there will be problems with crystallization, and if it is more than this, there will be problems with degassing. Therefore, considering workability etc., the weight ratio to the raw material powder is 1,0001), El,
1. It is desirable to synthesize amorphous silicon dioxide powder containing a certain amount of Na component.

次にNa成分の添加手段としては、脱イオン水に非晶質
二酸化珪素粉を入れて撹拌すると固液に分離困難な分散
系が得られるから、これにNa成分をNaOHの形で添
加混合するか、予めNaOHの形で添加混合された脱イ
オン水中に非晶質二酸化珪素粉を入れ、混合撹拌すれば
該粉にNaが均一にイオンとして付着する。この付着階
は前記したように重量比で1. o o o p、p、
m、程度が実用的であり、このためには溶液中に重量比
で約2゜300 p、p、m、のNa成分が含有される
よう調整すればよい。このようにしてNa成分が付着し
た非晶質二酸化珪素粉を含む溶液を適宜な手段で脱水乾
燥して再粉末化する。ここで重要なことは、通常市販さ
れている非晶質二酸化珪素粉は約0.02 Jll11
以下の微粉であり、これを使用して加熱により結晶化す
ると、焼結が急速に進行し、密な焼結体が出来易(なる
のを避ける必要があることである。即ち、得られたクリ
ストバライト結晶相の焼結体は気孔の大きさが残留ガス
を逃がすために充分大きく、かつ適度の基持強度とガラ
ス化工程における融解時の収縮に対応できる程度に充分
小さいことが望まれることである。この要求に応えるた
め前記Na成分の付着した非晶質二酸化珪素を含む溶液
を例えば適宜な容器に分取して冷凍庫で凍結するか、あ
るいは周知の製氷装置によって凍結する。次にこの溶液
を自然又は加熱等任意の方法で解凍すると、非晶質二酸
化珪素粉の分散系は固液二相に分離するのでうわ水を捨
て、底に残った二酸化珪素粉の凝結体を脱水処理して乾
燥させる。乾燥されて再粉末化された非晶質二酸化珪素
粉は、簡単な破砕手段によって粒度を調整することによ
り、微粉が凝集し、当初的0.02μm以下の粒径であ
ったものが、はぼ50μm〜500μmの粒径をもった
粉末が得られる。
Next, as a means of adding the Na component, if you add amorphous silicon dioxide powder to deionized water and stir it, a dispersion system that is difficult to separate into solid and liquid will be obtained, so the Na component is added and mixed in the form of NaOH to this. Alternatively, if amorphous silicon dioxide powder is placed in deionized water to which NaOH has been added and mixed in advance and mixed and stirred, Na will uniformly adhere to the powder as ions. As mentioned above, this adhesion layer has a weight ratio of 1. o o o p, p,
For this purpose, the Na component may be adjusted to a weight ratio of about 2.300 p, p, m in the solution. The solution containing the amorphous silicon dioxide powder to which the Na component has been attached in this manner is dehydrated and dried by an appropriate means and re-pulverized. What is important here is that commercially available amorphous silicon dioxide powder has a particle size of about 0.02 Jll11.
This is the following fine powder, and when it is used to crystallize by heating, sintering progresses rapidly and a dense sintered body is likely to be formed (this must be avoided. In other words, the obtained It is desirable that the sintered body of the cristobalite crystal phase has pores large enough to allow residual gas to escape, yet small enough to have adequate base strength and shrinkage during melting during the vitrification process. In order to meet this demand, the solution containing the amorphous silicon dioxide to which the Na component has been attached is divided into appropriate containers and frozen in a freezer, or frozen using a well-known ice making device.Next, this solution is When the amorphous silicon dioxide powder is thawed by any method such as natural or heating, the dispersion system of amorphous silicon dioxide powder separates into solid-liquid two phases, so discard the supernatant water and dehydrate the silicon dioxide powder aggregates remaining at the bottom. Drying. By adjusting the particle size of the dried and re-powdered amorphous silicon dioxide powder using a simple crushing method, the fine powder is agglomerated, and the initially particle size of 0.02 μm or less becomes , a powder having a particle size of approximately 50 μm to 500 μm is obtained.

このよう・にして得られた非晶質二酸化珪素粉を高温強
度をもった、例えばムライト質の容器に充填した後、任
意の加熱手段で1,000℃以上に加熱してクリストバ
ライト結晶相をもつ焼結体とする。このとき、昇温速度
をなるべく小さくすることが望ましい。得られた焼結物
は充填容器に対応した形状で連続量気孔をもつ多孔質状
の成型物であり、自立および移送等に不都合のない基持
強度をもっている。尚この焼結体は殆んどが、β型のク
リストバライト結晶相であり、クリストバライト結晶の
高温型であるら、得られた焼結体を冷却して低温型のα
型のクリストバライト結晶相に転移させると6%程度の
体積減少によって微小なりラックが発生する。このクラ
ンクの発生した結昼休は、溶融してガラス化させるとク
ラックが更に進行するので望ましい製品の得られないこ
とが多い。周知のようにβ型のクリストバライト結晶相
から、α型への転移は220℃〜275℃の間で生ずる
から前記したよう゛に1.000℃程度まで加熱して得
られた焼結体は、この転移湿度以上に保持してガラス化
工程に送り処理することが望ましい。
After filling the amorphous silicon dioxide powder obtained in this manner into a container made of, for example, mullite, which has high temperature strength, it is heated to 1,000°C or higher using any heating means to form a cristobalite crystal phase. Make it a sintered body. At this time, it is desirable to reduce the temperature increase rate as much as possible. The obtained sintered product is a porous molded product having a continuous number of pores in a shape corresponding to a filled container, and has sufficient support strength for self-supporting and transportation. Most of this sintered body is a β-type cristobalite crystal phase, and if it is a high-temperature type of cristobalite crystal, the obtained sintered body is cooled to form a low-temperature type α
When the crystal phase is transformed into a type of cristobalite crystal phase, a small rack is generated due to a volume reduction of about 6%. When this crack occurs, the cracks will further progress when melted and vitrified, so that it is often impossible to obtain a desired product. As is well known, the transition from the β-type cristobalite crystal phase to the α-type occurs between 220°C and 275°C, so the sintered body obtained by heating to about 1,000°C as described above is It is desirable to maintain the temperature above this transition humidity and send it to the vitrification process.

ガラス化工程は周知の真空溶融法と同様な方法によって
行なうものであり、真空下で前記仮焼工程によって得ら
れたクリストバライト結晶相をもつ焼結成型体を加熱溶
融してガラス化させるものである。このとき、前記理由
によりβ−クリストバライト結晶型を保持して(約30
0℃以上に保持して)真空加熱炉に入れると共にルツボ
等に入れず単に浅い皿状のトレイに載せて行なう。これ
は焼結体が移送に対して充分な基持強度をもち、自立で
きることから可能であり、脱ガスを容易にし、容器との
接触による汚染を防ぐ効果がある。
The vitrification process is carried out by a method similar to the well-known vacuum melting method, in which the sintered molded body having the cristobalite crystal phase obtained by the calcination process is heated and melted under vacuum to vitrify it. . At this time, due to the above-mentioned reason, the β-cristobalite crystal form is maintained (approximately 30
The mixture is placed in a vacuum heating furnace (maintained at 0° C. or higher) and simply placed on a shallow dish-shaped tray without placing it in a crucible or the like. This is possible because the sintered body has sufficient support strength for transportation and can stand on its own, facilitating degassing and preventing contamination due to contact with the container.

真空加熱炉においては、0.5+b以下の減圧下で1.
750℃以上に昇温してガラス化させるが、焼結体は連
続量気孔をもつ多孔質のものであるから、焼結体内の不
純成分および結晶成型化のために添加されたNa成分等
はそれぞれの熱分解湿度まで加熱されることにより容易
にII!脱し、排気される。また、焼結体は融点直下の
クリストバライト結晶相であり、かつ該結晶相の融点が
一意的であることより脱ガス処理に極めて有効に作用す
る。
In a vacuum heating furnace, 1.
The temperature is raised to 750°C or higher to vitrify it, but since the sintered body is porous with a continuous amount of pores, impurities in the sintered body and Na components added for crystal shaping are removed. II easily by being heated to the respective pyrolysis humidity! It comes off and is exhausted. Further, the sintered body has a cristobalite crystal phase just below the melting point, and since the melting point of the crystal phase is unique, it acts extremely effectively on degassing treatment.

即ち、融解が段階的に生ずると部分的に多孔状態が崩れ
、ガスの逃げ道を塞ぐことになり脱ガスが充分行なえな
いが融点が一意的なため、このような不都合がない。又
、分解反応が起こらぬ限り、高湿度はど吸着9反応残留
ガスを除去するのに有効であるが融点直下の湿度まで昇
温して脱ガスできる。従って前記真空加熱処理により、
焼結体の内部は、溶融される迄にほぼ真空化され結晶化
のために添加された1 、 OO01)、1)、1.の
Na成分がRt/4的には数p、p、m、以下までにな
り、不純物の少ない気泡クラックのない透明石英ガラス
を得ることができる。
That is, if melting occurs in stages, the porous state partially collapses, blocking the escape route for gas and preventing sufficient degassing, but since the melting point is unique, there is no such inconvenience. Further, as long as a decomposition reaction does not occur, high humidity is effective in removing residual gas from the adsorption 9 reaction, but degassing can be achieved by raising the temperature to a humidity just below the melting point. Therefore, by the vacuum heat treatment,
The inside of the sintered body was almost evacuated until it was melted, and 1, OO01), 1), 1. In terms of Rt/4, the Na component is reduced to several p, p, m or less, and transparent quartz glass with few impurities and no bubble cracks can be obtained.

なお、上記説明は、非晶質二酸化珪素粉に相転移促進剤
としてNa成分を添加した例として説明したが、コロイ
ダルシリカのようにNa成分を含有しているものを出発
原料として使用することもできる。又、透明な石英ガラ
スを得る場合には焼結体の融点直下の湿度で分解し、脱
離、排気され易い相転移促進剤が選択されるが、本発明
者等の実験によると、アルカリ金属が使用でき、その中
でもNaがガラス化時間を最も短縮できる成分として有
効なことが確かめられている。
The above explanation was given as an example in which Na component was added as a phase transition accelerator to amorphous silicon dioxide powder, but materials containing Na component such as colloidal silica may also be used as the starting material. can. In addition, when obtaining transparent quartz glass, a phase transition accelerator is selected that is easily decomposed, desorbed, and exhausted at a humidity just below the melting point of the sintered body, but according to experiments conducted by the present inventors, alkali metals Among these, Na has been confirmed to be effective as the component that can shorten the vitrification time the most.

上記説明から明らかなように、本発明の特徴は二酸化珪
素粉をクリストバライト結晶相をもつ焼結体とした後、
真空溶融法によってガラス化させるものであるから、ク
リストバライト化のための相転移促進剤と共に線面化の
ための周知成分を添加し機能化成分のみを残留させて機
能化ガラスを得ることができる。又、機能化の役割も果
す相転移促進剤を選択使用し、これを積極的に除去せず
調整することによっても可能である。例えばNd2O3
を0.3モル%、P2O5を3モル%含む二酸化珪素粉
末を、前記した前処理により2次粒子に造粒した後、約
1.300℃で仮焼し、クリストバライト化する。得ら
れた焼結体を真空炉で1.700℃まで加熱、溶融する
ことによりレーザガラスを効率よく製造することができ
る。従って各種の活イオンをドープによりレーザガラス
を始め、フォトクロミックガラス、フィルターガラス、
熱線吸収ガラス等各種機能性ガラスの製造に適用できる
As is clear from the above description, the feature of the present invention is that after silicon dioxide powder is made into a sintered body having a cristobalite crystal phase,
Since vitrification is carried out by a vacuum melting method, a functionalized glass can be obtained by adding a phase transition accelerator for cristobalite formation and well-known components for linearization, leaving only the functionalized components remaining. It is also possible to selectively use a phase transition accelerator that also serves as a functionalization agent, and to adjust it without actively removing it. For example, Nd2O3
Silicon dioxide powder containing 0.3 mol % of P2O5 and 3 mol % of P2O5 is granulated into secondary particles by the above-described pretreatment, and then calcined at about 1.300° C. to form cristobalite. By heating and melting the obtained sintered body to 1.700° C. in a vacuum furnace, laser glass can be efficiently manufactured. Therefore, by doping various active ions, laser glass, photochromic glass, filter glass, etc.
It can be applied to the production of various functional glasses such as heat ray absorbing glass.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明に係るガラス製造法は、二酸化珪素粉
を相転移促進剤を含有させる二次粉末化工程と、得られ
た粉末を加熱することによってクリストバライト結晶相
をもった焼結体とする仮焼工程と、該焼結体をβ−αの
移転湿度以上に保持して真空下加熱溶融するガラス化工
程とを有11M丙に組合わせたガラス製造であるから、
従来方法にない多くの特徴をもち、効果をもたらす。即
ち、石英ガラスのように高粘性のガラスを製造する場合
、従来方法では避けることができなかった原料効率の悪
さ、若しくは長いガラス化時間を必要とした生産効率の
悪さが解消できると共に、格別高価な熱源を必要としな
い等のことと相俟って、安価に製造することができる。
As described above, the glass manufacturing method according to the present invention includes a secondary powdering step in which silicon dioxide powder is made to contain a phase transition accelerator, and a sintered body having a cristobalite crystal phase is produced by heating the obtained powder. This is a glass manufacturing process that combines a calcination process and a vitrification process in which the sintered body is heated and melted under vacuum while maintaining the sintered body at a transfer humidity of β-α or higher.
It has many features and effects not found in conventional methods. In other words, when producing highly viscous glass such as quartz glass, it is possible to eliminate the inefficiency of raw materials that could not be avoided with conventional methods or the inefficiency of production that required a long vitrification time, and at the same time, it is extremely expensive. Coupled with the fact that it does not require a heat source, it can be manufactured at low cost.

しかも真空溶融法を採用しているが、従来手段では解決
出来なかった脱気不十分による泡の発生。
Furthermore, although a vacuum melting method is used, bubbles are generated due to insufficient degassing, which could not be solved with conventional methods.

容器との接触で生ずる汚染の問題等をことごとく解決し
、純度の高いガラスインゴットとすることができる。
All problems of contamination caused by contact with containers can be solved, and a glass ingot with high purity can be obtained.

Claims (1)

【特許請求の範囲】 1、二酸化珪素粉を相転移促進剤の含有溶液中に混合せ
しめた後、凍結した上、解凍し、ついで脱水、乾燥せし
めて相転移促進剤を含む二酸化珪素粉とする二次粉末化
工程と、該二次粉末化工程で得られた粉末を容器に充填
して加熱し、クリストバライト結晶相をもった多孔質な
焼結成型体とする仮焼工程と、該仮焼工程で得られた焼
結成型体を真空下加熱溶融するガラス化工程とからなる
ことを特徴とする石英ガラスの製造法。 2、前記二次粉末化工程において、機能化成分が添加さ
れることを特徴とする特許請求の範囲第1項記載の石英
ガラスの製造法。 3、前記二次粉末化工程において得られた二酸化珪素粉
の粒径が50μm〜500μmであることを特徴とする
特許請求の範囲第1項又は第2項記載の石英ガラスの製
造法。 4、前記仮焼工程において得られた焼結成型体をβ−ク
リストバライト結晶相からα−クリストバライト結晶相
へ転移する湿度以上に保持してガラス化工程で処理する
ことを特徴とする特許請求の範囲第1項乃至第3項いず
れかに記載の石英ガラスの製造法。
[Claims] 1. Silicon dioxide powder is mixed into a solution containing a phase transition accelerator, then frozen, thawed, dehydrated, and dried to obtain a silicon dioxide powder containing a phase transition accelerator. a secondary powdering step; a calcination step in which the powder obtained in the secondary powdering step is filled into a container and heated to form a porous sintered molded body having a cristobalite crystal phase; and the calcination step. A method for producing quartz glass, comprising a vitrification step of heating and melting the sintered molded body obtained in the step under vacuum. 2. The method for producing quartz glass according to claim 1, wherein a functionalizing component is added in the secondary powdering step. 3. The method for producing quartz glass according to claim 1 or 2, wherein the particle size of the silicon dioxide powder obtained in the secondary powdering step is 50 μm to 500 μm. 4. Claims characterized in that the sintered molded body obtained in the calcination step is treated in a vitrification step while being maintained at a humidity higher than that at which the β-cristobalite crystal phase transitions to the α-cristobalite crystal phase. A method for producing quartz glass according to any one of items 1 to 3.
JP17066485A 1984-08-30 1985-08-02 Production of quartz glass Pending JPS6230634A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17066485A JPS6230634A (en) 1985-08-02 1985-08-02 Production of quartz glass
DE8585110852T DE3581455D1 (en) 1984-08-30 1985-08-28 METHOD FOR PRODUCING GLASS.
EP85110852A EP0173961B1 (en) 1984-08-30 1985-08-28 Process for the production of glass
NO860553A NO168096C (en) 1985-08-02 1986-02-14 PROCEDURE FOR PREPARING HIGH QUARTER GLASS
CA000502622A CA1306870C (en) 1985-08-02 1986-02-25 Process for the production of glass
US07/277,452 US4871695A (en) 1984-08-30 1988-10-17 Process for the production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17066485A JPS6230634A (en) 1985-08-02 1985-08-02 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS6230634A true JPS6230634A (en) 1987-02-09

Family

ID=15909083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17066485A Pending JPS6230634A (en) 1984-08-30 1985-08-02 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS6230634A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828594A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
US4828593A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
US4828595A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
JPH01176243A (en) * 1987-12-28 1989-07-12 Shinetsu Sekiei Kk Production of quartz glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828594A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
US4828593A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
US4828595A (en) * 1986-02-28 1989-05-09 Japan Oxygen Co., Ltd. Process for the production of glass
JPH01176243A (en) * 1987-12-28 1989-07-12 Shinetsu Sekiei Kk Production of quartz glass

Similar Documents

Publication Publication Date Title
EP0173961B1 (en) Process for the production of glass
CN1316073C (en) Quartz glass crucible and method for the production thereof
JP3751326B2 (en) Manufacturing method of high purity transparent quartz glass
US4828593A (en) Process for the production of glass
US4828595A (en) Process for the production of glass
EP0258455B1 (en) Process for manufacturing glass
JPH04219310A (en) Production of non-sintered cristobalite particle
JPH054834A (en) Oxynitride glass and production thereof
JPS6230634A (en) Production of quartz glass
JPS62212235A (en) Production of glass
JPS62202826A (en) Production of glass
JPS62212233A (en) Production of glass
JPS62212236A (en) Production of glass
JPH0575703B2 (en)
JPS6230633A (en) Production of glass
JPS6158823A (en) Preparation of transparent quartz glass
JPS6158824A (en) Preparation of transparent quartz glass
CA1306870C (en) Process for the production of glass
CN113636744A (en) Preparation process of quartz glass crucible and application method of quartz glass crucible for polycrystalline silicon ingot casting
JPH10502324A (en) Sintered quartz glass product and method for producing the same
JPH0912322A (en) High-purity transparent quartz glass and its production
JPS62202827A (en) Production of glass
US3472667A (en) Elemental boron-containing vitreous silica bodies and method
JPH0451498B2 (en)
JPH09295826A (en) Production of high-purity transparent silica glass