JPS6227033A - Reaction device - Google Patents

Reaction device

Info

Publication number
JPS6227033A
JPS6227033A JP16651685A JP16651685A JPS6227033A JP S6227033 A JPS6227033 A JP S6227033A JP 16651685 A JP16651685 A JP 16651685A JP 16651685 A JP16651685 A JP 16651685A JP S6227033 A JPS6227033 A JP S6227033A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer promoting
reaction
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16651685A
Other languages
Japanese (ja)
Other versions
JPH0252538B2 (en
Inventor
Toshihiko Hirabayashi
俊彦 平林
Yasuyuki Hamazaki
浜崎 安行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Mitsubishi Electric Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP16651685A priority Critical patent/JPS6227033A/en
Publication of JPS6227033A publication Critical patent/JPS6227033A/en
Publication of JPH0252538B2 publication Critical patent/JPH0252538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To improve the reaction efficiency in a catalyst layer by disposing approximately semi-circular or doughnut-shaped heat transmission accelerating members to the inside of an inside pipe constituting double pipes in the prescribed positional relation of plural points in the longitudinal direction thereof. CONSTITUTION:Hydrocarbon and steam are preheated to about 450 deg.C and are introduced from an introducing pipe into an outside pipe 2 so as to contact with a catalyst 2 in a catalyst layer 7 and to generate steam reforming reaction. The reforming gas of the high temp. with which the reaction ends passes through plural small holes 8a of a receiving tray 8 and is turned back by an end cap 4 so as to flow through the inside pipe 6 and to be discharged from a lead-out pipe to the outside of the system. The sensible heat of the high-temp. reforming gas is absorbed by the plural heat transmission accelerating members 10a, 10b, 10c in the process of lowing through the inside pipe 6. The absorbed sensible heat is transmitted through the wall of the inside pipe 6 to the gaseous raw material or reforming gas flowing in the layer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は外管と内管とから成る二重管構造を有し、上
記外管と内管との間に形成されろ環状空間部に触媒が充
填された触媒層を有し、上記外管のガス流と内管のガス
流とは一方の端部で連通している反応管を備えた反応装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has a double pipe structure consisting of an outer pipe and an inner pipe, and an annular space formed between the outer pipe and the inner pipe. The present invention relates to a reactor equipped with a reaction tube having a catalyst bed filled with a catalyst, and in which the gas flow in the outer tube and the gas flow in the inner tube communicate with each other at one end.

〔従来技術〕[Prior art]

従来装置として例えば特開昭58−124534号公報
に示されたものがあり、その概要を第6図に示す。
As a conventional device, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 58-124534, an outline of which is shown in FIG.

図において、(1)は反応管、(2)は外管であり。In the figure, (1) is a reaction tube, and (2) is an outer tube.

一端側にエンドキャップ(4)が接続されている。An end cap (4) is connected to one end.

(5)は原料ガスを外管(2)内に導入する導入管。(5) is an introduction pipe for introducing raw material gas into the outer pipe (2).

(6)は外管(2)内に外管(2)と間怠円状に配置さ
れた内管であり、内管(6)のガス流と外管(2)のガ
ス流とは一方の端部で連通している。即ちエンドキャッ
プ(4)部で連通している。(7)は外管(2)と内管
(6)との間に形成される環状空間部に触媒(3)が充
填されて形成された触媒層、(8)は触媒(3)を支持
する受は皿、(9)は内管(6)の他方の端部に接続さ
れ、内管(6)内を流れる反応ガスを反応管(1)外に
導出する導出管であり、これら(2)〜(9)により二
重管構造の反応管(1)が構成されている。
(6) is an inner pipe arranged in an intermittent circle with the outer pipe (2) within the outer pipe (2), and the gas flow in the inner pipe (6) and the gas flow in the outer pipe (2) are on one side. are connected at the ends. That is, they communicate through the end cap (4). (7) is a catalyst layer formed by filling the annular space formed between the outer tube (2) and the inner tube (6) with the catalyst (3), and (8) is the catalyst layer that supports the catalyst (3). The receiver is a dish, and (9) is an outlet pipe connected to the other end of the inner tube (6) to guide the reaction gas flowing inside the inner tube (6) to the outside of the reaction tube (1). 2) to (9) constitute a reaction tube (1) having a double tube structure.

次に動作について説明する。説明の便宜上2例丸ば水蒸
気改質反応装置を例に説明する。原料ガスである炭化水
素とスチームは2例えば450℃程度に予熱された後、
導入管(5)より外管(2)内に導入され、外管(2)
と内管(6)との間に形成された触媒層(7)内の触媒
(3)と接触する。ここで。
Next, the operation will be explained. For convenience of explanation, two examples will be described using a Maruba steam reforming reactor. Hydrocarbons and steam, which are raw material gases, are preheated to about 450°C, for example, and then
Introduced into the outer tube (2) from the introduction tube (5), and the outer tube (2)
contact with the catalyst (3) in the catalyst layer (7) formed between and the inner tube (6). here.

原料ガスは水蒸気改質反応を生じ、 H、CO,CO。The raw material gas undergoes a steam reforming reaction, producing H, CO, and CO.

等の混合ガス(改質ガス)となる。水蒸気改質反応は吸
熱反応であり、この熱量を補償するため。
etc. becomes a mixed gas (reformed gas). The steam reforming reaction is an endothermic reaction, and in order to compensate for this amount of heat.

燃焼ガスによって外管(2)の外部を加熱する。又。The combustion gas heats the outside of the outer tube (2). or.

水蒸気改質反応は高温程水素ガス成分が多くなるため2
通常の水素製造プラントでは、触媒層(7)出口の改質
ガス温度(反応温度)として2例えば800℃程度が採
用されている。燃焼ガスの加熱は。
In the steam reforming reaction, the higher the temperature, the more hydrogen gas components are present.
In a typical hydrogen production plant, the temperature of the reformed gas (reaction temperature) at the outlet of the catalyst layer (7) is set at about 2, for example, 800°C. Heating of combustion gas.

この改質ガス温度の上昇にも使用されている。反応の終
了した高温の改質ガスは、受は皿(8)の複数個の小孔
(図示せず)を通過し、エンドキャップ(4)にて流れ
を反転し、内管(6)を通って高温のまま導出管(9)
から反応管(1)の外に、即ち。
It is also used to increase the temperature of this reformed gas. After the reaction, the high-temperature reformed gas passes through multiple small holes (not shown) in the receiving pan (8), reverses its flow at the end cap (4), and flows through the inner tube (6). The outlet pipe (9) remains at high temperature.
to the outside of the reaction tube (1), i.e.

系外に導出される。Extracted from the system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の反応装置は以上のように構成されており。 A conventional reactor is configured as described above.

内管(6)内の改質ガスと内管(6)の管壁との熱伝達
率を向上させるため、内管(6)を小口径として改質ガ
スの流速を上げろと伝熱面積が少なくなり。
In order to improve the heat transfer coefficient between the reformed gas in the inner tube (6) and the tube wall of the inner tube (6), the inner tube (6) is made with a small diameter to increase the flow rate of the reformed gas and the heat transfer area is increased. Less.

逆に、伝熱面積を大きくすると内管(6)内の改質ガス
の流速が低下し熱伝達率が低下する。従って。
Conversely, when the heat transfer area is increased, the flow rate of the reformed gas in the inner tube (6) decreases, and the heat transfer coefficient decreases. Therefore.

エンドキャップ(4)部での800℃程度の改質ガスが
、高温のまま系外に排出されるという熱的な無駄がある
という問題点があった。
There was a problem in that the reformed gas at a temperature of about 800° C. at the end cap (4) was discharged out of the system while still at a high temperature, resulting in thermal waste.

この発明は上記のような問題点を解消するためになされ
たものであり、熱的な無駄を除去することができる反応
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a reaction apparatus that can eliminate thermal waste.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る反応装置は、内管内にその長手方向に複
数個所定の位置関係で略半円形状又は略半ドーナツ形状
から成る伝熱促進部材を配置したものである。
The reactor according to the present invention has a plurality of approximately semicircular or semi-doughnut shaped heat transfer promoting members arranged in a predetermined positional relationship in the longitudinal direction of the inner tube.

〔作用〕[Effect]

この発明におけろ反応装置は、内管内を通る高温のガス
顕熱を伝熱促進部材によって吸収し、この伝熱促進部材
によって吸収した高温のガス顕熱を内管の管壁を通して
触媒層内のガスに熱伝達する。
In this invention, the reactor absorbs the high-temperature gas sensible heat passing through the inner tube by the heat transfer promoting member, and the high-temperature gas sensible heat absorbed by the heat transfer promoting member passes through the wall of the inner tube and enters the catalyst layer. heat transfer to the gas.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図乃至第3図において、(1)は反応管。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figures to FIG. 3, (1) is a reaction tube.

(2)は外管、(3)は触媒、(4)はエンドキャップ
(2) is the outer tube, (3) is the catalyst, and (4) is the end cap.

(6)は内管てあり、従来のものよりやや大きい]コ径
としている。(7)は触媒層、(8)は受は皿であり、
複数個の小孔(8a)が設けられている。(10)は内
管(6)内にその長手方向に複数個所定の位置関係で配
置され2例えば半ドーナツ形状から成る伝熱促進部材で
あり2図は一例として隣接する伝熱促進部材(10)は
伝熱促進部材(10a l、 (10b l。
(6) has an inner tube with a slightly larger diameter than the conventional one. (7) is a catalyst layer, (8) is a tray,
A plurality of small holes (8a) are provided. Numerals (10) are heat transfer promoting members arranged in a predetermined positional relationship in the longitudinal direction of the inner tube (6), and are, for example, half-doughnut-shaped heat transfer promoting members. ) are heat transfer promoting members (10a l, (10b l).

(10c)にて示すように 180度反転した相対する
位置関係に配置した場合を示している。(11)は伝熱
促進部材(10n L (10b )、 (10c )
にそれぞれ設けられた複数個の小孔である。
As shown in (10c), the case is shown in which they are arranged in opposing positions that are reversed by 180 degrees. (11) is a heat transfer promoting member (10n L (10b), (10c)
A plurality of small holes are provided in each of the holes.

次に動作について説明する。原料ガスである炭化水素と
スチームは2例えば450℃程度に予熱された後、従来
と同様に導入管(5)より外管(2)内に導入され、触
媒層(7)内で触媒(3)と接触し。
Next, the operation will be explained. Hydrocarbons and steam, which are raw material gases, are preheated to, for example, about 450°C, and then introduced into the outer tube (2) through the introduction tube (5) in the same way as in the past, and then heated to the catalyst (3) in the catalyst layer (7). ) in contact with.

水蒸気改質反応を生じろ。反応の終了した高温の改質ガ
スは、受は皿(8)の複数個の小孔(8a)を通過し、
エンドキャップ(4)にて流れを反転し。
Create a steam reforming reaction. The high-temperature reformed gas after the reaction passes through a plurality of small holes (8a) in the receiving pan (8),
Reverse the flow with the end cap (4).

内管(6)を通って導出管(9)から系外に排出される
。高温の改質ガスの顕熱は、内管(6)を通る過程で複
数の伝熱促進部材(10a )、 (10b )、 (
10c )によって吸収され、複数の伝熱促進部材(I
on)。
It passes through the inner pipe (6) and is discharged to the outside of the system from the outlet pipe (9). The sensible heat of the high-temperature reformed gas is transferred to a plurality of heat transfer promoting members (10a), (10b), (
10c) and a plurality of heat transfer promoting members (I
on).

(10b )、 (10c )によって吸収した高温の
改質ガスの顕熱は、内管(6)の管壁を通して触媒層(
7)内を流れる原料ガス若しくは改質ガスに熱伝達され
ろ。このように内管(6)を通る高温の改質ガスの顕熱
を複数の伝熱促進部材(10a )、 (10b )、
  (10C)によって有効に吸収し、複数の伝熱促進
部材(Ion )、 (10b )、 (10c )に
よって有効に吸収した高温の改質ガスの顕熱を内管(6
)の管壁を通して触媒層(7)内を流れる原料ガス若し
くは改質ガスに熱伝達することができ、触媒層(7)内
における原料ガスと触媒(3)との水蒸気改質反応の反
応効率を向上させることができろ。
The sensible heat of the high temperature reformed gas absorbed by (10b) and (10c) passes through the wall of the inner tube (6) to the catalyst layer (
7) Heat is transferred to the raw material gas or reformed gas flowing inside. In this way, the sensible heat of the high temperature reformed gas passing through the inner pipe (6) is transferred to the plurality of heat transfer promoting members (10a), (10b),
The sensible heat of the high-temperature reformed gas is effectively absorbed by the inner tube (6
) can transfer heat to the raw material gas or reformed gas flowing in the catalyst layer (7) through the tube wall of the catalyst layer (7), which increases the reaction efficiency of the steam reforming reaction between the raw material gas and the catalyst (3) in the catalyst layer (7). Be able to improve.

又、第2図に示すように、複数の伝熱促進部材(10a
 )、 (10b )、 (10c )に設けた複数個
の小孔(11)からの吹き出しガス流れによる境界層剥
離効果。
Moreover, as shown in FIG. 2, a plurality of heat transfer promoting members (10a
), (10b), (10c) Boundary layer separation effect due to gas flow blown out from a plurality of small holes (11) provided in (10c).

あるいは伝熱促進部材(10a )、 (10b )、
 (10c lの内方向側を経由したガス流れの内管(
6)の内壁へのガス流れの再付着による境界層の破壊効
果等により、さらに伝熱促進効果が得られる。
Or heat transfer promoting members (10a), (10b),
(Inner tube for gas flow via the inward side of 10cl (
6) A further heat transfer promoting effect can be obtained due to the effect of destroying the boundary layer due to the reattachment of the gas flow to the inner wall.

又、伝熱促進部材の開孔率(伝熱促進部材中の小孔の全
面8!/伝熱促進部材の面積)を5〜60%にすること
により、適切な条件で有効な効果を得ることができる。
In addition, by setting the porosity of the heat transfer promoting member (total area of the small holes in the heat transfer promoting member 8!/area of the heat transfer promoting member) to 5 to 60%, an effective effect can be obtained under appropriate conditions. be able to.

尚、上記実施例では伝熱促進部材が半ドーナツ形状の場
合について述べてが、第4図に示すように略半ドーナツ
形状の伝熱促進部材としてもよく。
In the above embodiment, the heat transfer promoting member has a semi-doughnut shape, but as shown in FIG. 4, the heat transfer promoting member may have a substantially semi-doughnut shape.

又、第5図に示すように略半円形状の伝熱促進部材とし
てもよく、その他これら形状に類似した形状も含むもの
であり、上記実施例と同様の効果を奏する。
Further, as shown in FIG. 5, the heat transfer promoting member may have a substantially semicircular shape, and other shapes similar to these shapes may also be used, and the same effects as in the above embodiment can be achieved.

又、上記実施例では互いに隣接する伝熱促進部材が18
0度反転した相対する位置関係に配置した場合について
述べたが、互いに隣接する伝熱促進部材が45度あるい
は90度等少しずつ角度を相互にずらして螺旋状とした
位置関係に配置するようにしてもよく、上記実施例と同
様の効果が期待てきる。
Further, in the above embodiment, there are 18 heat transfer promoting members adjacent to each other.
Although we have described the case where they are placed in a positional relationship that is opposite to each other with 0 degrees reversed, it is also possible to arrange the heat transfer promoting members adjacent to each other in a spiral positional relationship by gradually shifting the angles of each other such as 45 degrees or 90 degrees. The same effect as the above embodiment can be expected.

又、上記実施例では伝熱促進部材の外周全面が内管の内
壁面に接触する場合について述べたが。
Furthermore, in the above embodiments, the entire outer periphery of the heat transfer promoting member is in contact with the inner wall surface of the inner tube.

伝熱促進部材の外周部に凹凸、即ち2いわゆる歯車形状
とし、伝熱促進部材の外周面と内管の内壁面の接触は熱
伝達効率に支障のない程度とし、伝熱促進部材の外周面
と内管の内壁面との間に空間部を設け、この空間部から
のガスの吹き出し流れを利用することも可能である。
The outer periphery of the heat transfer promoting member is made uneven, that is, in the shape of a so-called gear, and the contact between the outer periphery of the heat transfer promoting member and the inner wall surface of the inner tube is to a degree that does not impede heat transfer efficiency. It is also possible to provide a space between the inner tube and the inner wall surface of the inner tube and utilize the flow of gas blown out from this space.

尚、上記実施例では伝熱促進部材に複数個の小孔を設け
た場合について述べたが、伝熱促進部材に複数個の小孔
を設けなくとも所期の目的は達成ずろことができろ。
In the above embodiment, a case was described in which a plurality of small holes were provided in the heat transfer promoting member, but the intended purpose could be achieved even without providing a plurality of small holes in the heat transfer promoting member. .

ところで、上記説明では水蒸気改質反応装置の場合につ
いて述へたが、これに限らず他の反応装置にも適用し得
ることができ、上記実施例と同様の効果を奏する。
Incidentally, in the above explanation, the case of a steam reforming reaction apparatus has been described, but the present invention is not limited to this and can be applied to other reaction apparatuses, and the same effects as those of the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、内管内にその長手方向に
複数個所定の位置関係で略半円形状又は略半ドーナツ形
状から成る伝熱促進部材を配置し。
As explained above, in this invention, a plurality of heat transfer promoting members each having a substantially semicircular shape or a substantially semi-doughnut shape are arranged in a predetermined positional relationship in the longitudinal direction within the inner tube.

内管内を通る高温のガス顕熱を伝熱促進部材によって吸
収し、この伝熱促進部材によって吸収した高温のガス顕
熱を内管の管壁を通して触媒層内のガスに熱伝達するよ
うにしたので、高温のガス顕熱を有効に利用して触媒層
内の反応効率を向上させることができ、熱的な無駄を除
去できろ効果がある。
The sensible heat of the high temperature gas passing through the inner tube is absorbed by the heat transfer promoting member, and the sensible heat of the high temperature gas absorbed by the heat transfer promoting member is transferred to the gas in the catalyst layer through the wall of the inner tube. Therefore, the reaction efficiency within the catalyst layer can be improved by effectively utilizing the sensible heat of the high-temperature gas, which has the effect of eliminating thermal waste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による反応装置を示す要部
縦断面図、第2図はこの発明に係る伝熱促進部材の配置
状態を示す要部縦断面図、第3図はこの発明に係る伝熱
促進部材の形状を示す要部横断面図、第4図、第5図は
この発明に係る伝熱促進部材のそれぞれ他の実施例を示
す要部横断面図、第6図1よ従来の反応装置を示す縦断
面図である。 図において、(1)は反応管、(2)は外管、(3)は
触媒、(6)は内管、(7)は触媒層、 (io)は伝
熱促進部材である。 尚2図中同一行号は同−又(よ相当部分を示す。
FIG. 1 is a vertical cross-sectional view of a main part showing a reaction apparatus according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a main part showing the arrangement of a heat transfer promoting member according to the present invention, and FIG. FIGS. 4 and 5 are cross-sectional views of main parts showing the shape of the heat transfer promoting member according to the present invention, and FIG. 6 is a cross-sectional view of main parts showing other embodiments of the heat transfer promoting member according to the present invention. FIG. 2 is a vertical cross-sectional view showing a conventional reaction apparatus. In the figure, (1) is a reaction tube, (2) is an outer tube, (3) is a catalyst, (6) is an inner tube, (7) is a catalyst layer, and (io) is a heat transfer promoting member. Note that the same line numbers in the two figures indicate corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)外管と内管とから成る二重管構造を有し、上記外
管と内管との間に形成される環状空間部に触媒が充填さ
れた触媒層を有し、上記外管のガス流と内管のガス流と
は一方の端部で連通している反応管を備えた反応装置に
おいて、上記内管内にその長手方向に複数個所定の位置
関係で配置され、略半円形状又は略半ドーナツ形状から
成る伝熱促進部材備えたことを特徴とする反応装置。
(1) It has a double tube structure consisting of an outer tube and an inner tube, and has a catalyst layer filled with a catalyst in an annular space formed between the outer tube and the inner tube, and the outer tube has a catalyst layer filled with a catalyst. In a reaction apparatus equipped with a reaction tube communicating at one end, a plurality of gas flows are arranged in a predetermined positional relationship in the longitudinal direction within the inner tube, and the gas flow in the inner tube is approximately semicircular. A reaction device comprising a heat transfer promoting member having a shape or a substantially semi-doughnut shape.
(2)伝熱促進部材は複数個の小孔が設けられているこ
とを特徴とする特許請求の範囲第1項記載の反応装置。
(2) The reaction device according to claim 1, wherein the heat transfer promoting member is provided with a plurality of small holes.
(3)伝熱促進部材の位置関係は隣接する伝熱促進部材
が180度反転した相対する位置関係であることを特徴
とする特許請求の範囲第1項又は第2項記載の反応装置
(3) The reaction device according to claim 1 or 2, wherein the heat transfer promoting members are positioned in such a manner that adjacent heat transfer promoting members are reversed by 180 degrees.
(4)伝熱促進部材は長手方向に螺旋状に配置されたこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
反応装置。
(4) The reaction device according to claim 1 or 2, wherein the heat transfer promoting member is arranged spirally in the longitudinal direction.
(5)伝熱促進部材の開孔率は5〜60%であることを
特徴とする特許請求の範囲第2項記載の反応装置。
(5) The reaction device according to claim 2, wherein the heat transfer promoting member has a porosity of 5 to 60%.
JP16651685A 1985-07-26 1985-07-26 Reaction device Granted JPS6227033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16651685A JPS6227033A (en) 1985-07-26 1985-07-26 Reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16651685A JPS6227033A (en) 1985-07-26 1985-07-26 Reaction device

Publications (2)

Publication Number Publication Date
JPS6227033A true JPS6227033A (en) 1987-02-05
JPH0252538B2 JPH0252538B2 (en) 1990-11-13

Family

ID=15832766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16651685A Granted JPS6227033A (en) 1985-07-26 1985-07-26 Reaction device

Country Status (1)

Country Link
JP (1) JPS6227033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151835U (en) * 1988-03-29 1989-10-19
JPH02160035A (en) * 1988-12-13 1990-06-20 Toyo Eng Corp Catalyst reaction apparatus
US5032365A (en) * 1988-06-14 1991-07-16 Mitsubishi Denki Kabushiki Kaisha Reaction apparatus
JP2005089209A (en) * 2003-09-12 2005-04-07 Nippon Oil Corp Reforming equipment, and fuel cell system
JP2013227161A (en) * 2012-04-24 2013-11-07 Miura Co Ltd Multiple pipe type reformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747610A (en) * 1980-09-04 1982-03-18 Nat Jutaku Kenzai Method of forming chimney
JPS5884035A (en) * 1981-11-13 1983-05-20 ウエスチングハウス エレクトリック コ−ポレ−ション Catalytic gas modifying device
JPS59193825U (en) * 1983-06-07 1984-12-22 三菱電機株式会社 Reforming reaction tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747610A (en) * 1980-09-04 1982-03-18 Nat Jutaku Kenzai Method of forming chimney
JPS5884035A (en) * 1981-11-13 1983-05-20 ウエスチングハウス エレクトリック コ−ポレ−ション Catalytic gas modifying device
JPS59193825U (en) * 1983-06-07 1984-12-22 三菱電機株式会社 Reforming reaction tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151835U (en) * 1988-03-29 1989-10-19
US5032365A (en) * 1988-06-14 1991-07-16 Mitsubishi Denki Kabushiki Kaisha Reaction apparatus
JPH02160035A (en) * 1988-12-13 1990-06-20 Toyo Eng Corp Catalyst reaction apparatus
JP2005089209A (en) * 2003-09-12 2005-04-07 Nippon Oil Corp Reforming equipment, and fuel cell system
JP2013227161A (en) * 2012-04-24 2013-11-07 Miura Co Ltd Multiple pipe type reformer

Also Published As

Publication number Publication date
JPH0252538B2 (en) 1990-11-13

Similar Documents

Publication Publication Date Title
US4932981A (en) Apparatus for the production of gas
RU2218301C2 (en) Method and device for production of synthesis gas
JP2004269345A (en) Method and apparatus for producing synthesis gas
JPS6227033A (en) Reaction device
JP2787773B2 (en) Apparatus and method suitable for producing hydrogen
JPH04215835A (en) Fixed bed reactor
US3595628A (en) Apparatus for reforming hydrocarbons
RU2372277C1 (en) Method of producing hydrogen and device to this end
JP3432298B2 (en) Fuel reformer
JPS62186935A (en) Reactor
JPH0530498B2 (en)
JPH0360401A (en) Methanol reforming reactor
JPS63126539A (en) Fuel reformer
JPS62186933A (en) Reactor
JPH0124534B2 (en)
KR101841188B1 (en) Fuel Processor for PEMFC with excellent reaction efficiency
JP2733307B2 (en) Apparatus and method for producing reformed gas
JPH0240602B2 (en)
JPH0124533B2 (en)
JPS6227034A (en) Reaction device
JPH02160035A (en) Catalyst reaction apparatus
CN202447060U (en) Multi-tube oxidation reactor
JPS5916536A (en) Catalytic reactor
JPS59102804A (en) Device for modifying fuel
DK169060B1 (en) Reactor for steam reforming of hydrocarbons with heat exchange