JPH02160035A - Catalyst reaction apparatus - Google Patents

Catalyst reaction apparatus

Info

Publication number
JPH02160035A
JPH02160035A JP63314526A JP31452688A JPH02160035A JP H02160035 A JPH02160035 A JP H02160035A JP 63314526 A JP63314526 A JP 63314526A JP 31452688 A JP31452688 A JP 31452688A JP H02160035 A JPH02160035 A JP H02160035A
Authority
JP
Japan
Prior art keywords
tube
cylindrical pipe
space
outlet
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63314526A
Other languages
Japanese (ja)
Other versions
JP2601707B2 (en
Inventor
Akio Naito
内藤 秋夫
Kazumi Shima
一己 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP63314526A priority Critical patent/JP2601707B2/en
Priority to DE3940700A priority patent/DE3940700A1/en
Priority to GB8928037A priority patent/GB2226775B/en
Publication of JPH02160035A publication Critical patent/JPH02160035A/en
Application granted granted Critical
Publication of JP2601707B2 publication Critical patent/JP2601707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To improve heat exchange efficiency and to suppress the pressure drop of a reaction fluid side and/or combustion gas side as far as possible so as to reduce required driving power for press feeding by providing a heat recovering means which projects from the inside surface on the inside surface of an inner cylindrical pipe. CONSTITUTION:The other end of the outer cylindrical pipe 9 of the concentrical double cylindrical pipe-shaped reaction apparatus 1 having an inlet 5 and outlet 23 for reaction fluid on the same one end is closed and the other end side, except a part of one end side is projected into a heating chamber. The reaction fluid is passed from the inlet 5 through the annular space which is delineated and formed of the outer cylindrical pipe 9 and the inner cylindrical pipe 11 and is packed with a catalyst; thereafter, the fluid is turned over at the other end and is then passed through the inside space of the inner cylindrical pipe 11 so as to be introduced to the outlet 23. The gas which is a heating source is passed on the outside of the outer cylindrical pipe 9 from the other end side to the one end side. Further, the heat recovering means 19 which projects from the inside surface is provided on the inside surface of the inner cylindrical pipe 11. The heat recovering efficiency is improved with this apparatus by using this apparatus for the endothermic reaction, such as steam reforming reaction of hydrocarbon.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、触媒反応装置に関するものである。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD This invention relates to a catalytic reaction device.

さらに詳しくは、炭化水素の水蒸気改質反応等の如き吸
熱反応に使用するために適する熱回収効率の高いないし
消費エネルギーの低い装置に関する。
More specifically, the present invention relates to an apparatus with high heat recovery efficiency and low energy consumption suitable for use in endothermic reactions such as hydrocarbon steam reforming reactions.

[従来の技術] 水素発生装置の水蒸気改質等の為の装置にあって、内部
に触媒を有し、外部から熱の供給を受けつつ高温で反応
を行わせしめる反応装置においては、熱交換を効率よく
行い、かつ設備の小形化を実現するために同心状の二重
管を反応管として採用し、内外の管壁で区画される環状
空間に触媒が充填され、内側管の内部に高温の反応済み
ガスを通過せしめる方式が提案されている。これは、二
重管を採用することにより、高温度域にある触媒層を通
過した反応済みガスが内側管内を通過しつつ反応済みガ
スの顕熱を、内側管壁を通して触媒層に与えることにな
り、また水蒸気改質装置出口の反応済みガス温度が低下
していることによりこの下流に設置される熱交換器群な
どで構成される熱回収設備容量の縮小化が可能となると
ともに、出口ガス温度が低いので熱放散量が小さくなる
ことによる。
[Prior Art] In a reaction device for steam reforming, etc. of a hydrogen generator, which has a catalyst inside and allows a reaction to occur at high temperature while receiving heat from the outside, heat exchange is used. In order to achieve efficient reaction and downsizing the equipment, a concentric double tube is used as the reaction tube.The annular space divided by the inner and outer tube walls is filled with catalyst, and the inside of the inner tube is heated to a high temperature. A method has been proposed in which the reacted gas is allowed to pass through. By adopting a double tube, the reacted gas that has passed through the catalyst layer in the high temperature range passes through the inner tube, and the sensible heat of the reacted gas is transferred to the catalyst layer through the inner tube wall. In addition, since the temperature of the reacted gas at the outlet of the steam reformer has decreased, it is possible to reduce the capacity of the heat recovery equipment, which consists of a group of heat exchangers installed downstream, and This is because the amount of heat dissipated is small because the temperature is low.

このような二重管状の反応装置の熱利用効率を更に向上
させた反応装置として、例えば特開昭59−16536
では二重管の内側管内部に輻射面体を挿入し、触媒層出
口で反転して内側管内を上昇してくる反応済みガスを輻
射面体のある内側管内空間を通過させることにより、反
応済みガスの持つ顕熱を対流熱伝達だけでなく、対流熱
伝達で加熱された輻射面体からの輻射伝達にもより内側
管壁を通して触媒層に与える。
As a reactor in which the heat utilization efficiency of such a double-tubular reactor is further improved, for example, Japanese Patent Application Laid-Open No. 59-16536
In this case, a radiant face body is inserted inside the inner tube of the double tube, and the reacted gas that reverses at the outlet of the catalyst layer and rises inside the inner tube passes through the space inside the inner tube where the radiant face body is located. Sensible heat is transferred to the catalyst layer through the inner tube wall not only by convective heat transfer but also by radiation transfer from the radiant surface heated by convective heat transfer.

[従来技術の問題点] 上記したような輻射面体を利用する装置にあっては、必
ずしも十分な熱の交換が期待できない場合がある。
[Problems with the Prior Art] In devices that utilize a radiant surface as described above, sufficient heat exchange may not always be expected.

また、加熱側についてみれば、反応装置を代表的加熱槽
である加熱炉内に設置する上で、加熱炉内は主として高
温の燃焼ガスの輻射による伝熱がおこなわれていた。こ
の伝熱後ガスからの輻射熱による伝熱を期待するには十
分ではない温度まで低下した燃焼排ガスは加熱炉の燃焼
排ガス通路に導かれた上で、例えば折り曲げられた管の
束からなる熱交換器をその通路内に設けることにより、
保有する顕熱を回収していた。この場合、例えば、原料
ガスを該熱交換器を通過せしめて予熱して、その後に反
応装置に送ることが考えられるが、設備する配管が複雑
になることは避けられない。また、いまだ高温のガスを
炉外に導くことは、熱放散の程度を高め、装置全体の効
率を著しく低下せしめることになる。
Regarding the heating side, when the reaction apparatus is installed in a heating furnace, which is a typical heating tank, heat transfer within the heating furnace is mainly performed by radiation of high-temperature combustion gas. After this heat transfer, the combustion exhaust gas, whose temperature has dropped to a temperature not high enough to expect heat transfer from the gas by radiant heat, is led to the combustion exhaust gas passage of the heating furnace, and is then exchanged with a heat exchanger using, for example, a bundle of bent tubes. By installing a container in the passage,
It was collecting the sensible heat it possessed. In this case, for example, it is conceivable to pass the raw material gas through the heat exchanger to preheat it and then send it to the reactor, but this inevitably makes the piping to be installed complicated. Furthermore, guiding the still hot gas out of the furnace increases the degree of heat dissipation and significantly reduces the efficiency of the entire apparatus.

この発明は、前記の問題点を回避して、より簡単な構成
で熱交換の効率を改善せしめ、なおかつ反応流体側およ
び/まなは燃焼ガス側の圧力損失を可能なかぎり低く押
え所要圧送動力を低減するための手段を提供することを
目的とする。
The present invention avoids the above-mentioned problems, improves the efficiency of heat exchange with a simpler configuration, and further reduces the pressure loss on the reaction fluid side and/or the combustion gas side as much as possible, thereby reducing the required pumping power. The purpose is to provide a means to reduce

[課題を解決するための手段] 本発明では反応済みガスおよび/または燃焼排ガスの顕
熱を有効的に回収するための熱回収手段として、該当す
る伝熱壁に冶金的に一体的に接合して構成され、この壁
から突出するフィンや突起等の対流伝熱を増強する熱回
収手段を用いて熱回収をはかる。
[Means for Solving the Problems] In the present invention, as a heat recovery means for effectively recovering the sensible heat of the reacted gas and/or the combustion exhaust gas, the heat transfer wall is integrally joined to the corresponding heat transfer wall. The heat recovery system is constructed using heat recovery means that enhances convective heat transfer, such as fins and protrusions that protrude from the walls.

即ち本発明は: [反応流体の入口と出口を同じ一端に有する同心二重円
筒管状反応装置であり、外側円筒管の他端は閑じられて
おり、二重管は一端側の一部以外の他端側か加熱槽内に
突出しており、反応流体は前記入口から外側円筒管と内
側円筒管とにより区画形成され触媒が充填された環状空
間を通過させられた後に他端で反転させられ、次いで該
内側円筒管の内部空間を通過させられて出口へ導かれ、
加熱源となるガスが外側円筒管の外側を他端側から一端
側へ流通させられる構造であり、該内側円筒管の内面に
内面から突出する熱回収手段を設けること」 を特徴と
する反応装置である。
That is, the present invention is: [a concentric double cylindrical tubular reactor having an inlet and an outlet for a reaction fluid at the same end, the other end of the outer cylindrical tube is open, and the double tube has a portion other than a part of the one end. The other end protrudes into the heating tank, and the reaction fluid is passed from the inlet through an annular space defined by an outer cylindrical pipe and an inner cylindrical pipe and filled with a catalyst, and then reversed at the other end. , then passed through the interior space of the inner cylindrical tube and guided to the outlet;
A reaction device characterized by: having a structure in which gas serving as a heating source is allowed to flow through the outside of the outer cylindrical tube from the other end to the one end, and a heat recovery means protruding from the inner surface is provided on the inner surface of the inner cylindrical tube. It is.

[図面に・よる説明] 以下、図面を用いて、この発明の実例を詳細に説明する
[Description based on the drawings] Examples of the present invention will be described in detail below using the drawings.

第1図はこの発明の反応装置を加熱炉内に設置した状態
を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the reaction apparatus of the present invention installed in a heating furnace.

触媒反応装置1は炉の上壁(天井)3に固定されている
。この例では、適当な触媒の存在のもとに、水蒸気改質
反応が可能な炭化水素類と蒸気が原料とされて混合され
た状態で供給され、加熱炉から熱の供給を受けつつ触媒
層を通過することにより主として水素と二酸化炭素へ転
化される。
The catalytic reaction device 1 is fixed to the upper wall (ceiling) 3 of the furnace. In this example, in the presence of an appropriate catalyst, hydrocarbons capable of steam reforming reaction and steam are supplied as raw materials in a mixed state, and the catalyst layer is heated while receiving heat from the heating furnace. is mainly converted into hydrogen and carbon dioxide.

原料ガス混合物は入口5から上部キャップの内部空間7
を経て、外側円筒管つと内側円筒管11とにより区画さ
れる環状空間13に供給される。
The raw gas mixture flows from the inlet 5 to the internal space 7 of the upper cap.
The liquid is then supplied to an annular space 13 defined by an outer cylindrical tube and an inner cylindrical tube 11.

この環状空間には改質触媒15が充填されており、(図
上では上下部以外の中間部略記)この触媒層の上方部分
は原料ガスの予熱用として主に機能し、それより下の部
分は反応用として機能している。
This annular space is filled with a reforming catalyst 15 (the middle part other than the upper and lower parts is omitted in the diagram).The upper part of this catalyst layer mainly functions for preheating the raw material gas, and the lower part functions as a reaction.

原料ガスはこの触媒層を通過して改質された後、反応管
の底部17に至り、ここで反応済みガスとして反転され
て内側円筒管内部を上方に向かって流通する。前述の予
熱用として機能する部分に対応して、内側円筒管の内部
表面に管壁に冶金的に一体的に接合された流路に平行な
板状のフィン19が設置される。熱伝導度の良い金属製
の板状フィンを冶金的に一体的に接合させるためには、
溶接やろうづけが適している。冶金的一体的接合は勿論
単なる接触による接合に比し伝熱が優れるから採用され
る。圧力損失を極力小としてフィンの伝熱面積を拡大す
る為には、例えばステンレス鋼製の薄い板を波状に折り
曲げ内管内面にろうづけや溶接で一体的に接合させると
共にフィンと同質であってもよい補助円筒(du−■y
 5hell)21をろうづけで与えたプレートフィン
による方法が採用できる。この場合には、板が薄いので
、真空ろうづけの方法が適する。圧力損失少なく熱交換
の効率を向上させる目的をもつ本発明には、薄い波状の
フィンを有するかかるプレートフィンによる方法が適す
る。
After passing through this catalyst layer and being reformed, the raw material gas reaches the bottom 17 of the reaction tube, where it is turned over as a reacted gas and flows upward inside the inner cylindrical tube. A plate-shaped fin 19 parallel to the flow path is installed on the inner surface of the inner cylindrical tube, metallurgically joined to the tube wall and parallel to the flow path, corresponding to the portion functioning as the preheating unit described above. In order to metallurgically join metal plate-shaped fins with good thermal conductivity,
Welding and brazing are suitable. Metallurgical integral bonding is of course adopted because it has superior heat transfer compared to bonding by mere contact. In order to minimize pressure loss and expand the heat transfer area of the fins, for example, a thin plate made of stainless steel is bent into a wave shape and integrally joined to the inner surface of the inner tube by brazing or welding, and it is also made of the same material as the fins. Moyoi auxiliary cylinder (du-■y
5hell) 21 by brazing can be adopted. In this case, since the plate is thin, vacuum brazing is suitable. The method using such plate fins having thin wavy fins is suitable for the present invention, which aims to reduce pressure loss and improve heat exchange efficiency.

補助円筒21のいずれか一端、好ましくは上端は閏じち
れて反応済みガスをプレートフィン中だけに流通させる
One end, preferably the upper end, of the auxiliary cylinder 21 is beveled to allow the reacted gas to flow only through the plate fins.

反応済みガスは該予熱用部位にて、前述のプレトフィン
を介し内側円筒管壁を通して、その外側の触媒床中を下
向きに流入してくる原料ガスにその顕熱を供給し、自ら
の温度は低下して、反応装置の出口23より排出される
At the preheating site, the reacted gas supplies its sensible heat to the raw material gas flowing downward into the outer catalyst bed through the inner cylindrical tube wall via the aforementioned pretofin, and its own temperature decreases. Then, it is discharged from the outlet 23 of the reactor.

排出された反応済みガスは、例えば、燃料電池の水素極
などの所望の用途に使用される為に、次工程に送られ、
使用目的に応じて通常−酸化炭素変成器や圧力スイング
吸着装置などにより水素の純度を高められる。なお、2
5は触媒を反応装置内部に充填するための開口部である
The discharged reacted gas is sent to the next process to be used for a desired purpose, such as a hydrogen electrode in a fuel cell, for example.
Depending on the purpose of use, the purity of hydrogen can be increased using a normal carbon oxide shift converter or a pressure swing adsorption device. In addition, 2
5 is an opening for filling the inside of the reactor with a catalyst.

第1図の例では燃焼ガスの輻射熱を有効的に利用するな
めに、反応管の長手方向の概ね半分のあたりに通気性の
セラミック材料壁27を管を包囲し炉内空間を上下に仕
切るように配置している。
In the example shown in Fig. 1, in order to effectively utilize the radiant heat of the combustion gas, an air-permeable ceramic wall 27 is placed around the longitudinal half of the reaction tube to partition the furnace space into upper and lower sections. It is located in

29は外側管に与えられたセラミック板用の支えである
29 is a support for the ceramic plate provided on the outer tube.

それより下の部分即ち輻射伝熱空間にあっては、反応管
への伝熱は主として燃焼ガスからの輻射熱により行われ
る。この為、この部分にあってはプレートフィンを配置
するのは得策ではない、輻射伝熱の後、燃焼ガスはこの
通気性セラミックを通過してその顕熱をこれに与え、そ
の結果熱はセラミックからの輻射で下側に戻され、最終
的に通気性壁から下に突出した反応管の加熱に寄与する
In the lower part, that is, the radiant heat transfer space, heat transfer to the reaction tube is mainly performed by radiant heat from the combustion gas. For this reason, it is not advisable to place plate fins in this area; after radiant heat transfer, the combustion gases pass through this breathable ceramic and impart their sensible heat to it, so that the heat is transferred to the ceramic The radiation is returned to the bottom side and ultimately contributes to the heating of the reaction tube that protrudes downward from the vented wall.

なお通気性壁の材料は、耐熱性で通気性であり、上記の
如く熱を輻射伝熱空間に圧力損失少なく効果的に戻し得
る材料は全て用い得る。従って例えばセラミックの他少
なくとも部分的に金属材料であってもよい。
Note that the material for the breathable wall may be any material that is heat resistant and breathable, and that can effectively return heat to the radiation heat transfer space with little pressure loss as described above. Therefore, for example, in addition to ceramic, it may also be at least partially made of a metal material.

通気性壁通過後の燃焼ガスは輻射による伝熱を行わせし
めるには不十分な程度に温度が低下しているが、未だ十
分な顕熱を有しているので、このガスの熱を原料ガスの
予熱に有効利用する為に、対流伝熱による熱回収手段、
即ち前述と同様の代表的には、プレートフィン31であ
る伝熱体を反応管の外側表面に冶金的に一体的に接合し
て設ける。なおプレートフィン31の外周管は、伝熱に
寄与させる必要がないから単なる巻締めで与えてよい。
The temperature of the combustion gas after passing through the permeable wall has fallen to an insufficient degree for heat transfer by radiation, but it still has sufficient sensible heat, so the heat of this gas is transferred to the raw material gas. In order to effectively use it for preheating, heat recovery means using convection heat transfer,
That is, as described above, typically, a heat transfer body, which is a plate fin 31, is integrally joined metallurgically to the outer surface of the reaction tube. Note that the outer circumferential tube of the plate fin 31 does not need to contribute to heat transfer, so it may be provided by simply seaming.

通気性材料の上側となる加熱槽の部分を輻射伝熱空間に
対して対流伝熱空間と称する。
The part of the heating tank above the breathable material is called the convection heat transfer space, as opposed to the radiation heat transfer space.

両伝熱空間の上下方向厚さの比は、加熱源ガスの主に温
度により調節される。
The ratio of the vertical thicknesses of both heat transfer spaces is adjusted mainly by the temperature of the heating source gas.

加熱源ガスは、加熱槽の輻射伝熱空間を燃焼炉とする一
般的な場合のほか、加熱槽外で燃焼の利用によってもよ
い熱源で加熱されたガスを輻射伝熱空間に導入し通気性
壁経由対流伝熱空間へ流通させることもできる。
The heating source gas can be used in the general case where the radiant heat transfer space of the heating tank is used as a combustion furnace, or by using combustion outside the heating tank. Gas heated by a heat source may be introduced into the radiant heat transfer space and air permeable. It can also be made to flow through a convection heat transfer space through a wall.

33は燃焼排ガス出口である。なお、35は断熱材、3
7は支持用の型鋼、3つは二重管内仕切筒、41は炉の
下壁(床)である。
33 is a combustion exhaust gas outlet. In addition, 35 is a heat insulating material, 3
Reference numeral 7 indicates a steel mold for support, 3 indicates a double pipe inner partition tube, and 41 indicates a lower wall (floor) of the furnace.

仕切筒39は、環状空間内に充填された触媒を内側管内
に入らせない為のもので、この例では外側管底部17に
固定され内側管と同心に、その内面又は外面と軸方向の
相互移動可能に接する。仕切筒には内側管下端と外側管
底の間に多数の孔が与えられ、反応済みガスを環状空間
から内側管内に通過させる。仕切筒を外側管に固定した
ので内/外側管の熱膨張差等による相互変位を容易に吸
収できる。
The partition tube 39 is for preventing the catalyst filled in the annular space from entering the inner tube. In this example, the partition tube 39 is fixed to the outer tube bottom 17, and is concentric with the inner tube and axially mutually connected to the inner or outer surface of the inner tube. Border movable. The partition tube is provided with a number of holes between the lower end of the inner tube and the bottom of the outer tube to allow the reacted gas to pass from the annular space into the inner tube. Since the partition tube is fixed to the outer tube, mutual displacement due to differences in thermal expansion between the inner and outer tubes can be easily absorbed.

第1図のように反応管の内側円筒管の内面および外側円
筒管の外面の両方にプレートフィンを配置することによ
り、それぞれ反応済みガスおよび燃焼ガスの持つ顕熱を
有効に回収して利用することができる。この発明では前
記のように、反応管の内側円筒管の内面および外側円筒
管の外面の両方にプレートフィンを配置しているが、熱
計算上の有利性および構造上の可能性を考慮の上、必要
に応じて反応管の内側円筒管の内外面および/または外
側円筒管の内外面の一部又は全てに設けることもできる
By arranging plate fins on both the inner surface of the inner cylindrical tube and the outer surface of the outer cylindrical tube of the reaction tube as shown in Figure 1, the sensible heat of the reacted gas and combustion gas can be effectively recovered and used. be able to. In this invention, as described above, plate fins are arranged on both the inner surface of the inner cylindrical tube and the outer surface of the outer cylindrical tube of the reaction tube, but in consideration of thermal calculation advantages and structural possibilities. , if necessary, may be provided on part or all of the inner and outer surfaces of the inner cylindrical tube and/or the outer cylindrical tube of the reaction tube.

[効果] 以上に詳述した本発明によれば、加熱槽内に設けられた
触媒反応装置にあって、熱回収手段、特に伝熱面積を増
大するのに有効な波状プレートフィン熱交換器等の伝熱
手段を該触媒反応装置円筒二重管の内管および/または
外管の必要部に設けたので、反応済みガスおよび燃焼ガ
スの持つ顕熱を原料ガスの予熱に充分供することができ
るので、熱回収効率が改善され、ひいては加熱炉全体の
熱交換効率が向上し、反応装置を小型化することができ
る。さらに、反応流体および/または燃焼ガス側の圧力
損失も少ないので、反応流体側および/または燃焼ガス
側の所要圧送動力を低減することができる。
[Effects] According to the present invention described in detail above, in the catalytic reaction device provided in the heating tank, heat recovery means, particularly a corrugated plate fin heat exchanger etc. effective for increasing the heat transfer area, etc. Since the heat transfer means is provided in necessary parts of the inner tube and/or outer tube of the cylindrical double tube of the catalytic reaction device, the sensible heat of the reacted gas and the combustion gas can be sufficiently used for preheating the raw material gas. Therefore, the heat recovery efficiency is improved, and the heat exchange efficiency of the entire heating furnace is improved, and the reactor can be downsized. Furthermore, since the pressure loss on the reaction fluid and/or combustion gas side is also small, the required pumping power on the reaction fluid side and/or the combustion gas side can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的1例を説明する縦断面略図であ
る。 11 内側円筒管、 ・5 原料ガス入口、9 外側円
筒管、15 改質触媒、 1つ フィン、  23 反応ガス出口、27 通気性
セラミック材料 2ぐ
FIG. 1 is a schematic vertical cross-sectional view illustrating a specific example of the present invention. 11 Inner cylindrical pipe, 5 Raw material gas inlet, 9 Outer cylindrical pipe, 15 Reforming catalyst, 1 fin, 23 Reaction gas outlet, 27 Breathable ceramic material 2

Claims (1)

【特許請求の範囲】 1)反応流体の入口と出口を同じ一端に有する同心二重
円筒管状反応装置であり、外側円筒管の他端は閉じられ
ており、二重管は一端側の一部以外の他端側が加熱槽内
に突出しており、反応流体は前記入口から外側円筒管と
内側円筒管とにより区画形成され触媒が充填された環状
空間を通過させられた後に他端で反転させられ、次いで
該内側円筒管の内部空間を通過させられて出口へ導かれ
、加熱源となるガスが外側円筒管の外側を他端側から一
端側へ流通させられる構造であり、該内側円筒管の内面
に内面から突出する熱回収手段を設けることを特徴とす
る触媒反応装置。 2)加熱槽からの加熱源ガスの出口が、二重管の該一端
付近の外側管外壁と二重管を突出させる部分の加熱槽壁
即ち一端側壁との間の二重管と同心の環状空間である請
求項1の装置。 3)外側円筒管の外面から突出する熱回収手段を設けた
請求項1または2の装置。 4)熱回収手段が前記加熱源ガスの出口に対応する部位
に設けられた請求項1ないし2いずれかの装置。 5)熱回収手段が前記加熱源ガスの出口に対応する部位
に設けられた請求項3の装置。 6)熱回収手段が円筒管の軸方向に平行な流路を与える
プレートフィンである請求項1ないし5いずれかの装置
。 7)二重管の他端を一端側壁側とは反対側に突出させる
通気性壁により、加熱槽内の空間を二重管の他端側の輻
射伝熱空間と一端側壁側の対流伝熱空間とに分ける請求
項1ないし6いずれかの装置。
[Claims] 1) A concentric double cylindrical tubular reactor having an inlet and an outlet for the reaction fluid at the same end, the other end of the outer cylindrical tube is closed, and the double tube is a part of one end. The other end protrudes into the heating tank, and the reaction fluid is passed from the inlet through an annular space defined by an outer cylindrical pipe and an inner cylindrical pipe and filled with a catalyst, and then reversed at the other end. , then passed through the inner space of the inner cylindrical tube and guided to the outlet, and the gas serving as a heating source is made to flow outside the outer cylindrical tube from the other end to the one end, and the inner cylindrical tube is A catalytic reaction device characterized by providing an inner surface with a heat recovery means protruding from the inner surface. 2) The outlet of the heating source gas from the heating tank is formed in an annular shape concentric with the double pipe between the outer pipe outer wall near the one end of the double pipe and the heating tank wall of the part from which the double pipe protrudes, that is, one end side wall. 2. The apparatus of claim 1, wherein the apparatus is a space. 3) The apparatus according to claim 1 or 2, further comprising heat recovery means projecting from the outer surface of the outer cylindrical tube. 4) The apparatus according to claim 1, wherein a heat recovery means is provided at a location corresponding to the outlet of the heating source gas. 5) The apparatus according to claim 3, wherein heat recovery means is provided at a location corresponding to the outlet of the heating source gas. 6) The apparatus according to any one of claims 1 to 5, wherein the heat recovery means is a plate fin providing a flow path parallel to the axial direction of the cylindrical tube. 7) By making the other end of the double pipe protrude to the side opposite to the one end side wall side, the space inside the heating tank is divided into a radiation heat transfer space on the other end side of the double pipe pipe and a convection heat transfer space on the one end side wall side. 7. The apparatus according to claim 1, wherein the apparatus is divided into a space.
JP63314526A 1988-12-13 1988-12-13 Catalytic reactor Expired - Fee Related JP2601707B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63314526A JP2601707B2 (en) 1988-12-13 1988-12-13 Catalytic reactor
DE3940700A DE3940700A1 (en) 1988-12-13 1989-12-08 CATALYTIC REACTOR
GB8928037A GB2226775B (en) 1988-12-13 1989-12-12 Catalytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314526A JP2601707B2 (en) 1988-12-13 1988-12-13 Catalytic reactor

Publications (2)

Publication Number Publication Date
JPH02160035A true JPH02160035A (en) 1990-06-20
JP2601707B2 JP2601707B2 (en) 1997-04-16

Family

ID=18054350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314526A Expired - Fee Related JP2601707B2 (en) 1988-12-13 1988-12-13 Catalytic reactor

Country Status (3)

Country Link
JP (1) JP2601707B2 (en)
DE (1) DE3940700A1 (en)
GB (1) GB2226775B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213326A1 (en) * 2002-03-25 2003-10-16 Viessmann Werke Kg Device for producing hydrogen has conversion stages and fine purification stage formed as hollow bodies having an annular chamber for receiving corresponding catalysts
JPH04108533A (en) * 1990-08-28 1992-04-09 Toyo Eng Corp Apparatus for catalytic reaction
DE4132438A1 (en) * 1990-12-27 1992-07-02 Abb Patent Gmbh Process and device for producing hydrogen@ - has reactor designed to ensure smooth reaction without soot formation, useful in supplying fuel cells
DE19721630C1 (en) * 1997-05-23 1999-02-11 Fraunhofer Ges Forschung Device for reforming hydrocarbons containing starting materials
DE102004063151A1 (en) * 2004-12-22 2006-07-06 Webasto Ag Reformer for a fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227033A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Reaction device
JPS6250726U (en) * 1985-09-17 1987-03-30

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607125A (en) * 1968-12-30 1971-09-21 Gen Electric Reformer tube construction
US4661323A (en) * 1985-04-08 1987-04-28 Olesen Ole L Radiating sleeve for catalytic reaction apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227033A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Reaction device
JPS6250726U (en) * 1985-09-17 1987-03-30

Also Published As

Publication number Publication date
GB8928037D0 (en) 1990-02-14
JP2601707B2 (en) 1997-04-16
GB2226775B (en) 1993-04-07
DE3940700A1 (en) 1990-06-21
GB2226775A (en) 1990-07-11

Similar Documents

Publication Publication Date Title
JP4073960B2 (en) Hydrocarbon steam reforming method
BRPI0708847A2 (en) exchanger reactor and utilization thereof
US5199961A (en) Apparatus for catalytic reaction
EP1583929A1 (en) Fuel conversion reactor
KR100968541B1 (en) fuel processor of fuel cell system
US6896041B2 (en) Heat exchange reactor having integral housing assembly
JP3861077B2 (en) Fuel reformer
CN111617728A (en) Heat exchange type reforming reactor and reforming hydrogen production system
JP2601707B2 (en) Catalytic reactor
US8034135B2 (en) Fuel modification apparatus having an evaporator arranged around a superheater
KR101846969B1 (en) Fuel reforming divice
JPH01264903A (en) Apparatus for reforming hydrocarbon
CN212492959U (en) Heat exchange type reforming reactor and reforming hydrogen production system
JP4326078B2 (en) Solid oxide fuel cell module
JPH0271834A (en) Steam reforming device
JP4450756B2 (en) Fuel reformer
JPS63126539A (en) Fuel reformer
JPH0794321B2 (en) Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer
JP4450755B2 (en) Fuel reformer
JPH03199105A (en) Reforming device for hydrocarbon
US6805850B2 (en) Co-shift device
JPH08287937A (en) Solid electrolyte fuel cell module
JPS5978904A (en) Steam reforming reactor for hydrocarbon
JPH04193340A (en) Device for catalytic reaction
JPH08208203A (en) Fuel reformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees