JPS62269305A - Thin film of magnetic material and manufacture thereof - Google Patents

Thin film of magnetic material and manufacture thereof

Info

Publication number
JPS62269305A
JPS62269305A JP11389486A JP11389486A JPS62269305A JP S62269305 A JPS62269305 A JP S62269305A JP 11389486 A JP11389486 A JP 11389486A JP 11389486 A JP11389486 A JP 11389486A JP S62269305 A JPS62269305 A JP S62269305A
Authority
JP
Japan
Prior art keywords
thin film
phase
cobalt nitride
magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11389486A
Other languages
Japanese (ja)
Inventor
Shigeto Matsuoka
茂登 松岡
Kenichi Ono
小野 堅一
Takashi Inukai
犬飼 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11389486A priority Critical patent/JPS62269305A/en
Publication of JPS62269305A publication Critical patent/JPS62269305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To bring the axis of easy magnetization into a planar direction or a vertical direction as well as to contrive improvement in the corrosion-resisting property and the electric resistivity of the title thin film by a method wherein the thin film is formed with the cobalt nitride having a specific composition and magnetic coercive force. CONSTITUTION:The cobalt nitride in the state of thin film is formed in the composition indicated by the formula CoNx(0.005<=x<=0.6), and the magnetic coercive force of 100 Oe or more is given to the cobalt nitride thin film. To be more precise, said cobalt nitride thin film is formed by performing a sputtering metnod on the substrate at 350 deg.C in the inert gas containing N2 using Co or CoN as a target. As a result, the title magnetic thin film is composed of the epsilon-Co phase of hexagonal structure, alpha-Co phase of face-centered cubic crystal structure, gamma-Co3N phase of hexagonal structure, delta-Co2N phase of orthorhombic structure, or the mixture of the above-mentioned phases. Consequently, the magnetic thin film, having the axis of easy magnetization in a planar orientation or in vertical direction, high magnetic coercive force, high electric resistivity, and excellent abrasion-resisting property and corrosion- resisting property, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば磁気記録媒体等の薄膜磁気デバイスに
好適に用いられる高保磁力を有する新規な磁性体薄膜と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel magnetic thin film having a high coercive force, which is suitably used in thin film magnetic devices such as magnetic recording media, and a method for manufacturing the same.

従来の技術 高度情報社会の進展に伴って、各種の薄膜応用デバイス
が開発され、これに用いる高保磁力の永久磁石の薄膜化
が必要になっている。例えば磁気抵抗効果素子の薄膜化
に伴いバイアス磁界を印加する永久磁石の薄膜化が必要
であり、さらにそのパターン形成などにおいてもプロセ
ス技術との適合性も要求されるようになっている。一方
、磁気記録技術においては、記録密度のより一層の高密
度化が強く要求されている。そのため磁気ディスク、磁
気テープ等の磁気記録媒体、磁気ヘッド及びそれらの駆
動機構等の開発又は改良に多大な努力が払われている。
BACKGROUND OF THE INVENTION With the development of an advanced information society, various thin film application devices have been developed, and it has become necessary to make the high coercive force permanent magnets used in these devices thinner. For example, as magnetoresistive elements become thinner, permanent magnets that apply bias magnetic fields need to be made thinner, and pattern formation is also required to be compatible with process technology. On the other hand, in magnetic recording technology, there is a strong demand for even higher recording densities. Therefore, great efforts are being made to develop or improve magnetic recording media such as magnetic disks and magnetic tapes, magnetic heads, and their drive mechanisms.

このなかでも特に磁気記録媒体としては、保磁力および
角形比等の磁気特性に優れ、かつ機械的耐久性に優れて
いることが要求されている。
Among these, magnetic recording media are particularly required to have excellent magnetic properties such as coercive force and squareness, as well as excellent mechanical durability.

以上のような要求をみたすために磁気ディスクでは、従
来の7−Fe2O3等の微粒子塗布型からγ−Fe20
3薄膜や高保磁力、高磁化のCo−Ni等の合金薄膜、
垂直異方性のCo−Cr合金薄膜へと開発動向が移りつ
つあり、磁気テープでは、T  Fe2O3等の微粒子
塗布型から高保磁力、高磁化の鉄合金粉やCoおよびそ
の合金等の薄膜へと開発が進められている。
In order to meet the above requirements, magnetic disks have been changed from the conventional fine particle coating type such as 7-Fe2O3 to γ-Fe20.
3 thin films, high coercive force, high magnetization alloy thin films such as Co-Ni,
The development trend is shifting towards perpendicularly anisotropic Co-Cr alloy thin films, and magnetic tapes are moving from fine particle coating types such as T Fe2O3 to thin films made of high coercive force and high magnetization iron alloy powders, Co and their alloys, etc. Development is underway.

これらの各種デバイスにおいて、それぞれに必要とされ
る磁性薄膜の磁気特性は若干具なっているが、いずれも
高保磁力で高残留磁化の磁気特性が求められる他、磁化
容易軸が面内又は垂直方向にあること、製造が容易であ
ること、化学的、熱的安定性、耐蝕性及び機械的耐久性
などに優れていることが求められている。
In these various devices, the magnetic properties of the magnetic thin film required for each device are slightly different, but all require magnetic properties of high coercive force and high residual magnetization, and the axis of easy magnetization is in-plane or perpendicular. It is required to be easy to manufacture, have excellent chemical and thermal stability, corrosion resistance, mechanical durability, etc.

しかしながら、従来の材料および現在開発が進められて
いる既知の各種の高保磁力の磁性薄膜では、一長一短が
あり、このため新しい高保磁力磁性薄膜の開発が望まれ
ている。
However, conventional materials and various known high coercive force magnetic thin films currently under development have advantages and disadvantages, and for this reason, the development of new high coercive force magnetic thin films is desired.

発明が解決しようとする問題内 本発明は上述の現状に鑑み、磁気記録媒体等の磁性薄膜
デバイスに好適な高保磁力を有し、その磁化容易軸が面
内方向あるいは垂直方向に有るとともに耐蝕性に優れ、
電気抵抗率の高い新規な磁性体薄膜ならびにその容易な
製造方法の提供を目的とする。
Problems to be Solved by the Invention In view of the above-mentioned current situation, the present invention has a high coercive force suitable for magnetic thin film devices such as magnetic recording media, has an axis of easy magnetization in the in-plane direction or perpendicular direction, and has corrosion resistance. Excellent in
The purpose of this invention is to provide a novel magnetic thin film with high electrical resistivity and an easy method for manufacturing the same.

問題点を解決するための手段 本発明者らは薄膜状の窒化コバルトについて種々な角度
から探索および検討した結果、本発明を想到したもので
ある。すなわち、本発明に従うと、組成式CoNx (
0,005≦x≦0.6)で表わされ、100○e以上
の保磁力を有することを特徴とする窒化コバルトから成
る磁性体薄膜が提供される。
Means for Solving the Problems The present inventors have searched and studied thin film cobalt nitride from various angles, and as a result, have come up with the present invention. That is, according to the present invention, the compositional formula CoNx (
A magnetic thin film made of cobalt nitride is provided, which is expressed as 0,005≦x≦0.6) and has a coercive force of 100°e or more.

本発明の窒化コバルト薄膜は、膜面内にまたは膜面に対
して垂直方向に磁化容易軸を有する。
The cobalt nitride thin film of the present invention has an axis of easy magnetization within the film plane or in a direction perpendicular to the film plane.

さらに、本発明の窒化コバルト薄膜は、スパッタリング
されたままの状態、すなわちas−depoの状態で六
方晶構造のε−Co相あるいは面心立方晶構造のα−C
o相あるいは六方晶構造のγ−Co3N相あるいは斜方
晶構造のδ−Co□N相あるいはこれらの混相からなる
Furthermore, the cobalt nitride thin film of the present invention has a hexagonal structure ε-Co phase or a face-centered cubic structure α-Co phase in the sputtered state, that is, as-depo state.
It consists of an o phase, a γ-Co3N phase with a hexagonal structure, a δ-Co□N phase with an orthorhombic structure, or a mixed phase thereof.

これらの相構造は、例えば反応スパッタリングにおける
不活性ガス中のN2濃度、該基板の温度およびバイアス
電圧を制御することによってスパッタリングされたまま
の状態で、すなわちas−dep。
These phase structures can be formed in the as-sputtered state, i.e. as-dep, by controlling the N2 concentration in the inert gas, the temperature of the substrate and the bias voltage, for example in reactive sputtering.

の状態で、目的とする相構造とすることができる。In this state, the desired phase structure can be obtained.

さらに本発明に従うと、N2を含む不活性ガス中で、C
oまたはCoNをターゲットとして、350℃以下の基
板上にスパッタリングを行って、組成式Co N 、 
(0,005≦x≦0.6)で表わされ、100Oe以
上の保磁力を有する窒化コバルトを該基板上に形成する
ことを特徴とする磁性体薄膜の製造方法が提供される。
Furthermore, according to the present invention, in an inert gas containing N2, C
Sputtering is performed on a substrate at 350° C. or lower using CoN or CoN as a target, and the composition formula is CoN,
A method for manufacturing a magnetic thin film is provided, which is characterized in that cobalt nitride, which is expressed as (0,005≦x≦0.6) and has a coercive force of 100 Oe or more, is formed on the substrate.

すなわち、本発明に従うスパッタリングでは基板の温度
を350℃以下に、より詳細には室温から350℃まで
範囲の温度に保持して実施して、結晶質の窒化コバルト
薄膜を得る。
That is, sputtering according to the present invention is carried out while maintaining the substrate temperature at 350° C. or lower, more specifically at a temperature in the range from room temperature to 350° C., to obtain a crystalline cobalt nitride thin film.

スパッタリングは、高周波方式(rf)、マグネトロン
方式等の各種のスパッタ装置を用いて実施することがで
きる。また、スパッタ法によるターゲットとしてはCo
N粉末による成形体やCoとCoN粉末による複合ター
ゲットなども用いることができる。
Sputtering can be performed using various sputtering devices such as a radio frequency (RF) method and a magnetron method. In addition, as a target for sputtering, Co
A molded body made of N powder, a composite target made of Co and CoN powder, etc. can also be used.

さらに本発明の好ましい態様に従うと、不活性ガス中の
N2濃度、該基板の温度およびバイアス電圧を調整して
窒化コバルトの窒素含有量および結晶構造を制御する。
Further according to a preferred embodiment of the present invention, the nitrogen content and crystal structure of cobalt nitride are controlled by adjusting the N2 concentration in the inert gas, the temperature of the substrate, and the bias voltage.

本発明の窒化コバルト薄膜はスパッタリングの他、他の
一般的に知られている薄膜形成方法、真空蒸着法、イオ
ンブレーティング法などによっても製造することができ
ることは勿論である。
It goes without saying that the cobalt nitride thin film of the present invention can be manufactured by other generally known thin film forming methods such as vacuum evaporation, ion blating, etc. in addition to sputtering.

−作」 第1図は、本発明者らの窒化コバルト薄膜についての研
究の結果として得られたCoNつ薄膜中の窒素濃度Xと
、結晶構造との関連を示す図である。
FIG. 1 is a diagram showing the relationship between the nitrogen concentration X in a CoN thin film and the crystal structure obtained as a result of the inventors' research on cobalt nitride thin films.

第1図に示す如く、X、すなわち窒素量の増加にしたが
って、六方晶構造(hcp)のε相から面心立方晶(f
cc)のα相、六方晶構造(h、cp〉のT相、斜方晶
構造(Orthorhombic)のδ相、そしてXが
約1付近で面心立方晶構造(fcc)のζ相へと変化す
ることが判った。また、これらの相が安定に得られるこ
と、各相と各相との間には混和領域があることが明らか
となった。とくに、通常高温度でしか存在し得ない面心
立方晶のα相が、Xが約0.01〜0.3の範囲で、室
温で安定して得られることを発見した。
As shown in Figure 1, as X, that is, the amount of nitrogen,
α phase of cc), T phase of hexagonal structure (h, cp), δ phase of orthorhombic structure, and changes to ζ phase of face-centered cubic structure (fcc) when X is around 1. It was also revealed that these phases can be obtained stably and that there is a miscible region between each phase.In particular, it was revealed that there is a miscible region between each phase. It has been discovered that a face-centered cubic α phase can be stably obtained at room temperature when X is in the range of about 0.01 to 0.3.

第2図は、rf2極反応スパッタ装置を用い、N2と^
rからなる混合ガスの全ガス圧を5 mTorrに保持
し、その中のN2分圧比r(窒素ガス圧PN2/全ガス
圧P total)を変化させて反応スパッタリングを
行い、得られた窒化コバルト膜の面内保磁力(Hal+
)  とN2分圧比rとの関係を示す図である。
Figure 2 shows N2 and
The cobalt nitride film obtained by performing reactive sputtering while maintaining the total gas pressure of the mixed gas consisting of r at 5 mTorr and changing the N2 partial pressure ratio r (nitrogen gas pressure PN2/total gas pressure P total) In-plane coercive force (Hal+
) and the N2 partial pressure ratio r.

第2図に示す如く、rが0.05付近と0.2付近を除
いて100Oe以上の高保磁力をもつ窒化コバルト薄膜
が得られる。より詳細には、0.08<r<0.1では
Co、 Nと想定される薄膜が得られ、この薄膜は0.
2< r <0.25の範囲で得られる薄膜とともに比
較的大きな面内保磁力を持つ面内磁化膜あるいは等方性
膜である。さらに、0.3< r < 1.0で得られ
る薄膜では垂直異方性が出現し、特にδ相の薄膜では完
全に膜面垂直方向に磁化容易軸を有する。
As shown in FIG. 2, a cobalt nitride thin film having a high coercive force of 100 Oe or more is obtained except when r is around 0.05 and around 0.2. More specifically, when 0.08<r<0.1, a thin film assumed to be made of Co and N is obtained;
It is an in-plane magnetized film or an isotropic film that has a relatively large in-plane coercive force as well as a thin film obtained in the range of 2<r<0.25. Furthermore, perpendicular anisotropy appears in a thin film obtained with 0.3<r<1.0, and in particular, a δ-phase thin film has an axis of easy magnetization completely perpendicular to the film surface.

第2図には、スパッタリング条件の一つである特定の窒
素分圧比rと磁気特性すなわち面内保磁力との関係を示
したが、他のスパッタリング条件、例えば基板温度、基
板バイアス、投入電力等の条件を変化することにより磁
気特性は大きく変化する。これらの種々の条件で得られ
た窒化コバルト薄膜をX線回折、X線マイクロアナライ
ザー等で分析した結果、磁性薄膜デバイスに適する10
0Oe以上の保磁力と、0. IKG以上の飽和磁束密
度を同時に有する窒化コバルト薄膜は全て六方晶ε相あ
るいは面心立方晶α相あるいは六方晶r相あるいは斜方
晶δ相あるいはこれらの混和であり、Xが0、005か
ら0.6の範囲であることが明らかとなった。
Figure 2 shows the relationship between a specific nitrogen partial pressure ratio r, which is one of the sputtering conditions, and magnetic properties, that is, in-plane coercive force, but other sputtering conditions, such as substrate temperature, substrate bias, input power, etc. The magnetic properties change significantly by changing the conditions. As a result of analyzing the cobalt nitride thin films obtained under these various conditions using X-ray diffraction, an
A coercive force of 0 Oe or more, and a coercive force of 0. All cobalt nitride thin films simultaneously having a saturation magnetic flux density of IKG or higher are hexagonal ε phase, face-centered cubic α phase, hexagonal r phase, orthorhombic δ phase, or a mixture thereof, and X is from 0.005 to 0. It became clear that the value was in the range of .6.

基板温度について説明すると、rが小さいほど、また基
板温度が高いほど窒素原子は薄膜中にとりこまれにくく
なる。一方、結晶間の配向性は基板温度の相違により大
きく変化する。例えば、r−0,5の場合、基板温度が
200℃以下で得られた薄膜はγ(101)、さらに2
30℃ではr (002)面配向へと変化し、これを境
にα相へと変化する。
Regarding the substrate temperature, the smaller r and the higher the substrate temperature, the more difficult it is for nitrogen atoms to be incorporated into the thin film. On the other hand, the orientation between crystals changes greatly depending on the difference in substrate temperature. For example, in the case of r-0,5, the thin film obtained at a substrate temperature of 200°C or less is γ(101), and further 2
At 30° C., the orientation changes to the r (002) plane, and from this point the orientation changes to the α phase.

とくに、本発明で、基板温度を350℃以下に限定した
理由は、これ以上の温度では窒化コバルトが分解するた
め、薄膜中に窒素が取り込まれるのが困難となり、した
がって形成される薄膜は窒素を殆ど含まない六方晶構造
のε−Coとなり、本発明の目的とする磁気特性を有す
る窒化コバルト薄膜が得られないためである。
In particular, the reason why the substrate temperature is limited to 350°C or less in the present invention is that at temperatures higher than this, cobalt nitride decomposes, making it difficult for nitrogen to be incorporated into the thin film. This is because the cobalt nitride thin film has a hexagonal crystal structure containing almost no ε-Co, and a cobalt nitride thin film having the magnetic properties targeted by the present invention cannot be obtained.

さらに、基板バイアスにより多相共存状態が得られる。Furthermore, a multiphase coexistence state can be obtained by substrate bias.

r<Q、5の領域でバイアスを印加すると、バイアス電
圧の増加にともない窒素含:1.゛量の少ない相が出現
するのに対し、r>Q、5の領域でバイアスを印加する
と、バイアス電圧の増加にともない窒素含有量の多い相
が出現する。
When a bias is applied in the region r<Q, 5, as the bias voltage increases, nitrogen content: 1. Whereas a phase with a small amount of nitrogen appears, when a bias is applied in the region of r>Q, 5, a phase with a large nitrogen content appears as the bias voltage increases.

本発明において、窒素含有量Xが0.6以上になると飽
和磁束密度がO,IKG以下となり、Xが0.005以
下となるとN2を含むことによる耐蝕性、耐摩耗性の効
果がなくなるため、Xの範囲を0.005〜0.6に限
定した。この組成範囲の中で膜面内に磁化容易軸を有す
る窒化コバルト薄膜を得るにはXは0.005〜0.3
の範囲が好ましく、膜面に対して磁化容易軸を有する垂
直磁化膜を得るにはXは0.2〜0.6の範囲が好まし
い結果を与える。
In the present invention, when the nitrogen content The range of X was limited to 0.005 to 0.6. In order to obtain a cobalt nitride thin film with an easy axis of magnetization in the film plane within this composition range, X is 0.005 to 0.3.
In order to obtain a perpendicularly magnetized film having an axis of easy magnetization with respect to the film surface, X is preferably in the range of 0.2 to 0.6.

さらにXが0.05から0.6の範囲の窒化コバルト薄
膜は、その電気抵抗率が50〜800μΩcmと通常の
金属、合金に比して極めて大きい値を有しており、この
磁性体薄膜を磁気記録媒体として用いる場合などにはう
ず電流損が少なく、結果とじて高周波特性に優れる利点
がある。
Furthermore, the cobalt nitride thin film in which When used as a magnetic recording medium, it has the advantage of low eddy current loss and, as a result, excellent high frequency characteristics.

実施例 以下、実施例により本発明をより具体的に説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 rf2極スパッタ装置において、その真空度がIX 1
O−6Torrに到達した後、后とN2の混合ガスを導
入し、全ガス圧5 mTorr、 N2ガス分圧比r−
0,2とし、Coターゲットを用いて反応スパッタリン
グを行い、230℃に加熱したガラス基板上に約0.5
μmの厚さの窒化コバルト薄膜を形成した。
Example 1 In an rf two-pole sputtering device, the degree of vacuum is IX 1
After reaching O-6 Torr, a mixed gas of N2 and N2 was introduced, and the total gas pressure was 5 mTorr, and the N2 gas partial pressure ratio r-
0.2, reactive sputtering was performed using a Co target, and about 0.5 was placed on a glass substrate heated to 230°C.
A cobalt nitride thin film with a thickness of μm was formed.

この薄膜をX線回折で調査したところ第3図(a)に示
すようにfcc構造のα相であった。また振動型磁力計
により磁気測定を行ったところ、磁化容易軸が面内方向
にあり、その面内方向の磁気特性は飽和磁束密度4πM
sが6.5KG、角形比Sl+が0.82、保磁力H8
11は420Oeであり、電気抵抗率が440μΩcm
の高保磁力磁性体薄膜であった。
When this thin film was examined by X-ray diffraction, it was found to be an α phase with an fcc structure, as shown in FIG. 3(a). In addition, magnetic measurements using a vibrating magnetometer revealed that the axis of easy magnetization was in the in-plane direction, and the magnetic properties in the in-plane direction had a saturation magnetic flux density of 4πM
s is 6.5KG, squareness ratio Sl+ is 0.82, coercive force H8
11 is 420 Oe and has an electrical resistivity of 440 μΩcm
It was a high coercive force magnetic thin film.

実施例2 rf2極スパッタ装置において、その真空度がIXl、
0−6Torrに到達した後、全ガス圧5 mTorr
SN2分圧比r=0.8とし、Coターゲットを用いて
反応スパッタリングを行い、340℃に加熱した石英基
板上に約1μmの窒化コバルト薄膜を形成した。
Example 2 In an rf two-pole sputtering device, the degree of vacuum is IXl,
After reaching 0-6 Torr, total gas pressure 5 mTorr
A cobalt nitride thin film of about 1 μm was formed on a quartz substrate heated to 340° C. by performing reactive sputtering using a Co target with the SN2 partial pressure ratio r=0.8.

この状態の薄膜は第3図(b)に示すようにhcp構造
のε相とfcc構造のα相との混相であり、その磁気特
性は4 yrMs、 15.6KG、角形比5II0.
64、Hc++  520Oeであり、磁化容易軸は面
内方向に有り電気抵抗率が85μΩcmの高保磁力磁性
体薄膜であった。第4図に得られた薄膜のM−8曲線を
示す。
As shown in FIG. 3(b), the thin film in this state is a mixed phase of an ε phase with an HCP structure and an α phase with an FCC structure, and its magnetic properties are 4 yrMs, 15.6KG, and a squareness ratio of 5II0.
64, Hc++ 520 Oe, the axis of easy magnetization was in the in-plane direction, and the film was a high coercive force magnetic thin film with an electrical resistivity of 85 μΩcm. FIG. 4 shows the M-8 curve of the obtained thin film.

実施例3 実施例2と同様な条件で、180℃に加熱した石英基板
上に約0.8μmの厚さの窒化コバルト薄膜を形成した
。この状態の薄膜は第3図(C)に示すようにhcp構
造のγ相と斜方晶構造のδ相との混相であり、膜面に対
して垂直方向の磁気特性が4yrMs O,2KG、 
HCL 580Oe、水平方向の保磁力Hel+320
Oe、電気抵抗率205μΩcmである磁化容易軸が膜
面に対して垂直方向の高保磁力磁性体薄膜が得られた。
Example 3 Under the same conditions as Example 2, a cobalt nitride thin film with a thickness of about 0.8 μm was formed on a quartz substrate heated to 180° C. The thin film in this state has a mixed phase of a γ phase with an hcp structure and a δ phase with an orthorhombic structure, as shown in FIG.
HCL 580Oe, horizontal coercive force Hel+320
A high coercive force magnetic thin film having an electrical resistivity of 205 μΩcm and an axis of easy magnetization perpendicular to the film surface was obtained.

実施例4 rf2極スパッタ装置において、その真空度がlXl0
−6Torrに到達した後、八rとN2の混合ガスを導
入し、全ガス圧5 mTorr、 N2分圧比r=0.
5とし、基板バイアス■8を0〜−150■と変化させ
、Coターゲットを用いて反応スパッタリングを行い、
とくに加熱していない(室温)ガラス基板上に窒化コバ
ルト薄膜を形成した。この薄膜の磁気特性を第5図に示
す。
Example 4 In an rf two-pole sputtering device, the degree of vacuum is lXl0
After reaching -6 Torr, a mixed gas of 8r and N2 was introduced, the total gas pressure was 5 mTorr, and the N2 partial pressure ratio r = 0.
5, the substrate bias (8) was varied from 0 to -150, and reactive sputtering was performed using a Co target.
In particular, a cobalt nitride thin film was formed on an unheated (room temperature) glass substrate. The magnetic properties of this thin film are shown in FIG.

第5図において、■5=0のとき4 πMs0.25K
G。
In Figure 5, ■When 5=0, 4 πMs0.25K
G.

Hc++220Oe、 Hct 120Oeの磁気特性
を有する面内容易磁化膜であることを示している。また
、この薄膜相状態はhcp構造のγ相より成る窒化コバ
ルト薄膜であった。
This shows that it is an in-plane easily magnetized film having magnetic properties of Hc++220 Oe and Hct 120 Oe. Further, this thin film phase state was a cobalt nitride thin film consisting of a γ phase with an hcp structure.

さらに第5図において、V、 −−50Vのとき4πM
s Q、9KGXHcz 335Oe、 Hct 76
0Oeの磁気特性を有する垂直異方性膜であることを示
している。
Furthermore, in Fig. 5, when V, -50V, 4πM
s Q, 9KGXHcz 335Oe, Hct 76
This indicates that the film is a perpendicularly anisotropic film with magnetic properties of 0 Oe.

第6図に得られた薄膜のM−11曲線を示す。また、こ
の薄膜の相状態はhcp構造のγ相と斜方晶構造のδ相
との混和より成る窒化コバルト薄膜であった。さらに、
VS −−100Vの場合も磁化容易軸が垂直方向に有
る垂直異方性膜であり、その相状態はfcc構造のα相
とhcp構造のγ相と斜方晶のδ相との混和より成る窒
化コバルト薄膜であった。
FIG. 6 shows the M-11 curve of the obtained thin film. The phase state of this thin film was a cobalt nitride thin film consisting of a mixture of a γ phase with an hcp structure and a δ phase with an orthorhombic structure. moreover,
In the case of VS - 100V, it is also a perpendicularly anisotropic film with the axis of easy magnetization in the vertical direction, and its phase state consists of a mixture of α phase of fcc structure, γ phase of hcp structure, and δ phase of orthorhombic crystal. It was a cobalt nitride thin film.

さらに第4図においてvs −−150Vの場合は4π
ts 1.2KG 、 Hcz400Oe、 Hct 
460Oeの磁気特性を有する等方性磁化膜であること
を示している。
Furthermore, in the case of vs −150V in Fig. 4, 4π
ts 1.2KG, Hcz400Oe, Hct
This shows that it is an isotropic magnetized film having magnetic properties of 460 Oe.

また、その相状態はhcp構造のζ相とfcc構造のα
相とhcp構造のγ相との混相より成る窒化コバルト薄
膜であった。
In addition, the phase states are the ζ phase of the hcp structure and the α phase of the fcc structure.
It was a cobalt nitride thin film consisting of a mixed phase of a γ phase with an hcp structure.

次に基板バイアス電圧Vs −50Vの条件で作成した
厚さ1μmの窒化コバルト薄膜について、1 ζ マイクロビッカース硬さ試験機により硬さ測定を行った
。その結果、測定点10箇所の平均値は1270であり
、通常の合金薄膜例えばCo−Cr合金薄膜の硬さ50
0〜600に比べて非常に高い硬さを有することが判っ
た。このことは本発明による窒化コバルト薄膜は耐摩耗
性に優れていることを示すものである。
Next, the hardness of the 1 μm thick cobalt nitride thin film prepared under the conditions of a substrate bias voltage Vs of −50 V was measured using a 1ζ micro Vickers hardness tester. As a result, the average value of 10 measurement points was 1270, and the hardness of a normal alloy thin film, for example, a Co-Cr alloy thin film, was 50.
It was found that the hardness was much higher than that of 0 to 600. This shows that the cobalt nitride thin film according to the present invention has excellent wear resistance.

さらに、同上の窒化コバルト薄膜とコバルト薄膜につい
て温度60℃、湿度80%の雰囲気中に5日間放置し、
耐蝕性を調査した。Nの含まれていないコバルト薄膜は
1mm2当り5個以上の腐食部分が認められたのに対し
、本発明による窒化コバルト薄膜では腐食部分はほとん
ど認められなかった。
Furthermore, the same cobalt nitride thin film and cobalt thin film were left in an atmosphere with a temperature of 60°C and a humidity of 80% for 5 days,
Corrosion resistance was investigated. In the cobalt thin film containing no N, five or more corroded parts were observed per 1 mm2, whereas in the cobalt nitride thin film according to the present invention, almost no corroded parts were observed.

この調査により窒化コバルト薄膜は金属・合金薄膜に比
べて耐酸化性、耐蝕性に優れていることが明らかとなっ
た。
This investigation revealed that cobalt nitride thin films have superior oxidation and corrosion resistance compared to metal and alloy thin films.

発明の詳細 な説明したように、本発明による窒化コバルト薄膜は、
面内および垂直方向に容易軸を有し、高保磁力で高電気
抵抗率の特徴と耐摩耗性、耐蝕性に優れた新規な磁性体
薄膜であり、その製造方法が容易であることから、例え
ば磁気記録媒体等の薄膜磁気デバイスに適する。
As described in detail, the cobalt nitride thin film according to the present invention comprises:
It is a new magnetic thin film that has easy axes in the plane and in the vertical direction, has high coercive force and high electrical resistivity, and has excellent wear resistance and corrosion resistance. Suitable for thin film magnetic devices such as magnetic recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はl:’oNM薄膜中の窒素濃度Xと結晶構造と
の関係を示す相図であり、 第2図は、窒化コバルト薄膜をrf2極スパスパック装
置いて製造する際の窒素分圧比rと得られた薄膜の面内
保磁力H611との関係を示す図であり、 第3図は実施例1および2および3で得られた窒化コバ
ルトの相状態を示すX線回折パターンであり、 第4図は実施例2で得られた薄膜のM−8曲線を示す図
であり、 第5図は、rf2極スパッタリングにおける基板バイア
ス電圧■、と磁気特性との関係を示す図であり、 ■b 第6図は基板バイアス電圧Vs”50Vで得られた窒化
コバルト薄膜のM−8曲線である。 (主な参照番号) Hel+  ・・膜面平行方向の保磁力、HCL  ・
・膜面垂直方向の保磁力、4πMs・・飽和磁束密度
Figure 1 is a phase diagram showing the relationship between the nitrogen concentration FIG. 3 is an X-ray diffraction pattern showing the phase state of cobalt nitride obtained in Examples 1, 2, and 3; The figure is a diagram showing the M-8 curve of the thin film obtained in Example 2. Figure 5 is a diagram showing the relationship between the substrate bias voltage (■) and magnetic properties in RF bipolar sputtering, and (b) Figure 6 shows the M-8 curve of a cobalt nitride thin film obtained at a substrate bias voltage of 50 V. (Main reference numbers) Hel+... Coercive force in the direction parallel to the film surface, HCL
・Coercive force in the direction perpendicular to the film surface, 4πMs...Saturation magnetic flux density

Claims (7)

【特許請求の範囲】[Claims] (1)組成式CoN_x(0.005≦x≦0.6)で
表わされ、100Oe以上の保磁力を有することを特徴
とする窒化コバルトから成る磁性体薄膜。
(1) A magnetic thin film made of cobalt nitride, represented by the compositional formula CoN_x (0.005≦x≦0.6), and characterized by having a coercive force of 100 Oe or more.
(2)前記窒化コバルトが膜面内に磁化容易軸を有する
ことを特徴とする特許請求の範囲第1項記載の磁性体薄
膜。
(2) The magnetic thin film according to claim 1, wherein the cobalt nitride has an axis of easy magnetization within the film plane.
(3)前記窒化コバルトが膜面に対して垂直方向に磁化
容易軸を有することを特徴とする特許請求の範囲第1項
記載の磁性体薄膜。
(3) The magnetic thin film according to claim 1, wherein the cobalt nitride has an axis of easy magnetization in a direction perpendicular to the film surface.
(4)前記窒化コバルトは、六方晶構造のε−Co相あ
るいは面心立方晶構造のα−Co相あるいは六方晶構造
のγ−Co_3N相あるいは斜方晶構造のδ−Co_2
N相あるいはこれらの混和であることを特徴とする特許
請求の範囲第1項乃至第3項のいずれか1項に記載の磁
性体薄膜。
(4) The cobalt nitride has a hexagonal structure ε-Co phase, a face-centered cubic structure α-Co phase, a hexagonal structure γ-Co_3N phase, or an orthorhombic structure δ-Co_2
The magnetic thin film according to any one of claims 1 to 3, characterized in that it is an N-phase or a mixture thereof.
(5)N_2を含む不活性ガス中で、CoまたはCoN
をターゲットとして、350℃以下の基板上にスパッタ
リングを行い、組成式CoN_x(0.005≦x≦0
.6)で表わされ、100Oe以上の保磁力を有する窒
化コバルトを該基板上に形成することを特徴とする磁性
体薄膜の製造方法。
(5) Co or CoN in an inert gas containing N_2
Sputtering was performed on a substrate at 350°C or lower using CoN as a target, and the composition formula CoN_x (0.005≦x≦0
.. 6) A method for manufacturing a magnetic thin film, characterized in that cobalt nitride having a coercive force of 100 Oe or more is formed on the substrate.
(6)上記窒化コバルトは、六方晶構造のε−Co相あ
るいは面心立方晶構造のα−Co相あるいは六方晶構造
のγ−Co_3N相あるいは斜方晶構造のδ−Co_2
N相あるいはこれらの混相であることを特徴とする特許
請求の範囲第5項に記載の磁性体薄膜の製造方法。
(6) The above-mentioned cobalt nitride may be an ε-Co phase with a hexagonal crystal structure, an α-Co phase with a face-centered cubic structure, a γ-Co_3N phase with a hexagonal structure, or a δ-Co_2 phase with an orthorhombic structure.
6. The method for producing a magnetic thin film according to claim 5, wherein the magnetic thin film is an N phase or a mixed phase thereof.
(7)不活性ガス中のN_2濃度、該基板の温度および
バイアス電圧の少なくとも1つを調整して窒化コバルト
の窒素含有量および結晶構造を制御することを特徴とす
る特許請求の範囲第5項または第6項に記載の磁性体薄
膜の製造方法。
(7) Claim 5, characterized in that the nitrogen content and crystal structure of cobalt nitride are controlled by adjusting at least one of the N_2 concentration in the inert gas, the temperature of the substrate, and the bias voltage. Or the method for producing a magnetic thin film according to item 6.
JP11389486A 1986-05-19 1986-05-19 Thin film of magnetic material and manufacture thereof Pending JPS62269305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11389486A JPS62269305A (en) 1986-05-19 1986-05-19 Thin film of magnetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11389486A JPS62269305A (en) 1986-05-19 1986-05-19 Thin film of magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62269305A true JPS62269305A (en) 1987-11-21

Family

ID=14623805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11389486A Pending JPS62269305A (en) 1986-05-19 1986-05-19 Thin film of magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62269305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122266A (en) * 1989-10-06 1991-05-24 Matsushita Electric Ind Co Ltd Production of thin nitride film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122266A (en) * 1989-10-06 1991-05-24 Matsushita Electric Ind Co Ltd Production of thin nitride film

Similar Documents

Publication Publication Date Title
JPS63119209A (en) Soft magnetic thin-film
EP0032180B1 (en) Amorphous magnetic alloy containing at least co and ti
Russak et al. Magnetic and structural characterization of sputtered FeN multilayer films
JPS62269305A (en) Thin film of magnetic material and manufacture thereof
JP2710441B2 (en) Soft magnetic laminated film
JP5177407B2 (en) Magnetic anisotropic perpendicular magnetic film and method for forming the same, magnetic recording medium and method for manufacturing the same
JPS60101709A (en) Vertical magnetic recording medium
KR0147013B1 (en) Magnetic thin film material for magnetic recording
Haeiwa et al. (Fe, Co)-P thin films prepared with a reactive evaporation method
Naoe et al. A reactive sputtering method for preparation of berthollide type of iron oxide films
JPH03106003A (en) Soft magnetic amorphous alloy thin film
He et al. Effect of N on the microstructure and magnetic properties of FePdSi nanocomposite films
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH0817032A (en) Magnetic recording medium and its production
Yamaguchi et al. Magnetic properties and structures of sputtered CoNi/Cr films
JPH09115729A (en) Ultramicrocrystal magnetic film and its manufacture
JPH01191318A (en) Perpendicular magnetic recording medium
JPH03112104A (en) Soft magnetic alloy film
Thompson et al. Influence of deposition conditions on the properties of sputter‐deposited Co‐V thin films
JPH01175707A (en) Laminated soft thin magnetic film
JPS6386111A (en) Magnetic recording medium
JP3127070B2 (en) Method for producing soft magnetic thin film
Xu et al. The effect of oxygen on magnetic properties and corrosion resistance of Fe–N thin films
JP2979557B2 (en) Soft magnetic film
JP2002231554A (en) Method of manufacturing magnetic alloy film and magnetic head