JPH01191318A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH01191318A
JPH01191318A JP1493588A JP1493588A JPH01191318A JP H01191318 A JPH01191318 A JP H01191318A JP 1493588 A JP1493588 A JP 1493588A JP 1493588 A JP1493588 A JP 1493588A JP H01191318 A JPH01191318 A JP H01191318A
Authority
JP
Japan
Prior art keywords
perpendicular magnetic
alloy
thin film
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1493588A
Other languages
Japanese (ja)
Inventor
Shunichi Hashimoto
俊一 橋本
Yoshitaka Ochiai
落合 祥隆
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1493588A priority Critical patent/JPH01191318A/en
Publication of JPH01191318A publication Critical patent/JPH01191318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics and practicable characteristics and to enable dealing with high-density recording by forming a thin film of a Co-Pd alloy having a specific compsn. as a magnetic layer. CONSTITUTION:The thin alloy film consisting of 10-40atom.% Co and 60-90atom.% Pd is formed as the magnetic layer. Namely, the thin alloy film which constitutes the magnetic layer can be expressed by the general formula Cox.Pd100-x (where x denotes the compsn. by atom.% and is 10<=x<=40). The magnetorestriction constant of the thin film of the Co-Pd alloy attains a large negative value when the content of the Pd in particular is confined to 40-90atom.%. Excellent perpendicular magnetic anisotropy is developed by a reverse magnetorestriction effect when an internal stress sigma is made into a tensile stress. The practicable characteristics such as film characteristics are thereby improved and the high-quality and high-density perpendicular magnetic recording is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気特性や実用特性に優れ、高密度記録に対
応する新規な垂直磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel perpendicular magnetic recording medium that has excellent magnetic properties and practical properties and is compatible with high-density recording.

〔発明の概要〕[Summary of the invention]

本発明は、所定の組成を有するCo−Pd合金薄膜を磁
性層とすることにより、優れた磁気特性を有する垂直磁
気記録媒体の提供を可能とするものである。
The present invention makes it possible to provide a perpendicular magnetic recording medium having excellent magnetic properties by using a Co--Pd alloy thin film having a predetermined composition as a magnetic layer.

〔従来の技術〕[Conventional technology]

近年、磁気記録における短波長化と狭トラツク化による
記録密度の向上は目覚ましく、磁化容易軸を記録層形成
面に対して垂直に有する垂直磁気記録媒体が高密度記録
に対応する方式として期待されている。
In recent years, there has been a remarkable improvement in recording density due to shorter wavelengths and narrower tracks in magnetic recording, and perpendicular magnetic recording media, in which the axis of easy magnetization is perpendicular to the recording layer formation surface, are expected to be a method that can support high-density recording. There is.

このような垂直磁気記録媒体の記録層の材料として、従
来よりCo−Cr合金磁性膜が提案されており、実用化
に向けて各方面で盛んに研究されている。
A Co--Cr alloy magnetic film has been proposed as a material for the recording layer of such a perpendicular magnetic recording medium, and is being actively researched in various fields for practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、Co−Cr合金磁性膜はその物理的性質
、特に膜が非常に硬いことから耐久性。
However, the Co-Cr alloy magnetic film has poor durability due to its physical properties, especially the very hard film.

ヘッド摩耗等の実用特性の点で問題が多く、未だ実用に
至らないのが実情である。
The reality is that there are many problems in terms of practical characteristics such as head wear, and it has not yet been put into practical use.

一方、Co−Cr合金以外の材料よりなる垂直磁気記録
媒体に関する研究も行われているが、いずれもCo−C
r合金磁性膜には及ばない。言い換えれば、Go−Cr
合金と同程度の特性を示す材料でさえ見出されていない
On the other hand, research is also being conducted on perpendicular magnetic recording media made of materials other than Co-Cr alloys, but none of them are Co-C
It is not as good as r-alloy magnetic film. In other words, Go-Cr
No material has even been found that exhibits properties comparable to alloys.

そこで本発明は、前述の従来の状況に鑑みて提案された
ものであって、Co−Cr系垂直磁気記録媒体に代わる
新規な垂直磁気記録媒体の提供を目的とし、特に保磁力
、角形比等の磁気特性の点でCo−Cr系垂直磁気記録
媒体に匹敵する特性を存する垂直磁気記録媒体を提供す
ることを目的とする。
The present invention has been proposed in view of the above-mentioned conventional situation, and aims to provide a new perpendicular magnetic recording medium to replace the Co-Cr-based perpendicular magnetic recording medium. An object of the present invention is to provide a perpendicular magnetic recording medium that has properties comparable to Co--Cr-based perpendicular magnetic recording media in terms of magnetic properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前述の目的を達成すべく鋭意研究を重ね
た結果、Co−Pd合金薄膜が特定の組成範囲で優れた
垂直異方性を示すとの知見を得るに至った。
As a result of extensive research to achieve the above-mentioned object, the present inventors have found that a Co--Pd alloy thin film exhibits excellent perpendicular anisotropy within a specific composition range.

本発明はかかる知見にもとづいて完成されたものであっ
て、C010〜40原子%及びPd60〜90原子%よ
りなる合金薄膜を磁性層とすることを特徴とするもので
ある。
The present invention was completed based on this knowledge, and is characterized in that the magnetic layer is an alloy thin film consisting of 10 to 40 atomic % of CO and 60 to 90 atomic % of Pd.

したがって、6〃性層となる合金薄膜は、一般弐Co、
Pd、。。−8(ただしXは組成を原子%で表し、lO
≦X≦40である。)で表すことができる。
Therefore, the alloy thin film that becomes the 6-layer is generally 2-Co,
Pd. . -8 (where X represents the composition in atomic %, lO
≦X≦40. ) can be expressed as

上記磁性層となるCo−Pd合金薄膜は、スパッタリン
グ、真空蒸着あるいは分子線エピタキシー(MBE)等
によって形成することができる。
The Co--Pd alloy thin film serving as the magnetic layer can be formed by sputtering, vacuum deposition, molecular beam epitaxy (MBE), or the like.

このとき使用する蒸発源は、Co−Pd合金莫発源であ
っても、各元素の独立した蒸発源であっても良い。たと
えばスパッタリングにより合金薄膜を作成する際には、
Co−Pd合金ターゲットを使用しても、あるいは円形
のCoターゲットの上に扇型のPdのチップを!!!i
するいわゆる複合ターゲットを使用しても良い。
The evaporation source used at this time may be a Co-Pd alloy evaporation source or an independent evaporation source for each element. For example, when creating an alloy thin film by sputtering,
Even if you use a Co-Pd alloy target, or a fan-shaped Pd chip on a circular Co target! ! ! i
A so-called composite target may also be used.

ここで、上述のCo−Pd合金薄膜の組成は良好な垂直
磁気異方性を達成する観点から選ばれたものである。垂
直磁気異方性は、次式で表される垂直磁気異方性定数K
uが正の値をとる時に現れる。
Here, the composition of the Co--Pd alloy thin film described above was selected from the viewpoint of achieving good perpendicular magnetic anisotropy. The perpendicular magnetic anisotropy is the perpendicular magnetic anisotropy constant K expressed by the following formula
Appears when u takes a positive value.

K、−−2λσ/3   ・・・(])式(1)式中、
λは磁歪定数、σは内部応力である。
K, -2λσ/3 ... (]) In formula (1),
λ is the magnetostriction constant, and σ is the internal stress.

ここで、種々の組成を有するCo−Pd合金の組成と磁
歪定数との関係を第4図に示す。図中、縦軸は磁歪定数
λを表し、横軸はCo−Pd合金の組成をPdの割合(
原子%)で表す。この図かられかるように、本発明にお
いて限定する組成範囲においてはCo−Pd合金の磁歪
定数λはいずれも負の大きな値をとるので、垂直磁気異
方性定数Kuを正の値とするためには内部応力σが正の
値をとること、すなわ内部応力σが引っ張り応力として
働くことが必要である。内部応力σの値の正負はCo−
Pd合金薄膜の成膜条件によって変わり、たとえば蒸着
では常に正の値をとらせることができるが、スパッタリ
ングでは雰囲気ガスとして使用するアルゴンガス圧によ
って変化する。この−例として、Co340066合金
をスパッタリングにより成膜する際のアルゴンガス圧と
得られる合金薄膜の内部応力との関係を第5図に示す。
Here, FIG. 4 shows the relationship between the composition and magnetostriction constant of Co--Pd alloys having various compositions. In the figure, the vertical axis represents the magnetostriction constant λ, and the horizontal axis represents the composition of the Co-Pd alloy, the proportion of Pd (
Expressed in atomic %). As can be seen from this figure, in the composition range limited in the present invention, the magnetostriction constant λ of the Co-Pd alloy takes a large negative value, so in order to set the perpendicular magnetic anisotropy constant Ku to a positive value, It is necessary for the internal stress σ to take a positive value, that is, for the internal stress σ to act as a tensile stress. The sign of the value of internal stress σ is Co-
It changes depending on the conditions for forming the Pd alloy thin film, and for example, in vapor deposition, it can always take a positive value, but in sputtering, it changes depending on the argon gas pressure used as the atmospheric gas. As an example of this, FIG. 5 shows the relationship between the argon gas pressure and the internal stress of the resulting alloy thin film when depositing a Co340066 alloy by sputtering.

図中、縦軸は内部応力σ(dyn/cm”)を、横軸は
アルゴンガス圧(mTorr)をそれぞれ表す。この図
をみると、アルゴンガス圧12 mTorr付近を境と
じて内部応力σの正負が逆転しており、これより低いガ
ス圧では応力は圧縮応力、高いガス圧では引っ張り応力
となっていることがわかる。したがって、得られる合金
薄膜に垂直磁気異方性を発現させるためには、アルゴン
ガス圧を12 mTorr以上に選べば良いことになる
In the figure, the vertical axis represents the internal stress σ (dyn/cm"), and the horizontal axis represents the argon gas pressure (mTorr). Looking at this diagram, it can be seen that the internal stress σ increases from around the argon gas pressure of 12 mTorr. The positive and negative signs are reversed, and it can be seen that at lower gas pressures, the stress is compressive stress, and at higher gas pressures, it is tensile stress.Therefore, in order to develop perpendicular magnetic anisotropy in the resulting alloy thin film, it is necessary to , the argon gas pressure should be selected to be 12 mTorr or more.

また上記磁性層は、添加元素効果や下地膜効果。In addition, the above magnetic layer has an additive element effect and an underlayer effect.

基板力i熱効果(アニール効果)等により一層の特性改
善を図るようにしてもよい。添加元素としては、Al、
Si、Ti、V、Cr、Mn、Fe。
Further characteristics may be improved by thermal effects (annealing effects) or the like based on substrate force. Additional elements include Al,
Si, Ti, V, Cr, Mn, Fe.

Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、R
u、Rh、Ag、In、Sn、Sb、Hf。
Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, R
u, Rh, Ag, In, Sn, Sb, Hf.

Ta、W、Re、Os、I r、Au、Pb、B i等
が例示される。
Examples include Ta, W, Re, Os, Ir, Au, Pb, and Bi.

さらに、面内磁化膜と前記Co−Pd合金薄膜を積層し
、いわゆる二層構造垂直磁気記録媒体とし、効率の改善
を図ることも可能である。
Furthermore, it is also possible to improve efficiency by laminating an in-plane magnetized film and the Co--Pd alloy thin film to form a so-called two-layer perpendicular magnetic recording medium.

〔作用〕[Effect]

Co−Pd合金薄膜では、特にPdの含有量を40〜9
0原子%としたときに磁歪定数が負の大きな値となり、
内部応力σを引っ張り応力とすることで逆磁歪効果によ
り優れた垂直磁気異方性が発現される。
In particular, in the Co-Pd alloy thin film, the Pd content is set to 40 to 9
When set to 0 atomic%, the magnetostriction constant becomes a large negative value,
By setting the internal stress σ to be a tensile stress, excellent perpendicular magnetic anisotropy is expressed due to the inverse magnetostriction effect.

〔実施例〕〔Example〕

以下、本発明の好適な実施例について図面を参照しなが
ら説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本実施例は、Co、□Pd、sの組成を有する合金薄膜
を磁性層とする垂直磁気記録媒体の例である。
This example is an example of a perpendicular magnetic recording medium whose magnetic layer is an alloy thin film having a composition of Co, □Pd, and s.

このような垂直磁気記録媒体は、以下のようにして作成
した。
Such a perpendicular magnetic recording medium was produced as follows.

まずマグネトロン・スパッタリング装置のチャンバー内
に100mm径のCoターゲットを設置し、MK Co
ターゲットの上にさらに種々の中心角を有する扇型のP
dターゲットを載置して、いわゆる複合ターゲットとし
た。ここで、Pdターゲットの中心角や枚数を変えてC
oターゲットとの面積比を変化させることにより、得ら
れる金属薄膜の組成を変えることができる。この複合タ
ーゲットに対してガス圧25 X 10−3Torrの
アルゴン雰囲気下でスパッタリングを行い、ガラス基板
上にCo−Pd合金薄膜を被着形成し、垂直磁気記録媒
体を作成した。上記Co−Pd合金薄膜はEPMA(電
子プローブ微量分析)によりCO*tPd、aの組成を
有し、また、X線回折により多結晶構造を有することが
確認された。
First, a Co target with a diameter of 100 mm was installed in the chamber of a magnetron sputtering device, and MK Co
A sector-shaped P with various central angles is further placed above the target.
A so-called composite target was prepared by placing a d target. Here, by changing the center angle and number of Pd targets,
o By changing the area ratio to the target, the composition of the obtained metal thin film can be changed. Sputtering was performed on this composite target in an argon atmosphere at a gas pressure of 25×10 −3 Torr to form a Co—Pd alloy thin film on a glass substrate, thereby producing a perpendicular magnetic recording medium. The Co--Pd alloy thin film was confirmed to have a composition of CO*tPd,a by EPMA (electron probe microanalysis), and to have a polycrystalline structure by X-ray diffraction.

このようにして作成された垂直磁気記録媒体の磁気特性
を振動試料型磁力計を使用して測定した結果を第1図(
A)および第1図(B)に示す。
Figure 1 shows the results of measuring the magnetic properties of the perpendicular magnetic recording medium thus created using a vibrating sample magnetometer.
A) and FIG. 1(B).

第1図(A)は垂直方向、第1図(B)は面内方向にて
測定した磁化曲線をそれぞれ示し、縦軸は磁化の強さM
(任意単位)、また横軸は外部磁場の強さH(kOe)
を表す。これらの図から、上記垂直磁気記録媒体が垂直
磁気異方性を有していることがわかる。第1表には上記
垂直磁気記録媒体の磁気特性のデータをまとめる。なお
比較のために、この表には磁性層として従来の代表的材
料であるCo−Cr合金薄膜を使用した垂直磁気記録媒
体に関するデータも併せて示す。
Figure 1 (A) shows the magnetization curve measured in the vertical direction, and Figure 1 (B) shows the magnetization curve measured in the in-plane direction, and the vertical axis is the magnetization strength M.
(arbitrary unit), and the horizontal axis is the strength of the external magnetic field H (kOe)
represents. From these figures, it can be seen that the perpendicular magnetic recording medium has perpendicular magnetic anisotropy. Table 1 summarizes data on the magnetic properties of the perpendicular magnetic recording medium. For comparison, this table also shows data regarding a perpendicular magnetic recording medium using a Co--Cr alloy thin film, which is a typical conventional material, as a magnetic layer.

この表をみると、CozzPd、eを磁性層とする垂直
磁気記録媒体は、Go−Cr合金薄膜を磁性層とする垂
直磁気記録媒体と同等の磁気特性を有することが明らか
である。
Looking at this table, it is clear that the perpendicular magnetic recording medium with CozzPd,e as the magnetic layer has the same magnetic properties as the perpendicular magnetic recording medium with the Go-Cr alloy thin film as the magnetic layer.

第2′図には、Co−Pd合金の組成による保磁力およ
び角形比の変化を示す。図中、縦軸は垂直方向の保磁力
(Oe)及び角形比を、横軸はCo−Pd合金の組成を
Pdの割合(原子%)で表し、黒丸(・)のプロットは
保磁力を、白丸 (0)のプロットは角形比をそれぞれ
表す。この図より、保磁力および角形比は共に組成依存
性を示し、特にPdが60〜90原子%の領域において
良好な結果が得られていることがわかる。
Figure 2' shows changes in coercive force and squareness ratio depending on the composition of the Co--Pd alloy. In the figure, the vertical axis represents the coercive force (Oe) and squareness ratio in the vertical direction, the horizontal axis represents the composition of the Co-Pd alloy in terms of Pd percentage (atomic %), and the plot of black circles (·) represents the coercive force, Plots of white circles (0) each represent the squareness ratio. From this figure, it can be seen that both the coercive force and the squareness ratio show composition dependence, and particularly good results are obtained in the Pd content range of 60 to 90 at %.

さらに第3図には、Co−Pd合金の組成による飽和磁
化と飽和磁束密度の変化を示す。図中、縦軸は飽和磁化
(emu/cmff)あるいは飽和磁束密度(kGau
ss)を、横軸はCo−Pd合金の組成をPdの割合(
原子%)で表し、黒丸(・)のプロットは飽和磁化を、
白丸(0)のプロットは飽和磁束密度をそれぞれ表す。
Furthermore, FIG. 3 shows changes in saturation magnetization and saturation magnetic flux density depending on the composition of the Co--Pd alloy. In the figure, the vertical axis is saturation magnetization (emu/cmff) or saturation magnetic flux density (kGau
ss), and the horizontal axis shows the composition of the Co-Pd alloy as the Pd ratio (
The plot of black circles (・) indicates the saturation magnetization,
Each plot of white circles (0) represents the saturation magnetic flux density.

この図より、飽和磁化および飽和磁束密度はPdの割合
が増加するにしたがって減少する回向を示し、上述の第
2図において良好な保磁力および角形比が達成されてい
たPd60〜90原子%の領域では飽和磁化は100〜
400emu/cm’ 、飽和磁束密度は2〜5 kG
aussである。
This figure shows that the saturation magnetization and saturation magnetic flux density decrease as the proportion of Pd increases. In the region, the saturation magnetization is 100~
400 emu/cm', saturation magnetic flux density is 2-5 kG
It is auss.

なお、Co−Pd合金薄膜を磁性層とする上述の各垂直
磁気記録媒体には、温度80°C,温度90%の恒温恒
温下に100時間放置した後にもまったく磁気特性の劣
化や腐食はみられなかった。
Note that the perpendicular magnetic recording media mentioned above, each of which has a Co-Pd alloy thin film as its magnetic layer, show no deterioration of magnetic properties or corrosion even after being left at a constant temperature of 80°C and 90% for 100 hours. I couldn't.

〔発明の効果〕〔Effect of the invention〕

本発明にかかる垂直磁気記録媒体において磁性層として
使用されたGo−Pd合金薄膜は、従来の代表的な材料
であるGo−Cr合金薄膜と同等かそれ以上の磁気特性
を示す。
The Go--Pd alloy thin film used as the magnetic layer in the perpendicular magnetic recording medium according to the present invention exhibits magnetic properties equal to or better than those of the Go--Cr alloy thin film, which is a typical conventional material.

したがって、本発明によれば、優れた垂直磁気異方性を
有するとともに膜特性等の実用特性にも優れた垂直磁気
記録媒体の提供が可能となり、高品質かつ高密度の垂直
磁気記録が可能となる。
Therefore, according to the present invention, it is possible to provide a perpendicular magnetic recording medium that has excellent perpendicular magnetic anisotropy and excellent practical properties such as film properties, and enables high-quality and high-density perpendicular magnetic recording. Become.

また、本発明は、垂直磁気記録の分野において磁性層材
料の選択の幅を広げるという点でもその技術的意義は大
きいと言える。
Furthermore, the present invention can be said to have great technical significance in that it expands the range of choices for magnetic layer materials in the field of perpendicular magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)および第1図(B)はCO□xPdvs合
金薄膜を磁性層とする垂直磁気記録媒体の磁気特性を示
す磁化曲線であり、第1図(A)は垂直方向、第1図(
B)は面内方向の磁気特性にそれれぞれ対応するもので
ある。第2図はCo−Pd合金における保磁力および角
形比の組成依存性を示す特性図であり、第3図は飽和磁
化および飽和磁束密度の組成依存性を示す特性図である
。第4図はCo−Pd合金の組成と磁歪定数との関係を
示す特性図である。第5図はCOx4Pdbb合金薄膜
をスパッタリングにより作成する際のアルゴンガス圧と
内部応力の関係を示す特性図である。 特許出願人   ソニー株式会社 代理人 弁理士 小 池   晃(他2名)第1図な)
       第1図(B)Pd  力筈り合  (R
’)’ム) 第2図     ゛ 第3図
FIG. 1(A) and FIG. 1(B) are magnetization curves showing the magnetic characteristics of a perpendicular magnetic recording medium having a CO□xPdvs alloy thin film as a magnetic layer. figure(
B) corresponds to the magnetic properties in the in-plane direction. FIG. 2 is a characteristic diagram showing the composition dependence of coercive force and squareness ratio in a Co--Pd alloy, and FIG. 3 is a characteristic diagram showing the composition dependence of saturation magnetization and saturation magnetic flux density. FIG. 4 is a characteristic diagram showing the relationship between the composition of the Co--Pd alloy and the magnetostriction constant. FIG. 5 is a characteristic diagram showing the relationship between argon gas pressure and internal stress when creating a COx4Pdbb alloy thin film by sputtering. Patent applicant Sony Corporation representative Patent attorney Akira Koike (and 2 others) (see Figure 1)
Figure 1 (B) Pd force balance (R
Figure 2 ゛Figure 3

Claims (1)

【特許請求の範囲】[Claims] Co10〜40原子%及びPd60〜90原子%よりな
る合金薄膜を磁性層とする垂直磁気記録媒体。
A perpendicular magnetic recording medium whose magnetic layer is an alloy thin film consisting of 10 to 40 atomic % Co and 60 to 90 atomic % Pd.
JP1493588A 1988-01-26 1988-01-26 Perpendicular magnetic recording medium Pending JPH01191318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1493588A JPH01191318A (en) 1988-01-26 1988-01-26 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1493588A JPH01191318A (en) 1988-01-26 1988-01-26 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01191318A true JPH01191318A (en) 1989-08-01

Family

ID=11874826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1493588A Pending JPH01191318A (en) 1988-01-26 1988-01-26 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01191318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505783A1 (en) * 1991-03-28 1992-09-30 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5242762A (en) * 1991-02-19 1993-09-07 Sony Corporation Magnetic recording medium having an underlayer and a thin film magnetic layer which consists of a specified cobalt-platinum-palladium alloy
JP2003022523A (en) * 2001-07-05 2003-01-24 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method for manufacturing the same
US20180145339A1 (en) * 2016-11-18 2018-05-24 City University Of Hong Kong Method of fabricating nanoporous metal structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242762A (en) * 1991-02-19 1993-09-07 Sony Corporation Magnetic recording medium having an underlayer and a thin film magnetic layer which consists of a specified cobalt-platinum-palladium alloy
EP0505783A1 (en) * 1991-03-28 1992-09-30 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5413868A (en) * 1991-03-28 1995-05-09 Fuji Photo Film Co., Ltd. Perpendicular magnetic recording medium comprising a magnetic thin film of cobalt, palladium, chromium and oxygen
JP2003022523A (en) * 2001-07-05 2003-01-24 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method for manufacturing the same
JP4491768B2 (en) * 2001-07-05 2010-06-30 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
US20180145339A1 (en) * 2016-11-18 2018-05-24 City University Of Hong Kong Method of fabricating nanoporous metal structure
US10612152B2 (en) * 2016-11-18 2020-04-07 City University Of Hong Kong Method of fabricating nanoporous metal structure

Similar Documents

Publication Publication Date Title
US5516547A (en) Method for fabricating magnetic recording medium
JP2007164941A (en) Perpendicular magnetic recording medium
JP2674132B2 (en) Magnetic recording media
JP2698814B2 (en) Soft magnetic thin film
JPH01191318A (en) Perpendicular magnetic recording medium
JP2508489B2 (en) Soft magnetic thin film
JP2710440B2 (en) Soft magnetic alloy film
JPS60101709A (en) Vertical magnetic recording medium
JPH0817032A (en) Magnetic recording medium and its production
JPS63106916A (en) Magnetic recording medium
JPS6313256B2 (en)
JPH023102A (en) Perpendicular magnetic recording medium
JPH0322647B2 (en)
JPS6044813B2 (en) Manufacturing method of alloy thin film for magnetic recording
US5198309A (en) Magnetic recording member
JP3880000B2 (en) High saturation magnetic flux density soft magnetic material
JPS6367326B2 (en)
JPH0626167B2 (en) Soft magnetic thin film
JPH01232522A (en) Magnetic disk
JPH0628088B2 (en) Magnetic recording medium
JPH01290118A (en) Magnetic disk
JPH0323969B2 (en)
JPH0322648B2 (en)
JPH0439905A (en) Magnetically soft alloy film
JPS62164205A (en) Magnetic recording medium