JPH0323969B2 - - Google Patents

Info

Publication number
JPH0323969B2
JPH0323969B2 JP60029462A JP2946285A JPH0323969B2 JP H0323969 B2 JPH0323969 B2 JP H0323969B2 JP 60029462 A JP60029462 A JP 60029462A JP 2946285 A JP2946285 A JP 2946285A JP H0323969 B2 JPH0323969 B2 JP H0323969B2
Authority
JP
Japan
Prior art keywords
film
magnetic
coercive force
magnetic film
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60029462A
Other languages
Japanese (ja)
Other versions
JPS61190714A (en
Inventor
Kyuzo Nakamura
Yoshitake Oota
Hiroki Yamada
Michio Ishikawa
Noriaki Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2946285A priority Critical patent/JPS61190714A/en
Publication of JPS61190714A publication Critical patent/JPS61190714A/en
Publication of JPH0323969B2 publication Critical patent/JPH0323969B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、面内記録型のハードデイスク媒体等
に利用される面内記録型磁気記録体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a longitudinal recording type magnetic recording body used in a longitudinal recording type hard disk medium or the like.

(従来の技術) 従来、金属薄膜型磁気記録体が高密度記録可能
な媒体として注目され、実用化されはじめている
が、この中で非磁性基材面上にCr膜を形成した
後、その表面にCo膜をスパツタ法や蒸着法で形
成して成る磁気記録体がある。該磁気記録体は、
面内方向で高い保磁力を示し、面内記録型のハー
ドデイスク媒体等に応用されつつある。又、最
近、前記の記録体の磁性膜であるCo膜に代え、
Co−Ni膜としたものが公知である。
(Prior art) Metal thin film magnetic recording media have attracted attention as media capable of high-density recording and are beginning to be put into practical use. There are magnetic recording bodies made of Co films formed by sputtering or vapor deposition. The magnetic recording body is
It exhibits high coercive force in the in-plane direction, and is being applied to in-plane recording type hard disk media. Also, recently, instead of the Co film which is the magnetic film of the recording medium,
A Co-Ni film is known.

(発明が解決しようとする問題点) 上記のように、非磁性基材面上に形成したCr
膜を介しCo磁性膜を形成した磁性記録体は、そ
のCr膜の厚さを増大すると保磁力が増大するが、
その保磁力が600〜800Oe程度のものを得るには
その膜厚を4000〜8000Åとする必要があり、スパ
ツタ法や蒸着法を用いて量産しようとすると、該
Crの膜厚を4000〜8000Åと厚くする必要がある
ため、ターゲツトの消耗が大きく、又量産速度が
比較的おそい等の問題がある。従つて、Crの膜
厚を薄くしても600〜800Oe程度のものを得られ
ること、換言すれば、4000〜8000Åで上記以上の
保磁力をもつ磁気記録体の製造が望まれる。1
方、この磁性膜がCo膜である磁気記録体は、耐
食性が悪い欠点がある。以上の問題を解決するた
め該Co磁性膜に代え、Co−Ni磁性膜とした磁性
記録体は、保磁力が向上し且つ耐食性も向上した
ものが得られる。即ち、そのCr膜厚が3000Åで
700Oeの保磁力が得られるが、この同じ保磁力を
得るため、更に肉薄のCr膜厚とすることができ
れば更に好ましく、又その磁性膜の耐食性も更に
向上したものが得られれば更に好ましい。
(Problem to be solved by the invention) As mentioned above, Cr formed on the non-magnetic base material surface
In a magnetic recording body in which a Co magnetic film is formed through a film, the coercive force increases as the thickness of the Cr film increases.
To obtain a coercive force of about 600 to 800 Oe, the film thickness must be 4000 to 8000 Å, and if mass production is attempted using sputtering or vapor deposition,
Since the Cr film needs to be as thick as 4000 to 8000 Å, there are problems such as large target consumption and relatively slow mass production speed. Therefore, it is desirable to be able to obtain a magnetic recording material with a coercivity of about 600 to 800 Oe even if the Cr film thickness is reduced, or in other words, to produce a magnetic recording body having a coercive force of 4000 to 8000 Å and greater than the above. 1
On the other hand, magnetic recording bodies in which the magnetic film is a Co film have a drawback of poor corrosion resistance. In order to solve the above problems, a magnetic recording body using a Co--Ni magnetic film instead of the Co magnetic film has improved coercive force and improved corrosion resistance. That is, when the Cr film thickness is 3000Å,
Although a coercive force of 700 Oe can be obtained, it is more preferable if the Cr film can be made even thinner in order to obtain the same coercive force, and it is even more preferable if the corrosion resistance of the magnetic film can be further improved.

(問題点を解決するための手段) 本発明は、上記の要求を満足する面内記録型磁
気記録体を提供するもので、非磁性基材面上に
Cr膜を介してエピタキシヤル成長されHCP相の
c軸が面内方向に配向したCo合金系磁性金属膜
を形成して成る面内記録型磁気記録体において、
該磁性金属膜は、CoxTiyNizで表わされ且つ
0.45≦x<1.0、0<y≦0.10、x+y+z=1の
原子比の組成をもつことを特徴とする。
(Means for Solving the Problems) The present invention provides an in-plane recording type magnetic recording medium that satisfies the above requirements.
In an in-plane recording type magnetic recording body formed by forming a Co alloy-based magnetic metal film that is epitaxially grown through a Cr film and in which the c-axis of the HCP phase is oriented in the in-plane direction,
The magnetic metal film is represented by CoxTiyNiz and
It is characterized by having an atomic ratio composition of 0.45≦x<1.0, 0<y≦0.10, and x+y+z=1.

(実施例) 次に本発明の実施例につき説明する。(Example) Next, examples of the present invention will be described.

発明者は、磁性膜として、Co及びCo−Niに
夫々Tiの添加量mを変えてその各種の組成割合
のCo−Ti磁性膜及びCo−Ti−Ni磁性膜を、非磁
性基材面に形成したCr膜面上に形成した面内記
録型磁気記録体を形成し、その夫々につき保磁力
と耐食性とを検討した。
The inventors prepared Co-Ti magnetic films and Co-Ti-Ni magnetic films with various composition ratios by changing the amount m of Ti added to Co and Co-Ni as magnetic films, respectively, on the surface of a non-magnetic base material. In-plane recording type magnetic recording bodies were formed on the surface of the formed Cr film, and the coercive force and corrosion resistance of each were examined.

第1図及び第2図は、Cr膜厚を3000Å、Co−
Ti又はCo−Ti−Ni磁性膜の厚さ500Åの一定と
した磁気記録体の上記2元又は3元合金成分の配
合比の変化と保磁力との関係を示す。
Figures 1 and 2 show a Cr film thickness of 3000 Å and a Co-
The relationship between the coercive force and the change in the mixing ratio of the binary or ternary alloy components of the magnetic recording body with the Ti or Co-Ti-Ni magnetic film having a constant thickness of 500 Å is shown.

第1図のCo−Ti磁性膜の曲線A及びCo−Ti−
Ni磁性膜の曲線Bに示すように、いづれの場合
も、Tiの添加量が約10at%まではCo単独の磁性
膜に比し保磁力は増大することが分る。特に、
Co−Ti−Niの3元合金の磁性膜ではその最高の
保磁力は約5at%の添加で820Oeが得られ、この
値は、仝図に対照として示した従来公知の中でも
最も高い保磁力を示すCo0.7Ni0.3磁性膜を最高の
保磁力700Oeよりも高い優れたものが得られるこ
とが分る。又第1図示のように、Co単独の磁性
膜はその保磁力は400Oeであるに対し、本発明に
よれば、第2図から明らかなように、保磁力が
400Oeより高い保磁力が得られる本発明のCo−
Ti又はCo−Ti−Niの磁性膜の組成範囲は、
CoxTiyNiz、但し0.45≦x<1.0、0<y≦0.10、
x+y+z=1である。
Curve A of Co-Ti magnetic film in Fig. 1 and Co-Ti-
As shown in curve B for the Ni magnetic film, it can be seen that in any case, when the amount of Ti added is up to about 10 at%, the coercive force increases compared to the magnetic film containing only Co. especially,
The highest coercive force of the Co-Ti-Ni ternary alloy magnetic film is 820 Oe with addition of about 5 at%, and this value is the highest coercive force among the conventionally known ones shown for comparison in the figure. It can be seen that an excellent Co0.7Ni0.3 magnetic film with a maximum coercive force of 700 Oe can be obtained. Also, as shown in Figure 1, the coercive force of a magnetic film made of Co alone is 400 Oe, but according to the present invention, as is clear from Figure 2, the coercive force is 400 Oe.
The Co of the present invention provides a coercive force higher than 400Oe.
The composition range of Ti or Co-Ti-Ni magnetic film is
CoxTiyNiz, where 0.45≦x<1.0, 0<y≦0.10,
x+y+z=1.

最も好ましい領域は、Co0.65Ti0・05Ni0.30付
近である。
The most preferable region is around Co0.65Ti0.05Ni0.30.

第3図は該Co0.65Ti0.05Ni0.30磁性膜と対照と
してCo0.7Ni0.3磁性膜とCo単独磁性膜の夫々に
つき、非磁性基材面に形成されるCr膜厚を変え
た場合の保磁力との関係を検べた結果を示す。
Figure 3 shows the Co0.65Ti0.05Ni0.30 magnetic film, the Co0.7Ni0.3 magnetic film, and the Co-only magnetic film, respectively, when the thickness of the Cr film formed on the non-magnetic base material surface was changed. The results of examining the relationship with coercive force are shown.

この図から明らかなように、同じ保磁力、例え
ば700Oeを得るには、Co磁性膜の場合は、Cr膜
厚を5000Å、該Co−Ni磁性膜の場合はCr膜厚
は、3000Åを夫々必要とするに対し、本発明の該
CO−Ti−Ni磁性膜の場合は、これを2000Åの肉
薄で足りることが分る。更に、本発明のCo−Ti
−Ni磁性膜は、Co−Ni磁性膜及びCo磁性膜に比
し、Cr膜の厚さの変化を問わず、どの点の厚さ
でも、保磁力の向上したものが得られる。
As is clear from this figure, in order to obtain the same coercive force, for example 700 Oe, the Co magnetic film requires a Cr film thickness of 5000 Å, and the Co-Ni magnetic film requires a Cr film thickness of 3000 Å. However, according to the present invention,
In the case of a CO-Ti-Ni magnetic film, it can be seen that a thickness of 2000 Å is sufficient. Furthermore, Co-Ti of the present invention
The -Ni magnetic film has an improved coercive force at any thickness point, regardless of the change in the thickness of the Cr film, compared to the Co--Ni magnetic film and the Co magnetic film.

又、本発明のCo−Ti−Ni磁性膜につき耐食性
を、Co単独磁性膜、CoNi磁性膜と共に検べた結
果を第4図に示す。耐食性試験は、60℃、90%の
恒温恒湿の件において、飽和磁化の減少で評価し
た。第4図から明らかなように、本発明の磁性膜
は、著しく耐食性が増大していることが分る。
FIG. 4 shows the results of testing the corrosion resistance of the Co-Ti-Ni magnetic film of the present invention together with a Co magnetic film alone and a CoNi magnetic film. The corrosion resistance test was evaluated by the decrease in saturation magnetization at 60°C and 90% constant temperature and humidity. As is clear from FIG. 4, it can be seen that the magnetic film of the present invention has significantly increased corrosion resistance.

本発明の磁性膜の製造において、その他の元素
を微量添加しても差支えない。又このように作成
した磁性膜の上面に耐摩耗性や耐食性の有機又は
無機の任意の保護膜を形成してもよい。
In manufacturing the magnetic film of the present invention, trace amounts of other elements may be added. Further, any wear-resistant or corrosion-resistant organic or inorganic protective film may be formed on the upper surface of the magnetic film thus prepared.

本発明の面内記録型磁気記録体の製造法は、そ
の非磁性基材表面上のCr膜は、スパツタ法や蒸
着法などで形成し、そのCr膜の上面にCo−Ti磁
性膜又はCo−Ti−Ni磁性膜を形成するにもスパ
ツタ法や蒸着法などで得られるが、Co、Ni、Ti
の蒸気圧が異なるので、スパツタ法が好ましく、
製造容易である。Cr膜の形成後磁性膜を形成す
るまでの時間は、できるだけ短いことが好まし
い。
In the manufacturing method of the longitudinal recording type magnetic recording body of the present invention, a Cr film on the surface of the nonmagnetic base material is formed by a sputtering method, a vapor deposition method, etc., and a Co-Ti magnetic film or Co -Ti-Ni magnetic films can be formed by sputtering or evaporation methods, but Co, Ni, Ti
The sputtering method is preferable because the vapor pressures of
Easy to manufacture. It is preferable that the time from the formation of the Cr film to the formation of the magnetic film be as short as possible.

DCマグネトロンスパツタ法による本発明面内
記録型磁気記録体の製造条件は例えば、次の通り
である。基板:スライドガス、基板温度:室温、
到達真空度:8×10-7トール以下、スパツタ中の
Arガス圧:1×10-2トール、磁性膜厚:500Å一
定、Cr膜析出速度:1000Å/min、磁性膜:500
Å/min、ターゲツト・基板間の距離:100mm、
磁性膜のCo、Ti、Niの組成の変化はCoターゲツ
ト上にTiやNiのチツプを配置してスパツタを行
なつた。生成磁性膜の組成分析は、蛍光x線法に
より行なつて決めた。
The manufacturing conditions for the in-plane recording type magnetic recording body of the present invention by the DC magnetron sputtering method are, for example, as follows. Substrate: slide gas, substrate temperature: room temperature,
Ultimate vacuum: 8×10 -7 Torr or less, in spatter
Ar gas pressure: 1×10 -2 Torr, magnetic film thickness: 500 Å constant, Cr film deposition rate: 1000 Å/min, magnetic film: 500
Å/min, distance between target and substrate: 100mm,
The composition of Co, Ti, and Ni in the magnetic film was changed by sputtering by placing Ti and Ni chips on a Co target. The composition of the produced magnetic film was determined by performing an x-ray fluorescence method.

(発明の効果) このように本発明によるときは、非磁性基材面
上に、Cr膜を形成したものの上面にエピタキシ
ヤル成長されHCP相のc軸が面内方向に配向し
たCo合金系磁性金属膜を形成して成る面内記録
型磁気記録体の該磁性金属膜をCoxTiyNizから
成り且つこれらの成分の原子比を0.45≦x<1.0、
0<y≦0.10、x+y+z=1としたので、その
保磁力を著しく向上できると共に従来のCo磁性
膜、Co−Ni磁性膜の保磁力と同じ保磁力をもつ
面内記録型磁気記録体を製造するには、そのCr
膜を著しく減少せしめることができるので、ター
ゲツトの消耗量を減少できると共に生産性を向上
し得られ、又従来の上記磁気記録体に著しく耐食
性の向上した面内記録型磁気記録体が得られる等
の効果を有する。
(Effects of the Invention) As described above, according to the present invention, a Co alloy-based magnetic material is grown epitaxially on the upper surface of a non-magnetic base material on which a Cr film is formed, and the c-axis of the HCP phase is oriented in the in-plane direction. The magnetic metal film of the in-plane recording type magnetic recording body formed by forming a metal film is made of CoxTiyNiz, and the atomic ratio of these components is 0.45≦x<1.0.
Since 0<y≦0.10 and x+y+z=1, the coercive force can be significantly improved, and a longitudinal recording type magnetic recording medium can be manufactured that has the same coercive force as that of conventional Co magnetic films and Co-Ni magnetic films. To do that Cr
Since the film can be significantly reduced, the amount of consumption of the target can be reduced and productivity can be improved, and a longitudinal recording type magnetic recording body can be obtained which has significantly improved corrosion resistance compared to the conventional magnetic recording body described above. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の磁性膜の成分組成と保
磁力との関係を示すグラフ、第2図は仝様の関係
の三角図表、第3図はCr膜厚と保磁力との関係
を示すグラフ、第4図は磁性膜の成分組成変化と
耐食性の関係を示すグラフである。
Fig. 1 is a graph showing the relationship between the component composition and coercive force of the magnetic film of an example of the present invention, Fig. 2 is a triangular diagram showing the same relationship, and Fig. 3 is a graph showing the relationship between Cr film thickness and coercive force. The graph shown in FIG. 4 is a graph showing the relationship between changes in the composition of the magnetic film and corrosion resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基材面上にCr膜を介してエピタキシ
ヤル成長されHCP相のc軸が面内方向に配向し
たCo合金系磁性金属膜を形成して成る面内記録
型磁気記録体において、該磁性金属膜は、CoX
TiYNiZで表わされ且つ0.45≦x<1.0、0<y≦
0.10、x+y+z=1の原子比の組成をもつこと
を特徴とする面内記録型磁気記録体。
1. In an in-plane recording type magnetic recording body formed by forming a Co alloy-based magnetic metal film epitaxially grown on a non-magnetic substrate surface via a Cr film and in which the c-axis of the HCP phase is oriented in the in-plane direction, The magnetic metal film is Co
Ti Y Ni Z and 0.45≦x<1.0, 0<y≦
A longitudinal recording type magnetic recording material characterized by having a composition with an atomic ratio of 0.10 and x+y+z=1.
JP2946285A 1985-02-19 1985-02-19 Magnetic recording body Granted JPS61190714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2946285A JPS61190714A (en) 1985-02-19 1985-02-19 Magnetic recording body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2946285A JPS61190714A (en) 1985-02-19 1985-02-19 Magnetic recording body

Publications (2)

Publication Number Publication Date
JPS61190714A JPS61190714A (en) 1986-08-25
JPH0323969B2 true JPH0323969B2 (en) 1991-04-02

Family

ID=12276764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2946285A Granted JPS61190714A (en) 1985-02-19 1985-02-19 Magnetic recording body

Country Status (1)

Country Link
JP (1) JPS61190714A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833983B2 (en) * 1986-09-01 1996-03-29 株式会社日立製作所 Magnetic recording media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105302A (en) * 1979-02-07 1980-08-12 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105302A (en) * 1979-02-07 1980-08-12 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS61190714A (en) 1986-08-25

Similar Documents

Publication Publication Date Title
EP0216610B1 (en) Vertical magnetic recording medium with multilayered magnetisable film structure
US5736262A (en) Magnetic recording medium
JPS62257617A (en) Magnetic recording medium
US4629660A (en) Perpendicular magnetic-recording medium
CN1070278A (en) Magnetic recording medium and manufacture method thereof
JPH0322647B2 (en)
JPS6367325B2 (en)
JP3273374B2 (en) Magnetic recording medium
JPH0323969B2 (en)
JPH0323971B2 (en)
JPH0323970B2 (en)
JPH0817032A (en) Magnetic recording medium and its production
JPH0322648B2 (en)
JP3052092B2 (en) Magnetic recording medium
JPS63106916A (en) Magnetic recording medium
US5198309A (en) Magnetic recording member
JPH01191318A (en) Perpendicular magnetic recording medium
JP2516064B2 (en) Magnetic recording medium and manufacturing method thereof
JPS6367326B2 (en)
JPS61110328A (en) Vertical magnetic recording medium and its production
JPS6364623A (en) Magnetic recording medium
JPS6177126A (en) Magnetic recording medium
JPS62164205A (en) Magnetic recording medium
JPS62162223A (en) Thin film magnetic recording medium
JPH06124832A (en) Magnetic recording media