JPS6177126A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6177126A
JPS6177126A JP59197792A JP19779284A JPS6177126A JP S6177126 A JPS6177126 A JP S6177126A JP 59197792 A JP59197792 A JP 59197792A JP 19779284 A JP19779284 A JP 19779284A JP S6177126 A JPS6177126 A JP S6177126A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic recording
recording medium
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197792A
Other languages
Japanese (ja)
Inventor
Yasuo Ishizaka
石坂 安雄
Noboru Watanabe
昇 渡辺
Kazuo Kimura
一雄 木村
Masataka Koyama
小山 正孝
Eiichiro Imaoka
今岡 英一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP59197792A priority Critical patent/JPS6177126A/en
Priority to KR1019850006781A priority patent/KR890004255B1/en
Publication of JPS6177126A publication Critical patent/JPS6177126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristic and productivity by forming the magnetic film of a Co-Cr alloy contg. slightly W on a base body to a specified film thickness. CONSTITUTION:The magnetic recording constituted by forming the magnetic film consisting of the Co-Cr alloy contg. just about <=1.9atom% W on the base body has the improved c-axis orientability of the pulverous alloy crystal, im proved vertical magnetic anisotropy and the improved magnetic characteristics such as saturation magnetization. The excellent magnetic recording medium is thus obtd. by the thin vertically magnetizable film. The thickness of the vertical magnetizable film is made about 0.1-0.25mum to form the magnetic film having the excellent vertical magnetic anisotropy and substantial reproduced output. The formation of the magnetic film by a PVD means such as sputtering is executed in the shorter time by which the production efficiency is improved, the less material is required and the cost is reduced. The saturation magnetiza tion exceeds 300emu/cc which is a measure for practicability and HCL is large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に垂直磁気記録媒体に関するものである。[Detailed description of the invention] [Industrial application field] The present invention particularly relates to perpendicular magnetic recording media.

〔従来技術とその問題点〕[Prior art and its problems]

例えば、オーディオ用又はビデオ用の記録再生装置ある
いはコンピュータ等の記憶装置においては、ペース上に
磁性層塗膜の設けられた磁気記録媒体が用いられており
、リング型磁気ヘッドを用いて磁気記録媒体の水平方向
に磁化を向けるといった水平磁気記録方式が用いられて
いる。
For example, in recording and reproducing devices for audio or video, or storage devices for computers, etc., a magnetic recording medium is used in which a magnetic layer coating is provided on a magnetic recording medium, and a ring-shaped magnetic head is used to A horizontal magnetic recording method is used in which magnetization is directed in the horizontal direction.

ところが、この水平磁気記録方式による記録の場合、記
録信号が短波長になるにつれ、すなわち記録密度を増加
してゆくにつれ、媒体内の反磁界が増し、残留磁化の減
衰と回転とを生じ、再生出力が著しく減少することよシ
、水平磁気記録方式では高密度化に対応できない。
However, in the case of recording using this horizontal magnetic recording method, as the wavelength of the recording signal becomes shorter, that is, as the recording density increases, the demagnetizing field within the medium increases, causing attenuation and rotation of the residual magnetization, which causes playback. The horizontal magnetic recording method cannot cope with higher densities since the output will be significantly reduced.

そこで、最近に至り、上記のような媒体面内に記録する
水平磁気記録方式にかわる新しい記録方式として垂直磁
気記録方式が注目を集めている。
Therefore, recently, perpendicular magnetic recording has been attracting attention as a new recording method to replace the above-mentioned horizontal magnetic recording which records within the plane of the medium.

この垂直磁気記録方式とは、磁化容易釉が膜面法線方向
である磁気記録媒体を用い、膜面に対して垂直方向に記
録磁化モードを構成するものであって、記録信号が短波
長になるにつれ媒体内の反磁界が小さくなるので、高密
度化に適しているのでめる。
This perpendicular magnetic recording method uses a magnetic recording medium in which the easily magnetized glaze is in the normal direction to the film surface, and configures the recording magnetization mode in the direction perpendicular to the film surface, so that the recording signal has a short wavelength. This is because the demagnetizing field within the medium becomes smaller as the density increases, making it suitable for higher densities.

そして、このような垂直磁気記録媒体として、例えばコ
バルトにクロムを含有せしめ、更に第3成分としてタン
グステンを2〜10原子チ、例えば4.5原子チ含有せ
しめたlpm厚の磁性膜のものが提案(/l!i−開昭
57−73913号ンされている。
As such a perpendicular magnetic recording medium, an lpm-thick magnetic film has been proposed, for example, containing chromium in cobalt and further containing 2 to 10 atoms of tungsten, for example, 4.5 atoms, as a third component. (/l!i-No. 1987-73913).

ところが、この磁気記録媒体は、磁性層の厚みが厚いこ
とよシフラックが起きやすく、かつリング型磁気ヘッド
とのあたりが良くなく、再生具合の悪いものであり、か
つ磁気記録媒体の製造能率も悪く(成膜に時間がかかり
すぎる)、又磁性材料も多く要るのでコスト高なものと
なるといった欠点のあることがわかった。
However, due to the thick magnetic layer, this magnetic recording medium is prone to siflux, and does not fit well with the ring-type magnetic head, resulting in poor playback performance, and the manufacturing efficiency of the magnetic recording medium is also poor. It has been found that there are drawbacks such as (it takes too much time to form a film) and that it requires a large amount of magnetic material, resulting in high cost.

又、単に磁性膜の厚みを薄くしても望ましい垂直磁気記
録媒体は得られないことがわかった。
It has also been found that a desirable perpendicular magnetic recording medium cannot be obtained simply by reducing the thickness of the magnetic film.

〔発明の開示〕[Disclosure of the invention]

本発明者は、基体上にWを約1.9原子チ以下しか含ま
ないCo−Cr系合金の磁性膜を形成した磁気記録媒体
は、その膜厚が例えば約0.2μm厚と薄くても、飽和
磁化は大きく、又垂直方向の保磁力も大きく、垂直異方
性は高く、その磁気特性に優れており、父、当直磁化膜
の厚みが薄いとクラック等は起きにくく、柔軟性に富み
、磁気ヘッドとのあたりが良く、従って再生具合もそれ
だけ良くなり、しかも磁気記録材料の使用曖も残らせら
れ、それだけ生産性もよくかつ低コストなものとなるも
のでおることを見い出した。
The present inventor has discovered that a magnetic recording medium in which a magnetic film of a Co-Cr alloy containing less than about 1.9 atoms of W is formed on a substrate can be used even if the film thickness is as thin as, for example, about 0.2 μm. , the saturation magnetization is large, the perpendicular coercive force is large, the perpendicular anisotropy is high, and its magnetic properties are excellent.The thickness of the duty magnetization film is small, making it difficult for cracks to occur, and it is highly flexible. It has been found that the contact with the magnetic head is good, and therefore the reproduction quality is also improved accordingly.Moreover, there is no ambiguity in the use of the magnetic recording material, and the productivity can be improved and the cost can be reduced accordingly.

つまり、Co及びC「を言む合金にWを約1.9原子チ
以下、特に(召ましくは約0.5〜1.5原子チ添加し
ておくことにより、この合金微結晶のC軸配向性が向上
し、垂直異方性が高まり、又、飽和磁化等の磁気特性も
良好であり、薄い垂直磁化膜で優れた磁気記録材料を提
供できることを見い出したのである。すなわち、Wを約
1.9原子チ以下、特に約0.5〜1.5原子チ添加し
ておくことにより優れた垂直磁化膜が得られるのである
が、2原子チを越えてWを含んでいると、垂直磁化膜の
特性は劣下し、特((垂直磁化膜の厚みが約0.1〜0
.25μmといったように薄い場合には事実上垂直磁気
記録媒体としては用いられないものとなることを見い出
した。
In other words, by adding about 1.9 atoms or less of W, preferably about 0.5 to 1.5 atoms, to an alloy containing Co and C, it is possible to add W to an alloy containing Co and C. They discovered that the axial orientation is improved, the perpendicular anisotropy is increased, and the magnetic properties such as saturation magnetization are also good, making it possible to provide an excellent magnetic recording material with a thin perpendicularly magnetized film. An excellent perpendicular magnetization film can be obtained by adding about 1.9 atoms or less, especially about 0.5 to 1.5 atoms, but if W is included in excess of 2 atoms, The characteristics of the perpendicular magnetization film deteriorate, especially when the thickness of the perpendicular magnetization film is approximately 0.1 to 0.
.. It has been found that when the thickness is as thin as 25 μm, it cannot actually be used as a perpendicular magnetic recording medium.

尚、垂直磁化11へ中のCrの含有量は約5〜20原子
チのものであることが望ましく、つまりCrが20原子
%を越えて多い場合8るいは5原子チ未満の少なすぎる
場合には極めて望ましい磁気特性のものとなりに<<、
特に化1u磁化膜の厚みを約0.1〜0.25μmとい
ったように薄くシ九場合に磁気特性が極めて望ましいも
のとならない。
It is preferable that the content of Cr in the perpendicular magnetization 11 is about 5 to 20 atoms, that is, if the Cr content is more than 20 at%, it may be less than 8 or 5 atoms. has extremely desirable magnetic properties.<<,
In particular, when the thickness of the 1U magnetized film is as thin as about 0.1 to 0.25 μm, the magnetic properties are not very desirable.

そして、Wを営むCo−Cr系合金よりなる垂直磁化膜
の4与は、厚い方が丹生出力値は大きくなるものの、厚
いと磁気記録媒体の柔軟性が低下し、磁気ヘッドとのあ
たりが低下し、再生具合が良くなくなるので、垂直磁化
膜の厚みは約0.1〜αだμm程要であることがjl(
要である。同、このように垂直磁化膜の厚みを薄くして
も、Wを約1.9原子チ以下しか含まない、特に約0.
5〜1.5原子係含むCo−Cr系合金微結晶膜よりな
る磁性+11:’4は、重置磁気異方性に優れており、
又再生出力も光分るり、ざらには磁性1!!、fをスパ
ッタ等のPVD手役で形成するのに薄い分密時間で処理
でき、それだけ製造fig 率も向上し、かつ材料のf
ilも少なくてすむので低コストでできる。
The thicker the perpendicularly magnetized film made of the Co-Cr alloy containing W, the higher the Niu output value, but the thicker it is, the less flexible the magnetic recording medium is and the contact with the magnetic head is lower. However, since the reproduction condition will not be good, the thickness of the perpendicular magnetization film should be about 0.1 to αμm (
It is essential. Similarly, even if the thickness of the perpendicularly magnetized film is reduced in this way, it will contain only about 1.9 atoms or less of W, especially about 0.
Magnetism +11:'4 made of a Co-Cr alloy microcrystalline film containing 5 to 1.5 atoms has excellent superposed magnetic anisotropy,
In addition, the playback output is light and magnetic 1! ! , f can be formed using a PVD process such as sputtering in a short time, which improves the manufacturing rate and improves the f of the material.
It can be done at low cost because it requires less il.

向、本屈明はCo−Cr−Wの3成分系に限られるもの
ではなく、不1jJ雁不純物の四に、レリえば八4o、
Ta、Nb等をBんでいても差し支えないものでろ々 
O 真空既約I X 10−’ Torr、フルーfン1j
xFEIXIO−3Torr、投入電力1000W、タ
ーゲット基板間距離110flの条件で、RFマグネト
ロンスパッタ装置を用い、Co−Cr−W系合金微結晶
の垂直磁化膜をの垂直磁化膜組成及び膜厚は、実施例1
のものでは(co812CrI68)9(sWIILs
及び0.18μm であり、実施例2のものでは(Co
 5a2Cr 118 )9に! W as及び0.1
9μmであり、実施例3のものでは(008ユ2C1t
ag ) +1&7 W 1.s及びQ、29μmであ
る。
However, this method is not limited to the 3-component system of Co-Cr-W, but also includes 4 impurities, 84 o,
It is okay to use B for Ta, Nb, etc.
O vacuum irreducible I X 10-' Torr, flune f1j
Using an RF magnetron sputtering device under the conditions of xFEIXIO-3 Torr, input power of 1000 W, and distance between target substrates of 110 fl, the perpendicular magnetization film composition and film thickness of a perpendicular magnetization film of Co-Cr-W alloy microcrystals were determined according to the example. 1
In those of (co812CrI68)9(sWIILs
and 0.18 μm, and in Example 2 (Co
5a2Cr 118 ) to 9! W as and 0.1
9 μm, and in Example 3 (008U2C1t
ag) +1 & 7 W 1. s and Q are 29 μm.

〔比較例1及び2〕 約20μm厚のポリイミド非磁性基板上に、前記実施例
と同様なRFマグネトロンスパッタ装置を用いて同様に
して厚み0.28μmの垂直磁化膜(膜組成Co so
 Crza 、比較例1)及び厚みQ、19μm厚の垂
直磁化膜(膜組成(Co51x Cr tag ) *
v、3Wtt、比較例2)を構成した。
[Comparative Examples 1 and 2] A 0.28 μm thick perpendicularly magnetized film (film composition Co so
Crza, Comparative Example 1) and a perpendicularly magnetized film with a thickness Q of 19 μm (film composition (Co51x Cr tag) *
v, 3Wtt, Comparative Example 2) was constructed.

〔特性〕〔Characteristic〕

上記実施例1〜3の磁気記録媒体に記録された残留磁化
ヲリングヘッドで再生した際の再生波形を示すと、第1
 +、9〜第3図に示すylnりであり、双峰性パルス
状の再生波形であることから、本実施例のものは垂直磁
気記録〃1シ体であることがわかる。
The reproduction waveforms when reproduced by the residual magnetization Woring head recorded on the magnetic recording media of Examples 1 to 3 above are as follows.
+, 9 to yln shown in FIG. 3, and the reproduced waveform is bimodal pulse-like, indicating that the device of this example is a perpendicular magnetic recording system.

つまり、残菌磁化成分が水平方向成分のみの場合には単
峰性パルス状の再生波形であるのに対し、垂直方向成分
が多くなるにつれて双峰性パルス状のものとなるからで
ある。尚、W含有量が増すにつれて双峰性パルス比が大
きくなっており、従ってW含有量の増加につれて屯直成
分が増していることがわかる。
In other words, when the residual bacteria magnetization component is only a horizontal component, the reproduced waveform is a unimodal pulse, whereas as the vertical component increases, the reproduced waveform becomes a bimodal pulse. It can be seen that as the W content increases, the bimodal pulse ratio increases, and therefore, as the W content increases, the tunic component increases.

又、上記実施例1〜3及び比較例1.2の磁気記録lt
’l:体の飽和磁化Ms、垂直方向の保磁力HCL %
水平方向の保磁力Hc t・、水平方向磁化曲線の角型
比Rst・、ロッキングカーブの半値幅Δθsoをdl
定すると、表に示す71へりである。
Moreover, the magnetic recording lt of the above Examples 1 to 3 and Comparative Example 1.2
'l: Saturation magnetization Ms of the body, vertical coercive force HCL %
Horizontal coercive force Hc t・, horizontal magnetization curve squareness ratio Rst・, rocking curve half width Δθso dl
The result is 71 edges shown in the table.

すなわち、本実施例のもの社、現在実用上の目安とされ
ている300emu/ccを飽和磁化は越えており、又
HCLもブ;きく、かつΔθ1・の値も小さくなってお
り(結晶配向性の向上)、垂直磁気記録媒体として優れ
ていることがわかる。
In other words, the saturation magnetization of this example exceeds 300 emu/cc, which is currently considered as a practical guideline, the HCL is strong, and the value of Δθ1 is small (crystal orientation (Improved performance), it can be seen that it is excellent as a perpendicular magnetic recording medium.

又、実施fil 1のものと比較例1のものについての
波長特性を測定すると第4図に示す通りであり、実施例
のものはその膜厚が約7であるにもかかわらず短波長領
域での再生出力はW添加によって逆に大きくなっており
、高密度記録に優れたものであることがわかる。
Furthermore, when the wavelength characteristics of Example fil 1 and Comparative Example 1 were measured, they were as shown in Figure 4, and although the film thickness of Example fil 1 was approximately 7, On the contrary, the reproduction output of the sample increased with the addition of W, indicating that it is excellent in high-density recording.

そして、上記実施17すのものは垂直磁化膜の膜厚が約
0.2μmとf考いにもかかわらず優れた磁気特性を示
しており、さらにはこのように垂直磁化膜の鯖みが薄い
と柔軟性に富んでいて磁気ヘッドとのあたりが良く、再
生特性が良いものとなっている。
The above Example 17 has a perpendicularly magnetized film with a film thickness of about 0.2 μm, which shows excellent magnetic properties despite the fact that the thickness of the perpendicularly magnetized film is thin. It is highly flexible, makes good contact with the magnetic head, and has good playback characteristics.

〔効果〕〔effect〕

優れた垂直磁気記録媒体一体であり、特に垂直磁化1晴
の厚みが薄くても磁気!特性は良好であり、又垂直磁化
膜の厚みが薄いので生産性も向上し、かつ材料費も低廉
であり、低コストででき、さらには再生具合も優れたも
のである。
An excellent perpendicular magnetic recording medium, especially perpendicular magnetization even if the thickness is thin! The characteristics are good, and since the perpendicular magnetization film is thin, the productivity is improved, the material cost is low, it can be manufactured at low cost, and the reproduction quality is also excellent.

4、  I’!、1而の[ム1単な説明第1図〜第4図
は、磁気記録919体の特性を示すグラフである。
4. I'! , 1. Brief Description of Figures 1 to 4 are graphs showing the characteristics of the magnetic recording body 919.

Claims (1)

【特許請求の範囲】[Claims] 基体上にWを約1.9原子%以下含むCo−Cr系合金
の磁性膜を約0.1〜0.25μm厚形成したことを特
徴とする磁気記録媒体。
1. A magnetic recording medium characterized in that a magnetic film of a Co--Cr alloy containing about 1.9 atomic % or less of W is formed on a substrate to a thickness of about 0.1 to 0.25 μm.
JP59197792A 1984-09-22 1984-09-22 Magnetic recording medium Pending JPS6177126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59197792A JPS6177126A (en) 1984-09-22 1984-09-22 Magnetic recording medium
KR1019850006781A KR890004255B1 (en) 1984-09-22 1985-09-17 Magnetic recording carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197792A JPS6177126A (en) 1984-09-22 1984-09-22 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6177126A true JPS6177126A (en) 1986-04-19

Family

ID=16380424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197792A Pending JPS6177126A (en) 1984-09-22 1984-09-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6177126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594794A (en) * 1991-10-01 1993-04-16 Nec Corp Ion source grid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594794A (en) * 1991-10-01 1993-04-16 Nec Corp Ion source grid

Similar Documents

Publication Publication Date Title
Bate Magnetic recording materials since 1975
GB2175014A (en) Perpendicular magnetic recording medium
US4792486A (en) Perpendicular magnetic recording medium
US4609593A (en) Magnetic recording medium
JPS60239916A (en) Vertical magnetic recording medium
JPS6177125A (en) Magnetic recording medium
JPS6177126A (en) Magnetic recording medium
JPH0785401A (en) Magnetic recording method
KR890004255B1 (en) Magnetic recording carrier
JP2515756B2 (en) Method of manufacturing magnetic recording medium
JPH0628088B2 (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0322647B2 (en)
JPH0315245B2 (en)
JPS6177127A (en) Magnetic recording medium
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPS6177128A (en) Magnetic recording medium
JPH0570205B2 (en)
JPH0256724B2 (en)
JPS61115244A (en) Production of magnetic recording medium
JPS62162223A (en) Thin film magnetic recording medium
JPS63119017A (en) Perpendicular magnetic recording medium
Ouchi et al. Perpendicular magnetic recording media
Speliotis Particulate magnetic recording media
JPS58171717A (en) Magnetic recording medium