JPS6226709A - Annealing of superconductor - Google Patents

Annealing of superconductor

Info

Publication number
JPS6226709A
JPS6226709A JP16706085A JP16706085A JPS6226709A JP S6226709 A JPS6226709 A JP S6226709A JP 16706085 A JP16706085 A JP 16706085A JP 16706085 A JP16706085 A JP 16706085A JP S6226709 A JPS6226709 A JP S6226709A
Authority
JP
Japan
Prior art keywords
annealing
superconducting
wire
superconducting wire
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16706085A
Other languages
Japanese (ja)
Inventor
目黒 信一郎
角田 好喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16706085A priority Critical patent/JPS6226709A/en
Publication of JPS6226709A publication Critical patent/JPS6226709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に超電導線の焼鈍方法に関し、特に低融点金属を
メッキし、たり、半田付けした超電導線の焼鈍を可能に
したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for annealing superconducting wire, and in particular makes it possible to anneal superconducting wire plated with a low melting point metal or soldered.

従来の技術 安定化金属に銅を用いた超電導線は、通常最終形状に冷
間加工した後、300℃で2時間程度の雰囲気焼鈍する
か、又は高温(400〜b加工歪全除去している。一方
低融点金属、例えばSnをメッキしたり、半田付けした
超電導線ではSnや半田の融点が200℃前後のため、
Snメッキや半田付は後に焼鈍することができないため
、一般にはSnメッキや半田付は前に超電導線を焼鈍し
ている。
Conventional technology Superconducting wires using copper as the stabilizing metal are usually cold-worked into the final shape and then annealed in an atmosphere at 300°C for about 2 hours, or high-temperature (400°C to 400°C to completely remove processing strain). On the other hand, in the case of superconducting wire plated with a low melting point metal such as Sn or soldered, the melting point of Sn and solder is around 200°C.
Since Sn plating and soldering cannot be annealed afterwards, the superconducting wire is generally annealed before Sn plating and soldering.

発明が解決しようとする問題点 超電導線に更に安定化銅線をpb−8n半田付けにより
一体化する超電導線では、半田付は時に絞りダイス通し
て減面加工l−でいるが、この加工歪を除去するための
焼鈍が、pb−8n半田の融点が低いために不可能であ
る。また加速器用成形撚線型超電導線では、複数本の超
電導線にAg−3n半田をメッキした後、撚線成形して
いるが、この成形の加工歪を除去するための焼鈍が、A
g−8n半田の融点が低いために不可能である。また超
電導線をスプールに多量に巻いて焼鈍を行なうと、線材
間に粘着が発生し表面欠陥になるばかりか、著しいとき
には巻戻しが不可能になることもある。更に焼鈍条件に
もよるが、従来の焼鈍条件では超電導臨界電流特性が低
下することがある。
Problems to be Solved by the Invention In superconducting wires in which a stabilized copper wire is integrated with a superconducting wire by PB-8N soldering, soldering is sometimes done by passing through a drawing die to reduce the area. Annealing to remove is not possible due to the low melting point of pb-8n solder. In addition, in forming stranded superconducting wires for accelerators, multiple superconducting wires are plated with Ag-3n solder and then stranded.
This is not possible due to the low melting point of g-8n solder. Furthermore, if a large amount of superconducting wire is wound around a spool and then annealed, adhesion will occur between the wires, resulting in surface defects, and in severe cases, it may become impossible to unwind the wire. Further, depending on the annealing conditions, the superconducting critical current characteristics may deteriorate under conventional annealing conditions.

問題を解決するための手段 本発明はこれに鑑み種々検討の結果、低融点金属をメッ
キしたり、半田付けした超電導線の冷間加工歪を除去し
、かつ超電導線臨界電流特性を劣化しない超電導線の焼
鈍方法を開発したもので、超電導線の安定化金属を50
%以上の冷間加工状態として、超電導線を120〜20
0℃の温度で10時間以上加熱処理することを特徴とす
るものである。
Means for Solving the Problems In view of this, and as a result of various studies, the present invention has developed a superconductor that eliminates the cold working strain of superconducting wires plated with low melting point metals or soldered, and that does not deteriorate the critical current characteristics of the superconducting wires. A wire annealing method has been developed, and 50% of the stabilizing metal for superconducting wire is
The superconducting wire is in a cold worked condition of 120-20% or more.
It is characterized by heat treatment at a temperature of 0° C. for 10 hours or more.

即ち本発明に銅を安定化金属とする超電導線又はこれに
安定化金属線を組み合せた超電導線の焼鈍において、超
電導線の安定化金属全50チ以上の強冷間加工状態とし
、これを120〜200℃の温度で10時間以上加熱す
るものである。例えば銅を安定化金属とする多芯超電導
線にAg−8n半田をメッキしミこれを複数本撚合せて
成形した撚合せ型超電導線では、多芯超電導線に50%
以上の冷間加工を加えて、これにAg−8n半田メツキ
し、これを複数本撚合せて成形してから120〜200
℃で10時間以上加熱処理する。また上記多芯超電導線
を中心にして、これに複数本の安定化銅線を撚合せテ半
凹付けした超電導線でに、多芯超電導線及び安定化銅線
に50%以上の冷間加工を施してから撚合せ、これを半
田付けしてから120〜200℃で10時間以上加熱処
理する。
That is, in the present invention, in annealing a superconducting wire using copper as a stabilizing metal or a superconducting wire in which a stabilizing metal wire is combined with the superconducting wire, a total of 50 or more stabilized metals of the superconducting wire are subjected to strong cold working, and this is It is heated at a temperature of ~200°C for 10 hours or more. For example, in a stranded superconducting wire made by plating Ag-8n solder on a multi-core superconducting wire using copper as a stabilizing metal and twisting together multiple wires, 50%
After adding the above cold working, solder plating with Ag-8N, twisting a plurality of strands together and molding them.
Heat treatment at ℃ for 10 hours or more. In addition, centering on the above multicore superconducting wire, multiple stabilized copper wires are twisted together and the superconducting wire is semi-concaved, and the multicore superconducting wire and stabilized copper wire are subjected to cold working of 50% or more. After that, they are twisted together, soldered, and then heat treated at 120 to 200°C for 10 hours or more.

作用 本発明は上記の如く超電導線の安定化金属を50%以上
の冷間加工状態とすることにより、半田や低融点金属の
融点以下の温度で焼鈍全可能にし、超電導線の超電導臨
界電流を劣化することなく、冷間加工歪の除去を可能に
する。しかして安定化金属の冷間加工状態としては、加
工度が高ければ高いほど、焼鈍温度を下げ加熱時間を短
縮することができる。
Effect of the present invention As described above, by subjecting the stabilizing metal of the superconducting wire to a 50% or more cold-worked state, it is possible to perform annealing at a temperature below the melting point of solder or low-melting point metal, thereby reducing the superconducting critical current of the superconducting wire. It is possible to remove cold working strain without deterioration. As for the cold working state of the stabilized metal, the higher the degree of working, the lower the annealing temperature and the shorter the heating time.

従って本発明によれば、超電導線や安定化金属線にpb
−8nやAg−8nなどの低融点半田を付着させ良状態
での焼鈍が可能となり、半田付着後の冷間加工歪を焼鈍
により回復させることができる。また低温で焼鈍を行な
うため、一つのスプールに多量に線材を巻付けて焼鈍し
ても粘着が発生しない。
Therefore, according to the present invention, PB is added to superconducting wires and stabilized metal wires.
It is possible to attach low melting point solder such as -8n or Ag-8n and annealing in good condition, and cold working strain after solder attachment can be recovered by annealing. Furthermore, since the annealing is performed at a low temperature, no adhesion occurs even when a large amount of wire is wound around one spool and annealed.

実施例(1) 超電導線の安定化銅線を種々の加工度で冷間加工した後
、種々の温度で加熱処理し、これについて残留抵抗比(
300Kにおける電気抵抗と10Kにおける電気抵抗の
比)を求めた。その−例を第1図に示す。
Example (1) Stabilization of superconducting wires Copper wires were cold-worked at various working degrees and then heat-treated at various temperatures to determine the residual resistance ratio (
The ratio of the electrical resistance at 300K to the electrical resistance at 10K was determined. An example of this is shown in FIG.

図は縦軸に残留抵抗比、横軸に加熱温度を表わして、冷
間加工度50%、90%、95%のものを48時間加熱
処理し友場合を示し、図から判るように安定化銅線は強
冷間加工を加えたものほど低温で焼鈍されることが判る
。一方超電導線に用いられる安定化銅線には残留抵抗が
100以上のものが用いられ、また超電導線に用いられ
るpb−8n等の半田の融点は200℃前後であり、図
から冷間加工度が50%以上、望ましくは90%前後で
あれば200℃以下の低温でもノヲ時間加熱すれば十分
焼鈍が可能で、あることが判る。
The figure shows the residual resistance ratio on the vertical axis and the heating temperature on the horizontal axis, and shows the cases where cold-worked samples with a degree of cold working of 50%, 90%, and 95% were heat-treated for 48 hours, and as can be seen from the figure, they were stabilized. It can be seen that the more intensely cold-worked the copper wire is, the lower the temperature it anneals. On the other hand, the stabilized copper wire used in superconducting wires has a residual resistance of 100 or more, and the melting point of solder such as PB-8N used in superconducting wires is around 200°C. It can be seen that if it is 50% or more, preferably around 90%, sufficient annealing is possible even at a low temperature of 200° C. or less by heating for a long time.

実施例(2) 銅を安定化金属とするNbTi多芯超電導線を直径2.
2■で320℃、120時間の時効熱処理を施し、これ
を直径0.7mmまで冷間加工(加工率90%)した。
Example (2) A NbTi multicore superconducting wire with copper as a stabilizing metal was prepared with a diameter of 2.
Aging heat treatment was performed at 320° C. for 120 hours at 2■, and this was cold worked to a diameter of 0.7 mm (working rate 90%).

これを第2図に示すように超電導線(1)の周面に5n
−5%Ag合金(2)ヲ約1μmの厚さに溶融メッキし
たものを9本撚合せて図に示すように成形し、素粒子加
速器用ダイポールマグネット用の断面平角形状の撚線と
した。
As shown in Figure 2, 5n is applied to the circumferential surface of the superconducting wire (1).
Nine pieces of -5% Ag alloy (2) hot-dipped to a thickness of about 1 μm were twisted together and formed as shown in the figure to form a stranded wire with a rectangular cross section for a dipole magnet for an elementary particle accelerator.

これをN2ガス雰囲気中160℃で48時間焼鈍したと
ころ残留抵、抗比は120となった。また焼鈍した撚線
には変色、5n−5%Ag合金が溶融した形跡及び撚線
間の粘着は全く認められなかった。また焼鈍前後で超電
導臨界電流特性を測定し友が、±1%以内の差しかなく
、測定精度を考慮すればこの焼鈍により特性の低下はな
かったものと思われる。尚成形撚線の焼鈍前の残留抵抗
比は55であった。
When this was annealed at 160° C. for 48 hours in a N2 gas atmosphere, the residual resistance and resistance ratio were 120. Further, no discoloration, no evidence of melting of the 5n-5% Ag alloy, and no adhesion between the strands was observed in the annealed strands. Furthermore, when measuring the superconducting critical current characteristics before and after annealing, there was a difference of only ±1%, and considering the measurement accuracy, it seems that there was no deterioration in the characteristics due to this annealing. The residual resistance ratio of the formed stranded wire before annealing was 55.

実施例(3) 直径3.1咽で320℃、120時間の時効熱処理を施
した後、直径0.7 wnまで冷間加工(加工率95%
〕した銅を安定化金属とするNbTi多芯超電導線と、
直径3.1咽で500℃、1時間の焼鈍に行なった後、
直径0.7問まで冷間加工(加工率95%〕した無酸素
銅線を用い、第3図に示すように超電導線(1)を中心
として、その周囲に前記無酸素銅線(3)i6本撚合せ
、これをPb−50wt%Sn半田浴に通して溶融メッ
キしながら直径1.8 mmの絞りダイスを通して成形
し、完全安定化超電導線を製造した。これを150℃で
60時間焼鈍したところ残留抵抗比は焼鈍前の50から
125に回復し友。ま友焼鈍後の超電導線にはpb−8
n半田の溶融の形跡は認められなかった。
Example (3) After performing aging heat treatment at 320°C for 120 hours with a diameter of 3.1 mm, cold working to a diameter of 0.7 wn (processing rate of 95%)
] NbTi multicore superconducting wire using copper as a stabilizing metal,
After annealing at 500℃ for 1 hour with a diameter of 3.1 mm,
Using oxygen-free copper wire that has been cold-worked to a diameter of 0.7 mm (processing rate 95%), as shown in Figure 3, the superconducting wire (1) is centered and the oxygen-free copper wire (3) is placed around it. A completely stabilized superconducting wire was produced by twisting 6 wires together and passing them through a Pb-50wt%Sn solder bath and hot-dip plating while passing through a drawing die with a diameter of 1.8 mm.This was annealed at 150°C for 60 hours. As a result, the residual resistance ratio recovered from 50 before annealing to 125.The superconducting wire after annealing was coated with PB-8.
No evidence of melting of the solder was observed.

発明の効果 このように本発明によれば従来不可能であった半田付着
後の冷間加工歪を除去する焼鈍が可能となり、しかも焼
鈍により超電導線の超電導臨界電流特性が劣化しない顕
著な効果を奏するものである。
Effects of the Invention As described above, according to the present invention, it is possible to perform annealing that removes cold working strain after solder adhesion, which was previously impossible, and also has the remarkable effect that the superconducting critical current characteristics of the superconducting wire do not deteriorate due to annealing. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超電導線の安定化銅線の焼鈍による残留抵抗比
の回復に及ぼす冷間加工率の影響を示す説明図、第2図
は断面平角形状の超電導撚線の一例を示す断面図、第3
図は完全安定化超電導線の一例を示す断面図である。 1 超電導線  2Sn−Ag合金層 2 無酸素銅線 第1図
Fig. 1 is an explanatory diagram showing the influence of cold working rate on the recovery of residual resistance ratio by annealing of stabilized copper wire of superconducting wire, Fig. 2 is a sectional view showing an example of a superconducting stranded wire with a rectangular cross section, Third
The figure is a cross-sectional view showing an example of a fully stabilized superconducting wire. 1 Superconducting wire 2 Sn-Ag alloy layer 2 Oxygen-free copper wire Figure 1

Claims (1)

【特許請求の範囲】[Claims] 超電導線の安定化金属を50%以上の冷間加工状態とし
て、超電導線を120〜200℃の温度で10時間以上
加熱処理することを特徴とする超電導線の焼鈍方法。
A method for annealing a superconducting wire, the method comprising heating the superconducting wire at a temperature of 120 to 200° C. for 10 hours or more while bringing the stabilizing metal of the superconducting wire into a 50% or more cold-worked state.
JP16706085A 1985-07-29 1985-07-29 Annealing of superconductor Pending JPS6226709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16706085A JPS6226709A (en) 1985-07-29 1985-07-29 Annealing of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16706085A JPS6226709A (en) 1985-07-29 1985-07-29 Annealing of superconductor

Publications (1)

Publication Number Publication Date
JPS6226709A true JPS6226709A (en) 1987-02-04

Family

ID=15842653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16706085A Pending JPS6226709A (en) 1985-07-29 1985-07-29 Annealing of superconductor

Country Status (1)

Country Link
JP (1) JPS6226709A (en)

Similar Documents

Publication Publication Date Title
GB1110583A (en) Improvements in or relating to the manufacture of composite conductors
US4756467A (en) Solderable elements and method for forming same
JPS59155161A (en) Wire for bonding of semiconductor element
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS6226709A (en) Annealing of superconductor
US3881965A (en) Wire product and method of manufacture
JPH046296A (en) Nickel-plated copper wire and its production
JPH0437524B2 (en)
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
JPH0656722B2 (en) High frequency wire
JPS60727B2 (en) Manufacturing method of aluminum stabilized composite superconducting wire
JP2007081244A (en) METHOD FOR CONNECTING Nb3Al SUPER-CONDUCTION COIL
US4431862A (en) Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JP2000164053A (en) Manufacture of aluminum stabilized superconducting wire
JPH0247802B2 (en)
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPS6333244B2 (en)
JPS6176636A (en) Heat-resistant high-strength copper alloy having high electric conductivity
JP3070969B2 (en) Superconducting wire manufacturing method
JP3148212B2 (en) Manufacturing method of superconducting molded stranded wire
JPH0358123B2 (en)
JPS60170110A (en) Copper coated nbti superconductive lead
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPH03226924A (en) Manufacture of tin coated strand wire