JPS62266103A - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane

Info

Publication number
JPS62266103A
JPS62266103A JP61108500A JP10850086A JPS62266103A JP S62266103 A JPS62266103 A JP S62266103A JP 61108500 A JP61108500 A JP 61108500A JP 10850086 A JP10850086 A JP 10850086A JP S62266103 A JPS62266103 A JP S62266103A
Authority
JP
Japan
Prior art keywords
organic polymer
group
fixed charge
membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108500A
Other languages
Japanese (ja)
Inventor
Tadahiro Uemura
忠廣 植村
Hideo Fujimaki
藤巻 英夫
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61108500A priority Critical patent/JPS62266103A/en
Publication of JPS62266103A publication Critical patent/JPS62266103A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Abstract

PURPOSE:To obtain a composite semipermeable membrane which is effective in both the softening of hard water and the selective separation of a multivalent ion and a monovalent ion and is excellent in water permeability even under the operation conditions in low pressure by coating the surface of an activated layer consisting of a cross-linked organic polymer having a negative fixed charge group by the organic polymer having a positive fixed charge group. CONSTITUTION:A composite membrane where in a cross-linked organic polymer having a negative fixed charge type group is made to an activated layer is obtained for example by allowing piperazine and trimesic acid chloride to react with a support of fiber-reinforced polysulfone by interfacial polycondensation, controlling the interfacial reaction in this case and introducing a carboxyl group into cross-linked pipe-razine polyamide. Then a reverse osmosis method is performed by using this membrane and adding an organic polymer having a positive fixed charge group such as polyethyleneimine to raw water and the organic polymer having the positive fixed charge type group is adsorbed on the surface of the membrane and thereby a composite semipermeable membrane where the activated layer is coated by the organic polymer having positive fixed charge type group is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、液状)I−合物の成分を選択透過分離するた
めの半透膜に関1−るものであり、エネルギー的に有利
な低圧操作下でもカン水を脱塩し淡水化することができ
、特に硬水の軟水化に有効であり、さらに染色廃水や電
6塗利廃水等の公害発生原因である汚水等から、その中
に含まれる汚染あるいは有価物を選択的に除去または回
収し、また、半導体の製造や、医療用の超純水の製造に
用いることのできる、複合半透!漠に関Jるものである
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a semipermeable membrane for selectively permeating the components of a liquid I-compound. Can water can be desalinated and desalinated even under low-pressure operation, and is particularly effective in softening hard water.It can also be used to remove pollution-causing sewage, such as dyeing wastewater and electric wastewater. Composite semi-transparent material that selectively removes or recovers contained contaminants or valuable substances, and can also be used in the production of semiconductors and ultrapure water for medical use! It is vaguely related.

[従来の技術] 従来、■業的に利用されている半透膜には、酢酸セルロ
ーズから作った非対称膜として、例えば米国特許第3,
133,132号及び同第3,133.137号等に記
載されたロブ型の膜がある。
[Prior Art] Conventionally, commercially used semipermeable membranes include asymmetric membranes made from cellulose acetate, such as those disclosed in U.S. Patent No. 3,
There are lob-type membranes described in No. 133,132 and No. 3,133.137.

しかし、この膜は、耐加水分解性、耐微生物性、耐薬品
性などに問題があり、特に透過性を向上しようとすると
耐圧↑(1、耐久性を兼ねそなえた膜が製造できず、一
部使用され−Cいるが広範囲の用途に実用化されるに至
ってい’tTい。これらの酢酸セルローズ非対称膜の欠
員を4fクシた新しい素材に対する研究は米「1.1−
1木を中心に盛んに行なわれているが、芳1/Aポリノ
Iミド、ポリアミドヒドラジド(米国特ハ′1第3,5
67.632号)、ポリアミドFIi (持分11r(
50−121168号公ff1)、架橋ポリアミド?!
2(特公昭52−152879号公報)、ポリイミダゾ
ピロロン、ポリスルホン)7ミド、ポリベンズイミダゾ
ール、ポリベンズイミダシロン、ポリアリーレンオキシ
ドなど、その一部の欠点を改良する素材は得られている
ものの、選択分離性あるいは透過性等の面では酢酸セル
ローズ膜より劣っている。
However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc. In particular, when trying to improve permeability, the pressure resistance increases (1) It is not possible to manufacture a membrane that has both durability, and However, it has not yet been put to practical use in a wide range of applications.Research into a new material that eliminates the vacancies in these cellulose acetate asymmetric membranes has been carried out in the US ``1.1-''.
Although it is widely used mainly for 1/A polyamide and polyamide hydrazide (U.S. Special Ha'1 No. 3 and 5)
67.632), polyamide FIi (equity 11r (
No. 50-121168ff1), crosslinked polyamide? !
2 (Japanese Patent Publication No. 52-152879), polyimidazopyrrolone, polysulfone) 7mid, polybenzimidazole, polybenzimidacylon, polyarylene oxide, etc. Although materials that improve some of their drawbacks have been obtained. However, it is inferior to cellulose acetate membranes in terms of selective separation or permeability.

一方、最近目ブ型とは型を異にする半透膜として、活性
層とこれを支持する支持膜を異種素材から製造する複合
膜が開発されている。その一部は、FT−30,PA−
300,NF−40,PEC−1000といった商品名
ですでに1市されており、特に、非対称膜に比べて、選
択分離性や透過性の面で優れた性能を有しているため、
海水の1段淡水化、低分子有機水溶液の分離、回収、カ
ン水の低肚での淡水化等の新しい応用分野を切り拓いて
いる。しかし4Kから、これらの複合膜は、はとんどが
脱塩を主眼として開発されてたため、無Iff類につい
てはすべて排除してしまうものが多かった。そうした中
で最近、1価イオンと2価イオンの選択分離が用能な膜
が出現して注目されている。その員体例1311、特表
昭56−500062号、特開昭57−2’102号公
報、特開昭60−183010月公+11等に開示され
ている。これらの膜は、食塩(1価カチオン、1価アニ
オンの代表例)の脱塩率lJ、 50%稈痘で、硫酸マ
グネシウム(2価カチオン、2価)′二Aンの代表例)
の排除率が98%以十であることから、硬水の軟水化に
適しているときれCいる。、シかし実際にこれらの膜に
よって軟水化を試みるとこれらの膜は酸末端を有する架
橋ポリノアミドを主成分と”リ−る活性層、すなわち、
n固定荷電型基を有しているため、塩化マグネシウム、
塩化カルシウム(2価カチオン、1価アニオン)等の場
合は排除率が低く、軟水化に有効でないことが判明した
On the other hand, as a semipermeable membrane of a different type from the recent type, a composite membrane in which an active layer and a supporting membrane supporting the active layer are manufactured from different materials has been developed. Some of them are FT-30, PA-
It is already commercially available under trade names such as 300, NF-40, and PEC-1000, and has superior performance in terms of selective separation and permeability compared to asymmetric membranes.
It is opening up new application fields such as one-stage desalination of seawater, separation and recovery of low-molecular-weight organic aqueous solutions, and low-level desalination of canned water. However, from 4K onwards, these composite membranes were mostly developed with desalination as the main focus, and many of them excluded all If-free compounds. Under these circumstances, recently, membranes capable of selectively separating monovalent ions and divalent ions have appeared and are attracting attention. It is disclosed in example 1311, Japanese Patent Publication No. 56-500062, Japanese Patent Application Laid-open No. 57-2'102, Japanese Patent Application Laid-open No. 1830-11-11, October 1987, etc. These membranes have a desalination rate lJ of common salt (a typical example of a monovalent cation, a monovalent anion), a 50% culm, and a typical example of magnesium sulfate (a typical example of a divalent cation, divalent anion).
Since the rejection rate is over 98%, it is suitable for softening hard water. However, when water softening is actually attempted using these membranes, these membranes contain an active layer mainly composed of cross-linked polyamide with acid terminals, that is,
Because it has an n-fixed charge type group, magnesium chloride,
In the case of calcium chloride (divalent cation, monovalent anion), etc., the rejection rate was low and it was found that it was not effective for water softening.

[発明が解決しようと16問題点」 本発明者らは、硬水の軟化、多価イオンと1価イオンの
選択分因1に有効な半透膜で、かつ低圧操作条件下にお
いても透水性に1ぐれた半透膜を有るべく鋭意検問した
結果本発明に到達した。
[16 Problems to be Solved by the Invention] The present inventors have developed a semipermeable membrane that is effective in softening hard water and selectively distributing polyvalent ions and monovalent ions, and is permeable even under low pressure operating conditions. As a result of diligently examining as many defective semipermeable membranes as possible, we arrived at the present invention.

[問題点を解決するだめの手段] 本発明の上記目的は、以下の如き構成により達成される
。りなわち活性層が、負固定荷電基を有する架橋有機重
合体から成り、その表面を正固定荷電基を有する有機重
合体によって被覆して成る複合半透膜である。
[Means for solving the problems] The above object of the present invention is achieved by the following configuration. In other words, it is a composite semipermeable membrane in which the active layer is made of a crosslinked organic polymer having a fixed negative charge group, and the surface thereof is coated with an organic polymer having a fixed positive charge group.

ここで活性層とは、複合半透膜の性能を実質的に司どる
層であり、ポリスルホンなとの微多孔性支持膜上に薄く
]−ティングされた層をいう。
The active layer herein refers to a layer that substantially controls the performance of the composite semipermeable membrane, and is a layer formed thinly on a microporous support membrane such as polysulfone.

本発明において、活性層を構成する負固定荷電型基を有
する架橋有機重合体は、負固定荷電型基として、カルボ
ン酸、スルホン酸、リン酸、硫酸等の基を有する重合体
を主成分とするものであり、特に半透膜としての透水性
、脱塩性能を考慮すると、界面重縮合によって得られる
架橋ポリアミド系重合体や、架橋化されたスルホン化ポ
リスルホンなどが好ましい。
In the present invention, the crosslinked organic polymer having a negatively charged group constituting the active layer is mainly composed of a polymer having groups such as carboxylic acid, sulfonic acid, phosphoric acid, and sulfuric acid as the negatively charged group. In particular, in consideration of water permeability and desalting performance as a semipermeable membrane, crosslinked polyamide polymers obtained by interfacial polycondensation, crosslinked sulfonated polysulfone, and the like are preferred.

架橋ポリアミド系重合体を活性層とする複合膜で負固定
荷電型基を有する代表例は、たとえば特表昭50−50
0062号公報に示されるピペラジンポリアミドを活↑
(1層とする複合膜をあげることができ、界面小縮合で
ピペラジンと、トリメシン酸塩化物や、5−りI旧二1
スルホニルインノタル酸塩化物を反応さl! ”(le
jることができる。この際界面反応を]ン:−■−ルす
ることにより、架橋ピペラジンポリアミドに、カルボン
p[あるいはスルホン酸基を導入しn固定荷電を付与で
きる。
A typical example of a composite membrane having a crosslinked polyamide polymer as an active layer and having a negatively fixed charged group is, for example, published in Japanese Patent Application Publication No. 1983-1985.
Utilizes the piperazine polyamide shown in Publication No. 0062↑
(A single-layer composite film can be mentioned, in which piperazine, trimesic acid chloride, 5-riI former 21
React with sulfonylinotal acid chloride! ”(le
I can do it. At this time, by carrying out an interfacial reaction, a carboxylic acid group or a sulfonic acid group can be introduced into the crosslinked piperazine polyamide to impart an n fixed charge.

この種の負固定荷電型基を有する膜の特徴は、陰イオン
の電荷にJ、って脱塩率が大きく影響され、陽イオンの
電荷にはあまり影響を受けないことがあげられる。具体
的には、NaC4とNaSO4で脱塩率が大きく異なる
が、NaC4とMqCQ2あるいはCaCQ+等では脱
塩率はあまり変化しない。
A feature of this type of membrane having a negatively fixed charged group is that the salt removal rate is greatly influenced by the charge of anions, but is not affected much by the charge of cations. Specifically, the desalination rate differs greatly between NaC4 and NaSO4, but the desalination rate does not change much between NaC4 and MqCQ2 or CaCQ+.

また、架橋ポリ)lミド系重合体を活性層とする複合膜
で、界面反応の]ン1〜ロールで、正固定荷電基を導入
し、2価陽イAンの脱塩率を向上させた膜もあるが、殺
菌剤として塩素を作用させると、正固定荷電型基が選択
的に破壊され、負固定荷電型基のみを有する膜の性質を
示すようになる。
In addition, in a composite film with a crosslinked poly(mide) polymer as an active layer, a positively fixed charged group is introduced in the interfacial reaction, and the removal rate of divalent cations A is improved. However, when chlorine is used as a disinfectant, the positively charged groups are selectively destroyed, and the film exhibits the properties of a film containing only negatively charged groups.

具体的には、塩素処理によってMCI、Ca2+等2十 の脱塩率が低下し、Na+の脱塩率は変化しない。Specifically, chlorine treatment reduces MCI, Ca2+, etc. The desalination rate of Na+ decreases, and the desalination rate of Na+ remains unchanged.

本発明は、上記のような種々の負固定荷電型の膜に対し
て、その表面を正固定荷電基を有する有機重合体によっ
て被覆することにより、2価陽イオンの脱塩率を向上す
るものである。
The present invention improves the desalination rate of divalent cations by coating the surface of various negatively charged membranes as described above with an organic polymer having a positively fixed charged group. It is.

ここにいう正固定荷電型基を有する有機重合体とは、架
橋もしくは、非架橋の有機重合体において、その分子鎖
および/または末端および/または、側鎖に、正同定荷
電型基を有する重合体を意味し、正固定荷電型基として
は、4級化アンモニウム、4級化ピリジニウム肚等が一
般的である。
The organic polymer having a positive fixed charge type group as used herein refers to a crosslinked or non-crosslinked organic polymer having a positive fixed charge type group in its molecular chain and/or terminal and/or side chain. It means a combination, and as a positive fixed charge type group, quaternized ammonium, quaternized pyridinium, etc. are generally used.

代表例としては、4級化スヂレン、4級化ビニルピリジ
ン、4級化ビニルベンジルアミン、等の単独あるいは共
重合体や、ポリエチレンイミン、アミン変成ハロゲン化
ポリマー、ポリアリルアミン、ポリジアリルアミン等の
アミノ基を有するポリマーあるいは共重合体などと、そ
の変成物などを例示することができる。本発明における
好ましい正固定荷電型重合体としては、透水性を損うこ
となく、2価陽イオンの排除率を向上するものとして、
ポリエチレンイミン、ポリエピアミノヒドリン、ポリア
リルアミンをあげることができ、入手の容易さからポリ
エチレンイミンが好ましい。
Typical examples include homopolymers or copolymers such as quaternized styrene, quaternized vinylpyridine, and quaternized vinylbenzylamine, and amino groups such as polyethyleneimine, amine-modified halogenated polymers, polyallylamine, and polydiallylamine. Examples include polymers or copolymers having the following, and modified products thereof. Preferred positively charged polymers in the present invention include those that improve the exclusion rate of divalent cations without impairing water permeability.
Examples include polyethyleneimine, polyepiaminohydrin, and polyallylamine, with polyethyleneimine being preferred because of its ease of availability.

ここで、正固定荷電4゛1基を右する有a重合体によっ
て、活性層を被覆覆る方法は、通常の]−ティング方法
が使用C゛きるが、より簡便には逆浸透法を行ないなが
ら、ぞの1京水に正固定荷電型基を有する有機重合体を
添加することによっても達成できる。また、このような
簡便な操作でも、活性層の負固定荷電型基との相!L作
用によって正固定荷電型基を有する有機重合体は、表面
によ、く吸着され、使用中にはがれて流失覆ることはな
い。
Here, the active layer can be coated with an a-polymer having a positively fixed charge of 4 groups, by the usual method, but it is more convenient to use the reverse osmosis method. This can also be achieved by adding an organic polymer having a positively fixed charge type group to Zonoikyo water. In addition, even with such a simple operation, the phase with the negatively fixed charged group in the active layer can be reduced! The organic polymer having a positively fixed charged group is well adsorbed to the surface due to the L action, and will not peel off or be washed away during use.

[実施例] 以下の実施例に83いて、選択分離性能とし−C1食塩
または塩化カルシウムa3よび塩化マグネシウムの排除
率は電気仏轡磨の測定による通常の手段によって決定さ
れた。また、透過性能として、水通過速度は中位面(?
1.11月)シ時間当りの水の透過量で決定した。
EXAMPLES In the following Examples 83, selective separation performance - C1 common salt or calcium chloride A3 and magnesium chloride rejection rates were determined by conventional means by electrophotographic measurements. In addition, regarding permeation performance, the water passing rate is medium (?
1.November) It was determined by the amount of water permeation per hour.

参考例1 ポリエピク[1ルヒドリンから、ピペラジン変性ポリエ
ピクロルヒドリンの合成。
Reference Example 1 Synthesis of piperazine-modified polyepichlorohydrin from polyepic[1]ruhydrin.

ポリエピクロルヒドリン92.5gをメチルエヂルケト
ン280ccに溶解し、ヨウ化ナトリウム120CIを
加え、25時間攪拌遠流し、水で再沈すると、クロル基
の80%がヨード基に置換したポリエピヨードヒドリン
が得られた。このポリエピヨードヒドリン10gをN−
メチルピロリドン90gに溶解し、ピペラジン31C1
を加え、35℃で2時間加熱攪拌した。室温に放冷し、
500m1のベンゼンに上記溶液をすばやく滑拌しなが
ら加えると、白色のポリマが再沈できた。このポリマは
赤外吸収スペクトル、”’CN M Rスペクトルの結
果、ポリエピヨードヒドリンのヨード基の約80%がピ
ペラジンによって変性したピペラジン変性ポリエピクロ
ルヒドリンであることがわがった。この5重量%水溶液
はカスクロマトグラフィーの結果、0.6重量%のピペ
ラジンを含有していた。
92.5 g of polyepichlorohydrin was dissolved in 280 cc of methyl edyl ketone, 120 CI of sodium iodide was added, stirred and centrifuged for 25 hours, and reprecipitated with water, resulting in polyepiiodohydrin in which 80% of the chloro groups were substituted with iodo groups. was gotten. 10g of this polyepiiodohydrin was added to N-
Dissolved in 90 g of methylpyrrolidone, piperazine 31C1
was added, and the mixture was heated and stirred at 35°C for 2 hours. Leave to cool to room temperature;
When the above solution was added to 500 ml of benzene with rapid stirring, a white polymer could be reprecipitated. This polymer was found to be piperazine-modified polyepichlorohydrin in which approximately 80% of the iodine groups in polyepiiodohydrin were modified with piperazine, as a result of infrared absorption spectroscopy and CNMR spectroscopy. The aqueous solution contained 0.6% by weight of piperazine as determined by Cass chromatography.

参考例2 タテ30cm、ヨ120 CIRの大きさのポリエステ
ル繊維からなるタノタ(タフ−糸、」」糸とも150デ
ニールのマルー1ノイラメンI〜糸、織密度タテ90本
/インチ、=1167本/インチ、厚さ160μ)をガ
ラス板」に固定し、その上にポリスルホン(ユニオン・
カーバイド社製のudelP−3500>の16手I1
%ジメルホルムアミド(DMF)溶液を200μの厚み
で室温(20℃)でキャストし、たたらに純水中に浸漬
して5分間放置することによって繊維補強ポリスルホン
支持体(以下F R−F) S少持体と略1)を作成す
る。このようにして1qられたF’ R−I)S支持体
(厚さ210〜215μ)の純水透過係数は、圧力1k
CJ/d、温度25°Cで測定して、0.005〜0.
0I Q/cd −Sec  −atmであった。
Reference Example 2 Tanota (tough yarn) made of polyester fibers with a length of 30 cm and a width of 120 CIR, 150 denier Maru 1 Neiramen I thread, weaving density of 90 yarns/inch (vertical), = 1167 yarns/inch , 160μ thick) on a glass plate, and polysulfone (Union) was placed on top of it.
Carbide's udelP-3500> 16-hand I1
% dimelformamide (DMF) solution to a thickness of 200μ at room temperature (20°C), immersed in pure water and left for 5 minutes to form a fiber-reinforced polysulfone support (hereinafter referred to as FRF). Create an S-poor body and approximately 1). The pure water permeability coefficient of the F' R-I)S support (thickness 210 to 215μ) obtained in this way is 1q at a pressure of 1k.
CJ/d, measured at a temperature of 25°C, 0.005 to 0.
0I Q/cd-Sec-atm.

実施例1 参考例2によつ゛(得られるF R−P S支持体にビ
スピペリジルブ[1パン1巾早%、ピペラジンの0.2
重量%、リン酸三)−1〜ツリウム重量%、陰イオン系
界面活t’l剤1ΦM%水溶液を150威/Tn2どな
るように塗布し95℃の熱風によって乾燥した。しかる
後に、トリフルオロトリクロロエタンにトリメシン酸ク
ロライド0.5重量%溶解した溶液を60mR/T11
2塗布し、その後100°Cの熱風で5分間乾燥熱処理
した。このようにして得られた複合膜を0.15%Na
C,Q水溶液を原水として圧力15kcJ/ffl、 
温度25℃の条件下で逆浸透試験を行なったところ、水
速過速度は3.8m’/TI+2・日、排除率は72%
であった。原水を塩化カルシウム500 ppm水溶液
に変え同一条件で逆浸透試験を行なったところ、水速過
速度は3.7TIlシ/Tl12・日、排除率は75%
であった。
Example 1 According to Reference Example 2 (obtained F R-P
An aqueous solution containing 1 ΦM% of an anionic surfactant t'l agent (wt%) of phosphoric acid tri)-1 to thulium (wt%) was applied at a rate of 150%/Tn2 and dried with hot air at 95°C. After that, a solution of 0.5% by weight of trimesic acid chloride dissolved in trifluorotrichloroethane was added at 60 mR/T11.
2 coated, and then subjected to dry heat treatment for 5 minutes with hot air at 100°C. The composite membrane thus obtained was coated with 0.15% Na
C, Q aqueous solution as raw water, pressure 15 kcJ/ffl,
When a reverse osmosis test was conducted at a temperature of 25℃, the water velocity overrate was 3.8 m'/TI+2・day, and the rejection rate was 72%.
Met. When a reverse osmosis test was conducted under the same conditions by changing the raw water to a 500 ppm calcium chloride aqueous solution, the water overrate was 3.7 TIl/Tl 12·day, and the rejection rate was 75%.
Met.

次に、原水ポリエチレンイミンポリマ1001)I)■
を添加し処理した後、同一条件で逆浸透試験をした結果
、25時間後の水速過速度は3.5浦3/m2・日、排
除率は96.8%となり、排除率は大l]に向上した。
Next, raw water polyethyleneimine polymer 1001) I) ■
After treatment, a reverse osmosis test was conducted under the same conditions, and the water overrate after 25 hours was 3.5 pores/m2/day, and the rejection rate was 96.8%. ] improved.

またこの膜の表面分析をESCAで行なうと、表面にポ
リエチレンイミンの層が存在していることがわかった。
Further, when the surface of this film was analyzed by ESCA, it was found that a layer of polyethyleneimine was present on the surface.

実施例2 11 一 実施例1と同様にして得られた複合膜を0.15%Na
CQ水溶液を1重水として圧力15ki/cffl、温
度25℃で逆浸透試験を(jなったところ、水速過速度
は3 、2 m’、/yn2・II、1)1除率は78
%であった。原水を塩化カルシウム200ppm、塩化
マグネシウム2001)l)…、水溶液に変え同−条イ
′1で逆浸透試験を行なったところ、水速過速度は3゜
2m”/m2・日排除率は80%であった。次に残留塩
素21)I’m、で25時間連続運転後、塩素を除去し
、再び塩化カルシウム200 F)I)m塩化マグネシ
ウム200 ppm水溶液を原水として逆浸透試験をし
たところ、水速過速度は2.8m”/lr+2・日、排
除率は80%であった。次に、原水にポリ1チレンイミ
ンボリマ50Dl)IIIを添加し処理した後、同一条
件で逆浸透試験をした結束、25時間後の水速過速度は
2.6m’/m?・1−1、排除率は98.7%となり
、n1除率1311人11Jに向」ニした。
Example 2 11 A composite membrane obtained in the same manner as in Example 1 was coated with 0.15% Na.
A reverse osmosis test was conducted using the CQ aqueous solution as heavy water at a pressure of 15 ki/cffl and a temperature of 25°C.
%Met. When the raw water was changed to an aqueous solution containing 200 ppm of calcium chloride and 2001) of magnesium chloride, and a reverse osmosis test was conducted on the same column A'1, the water velocity overrate was 3°2 m''/m2, and the daily rejection rate was 80%. Next, after continuous operation for 25 hours with residual chlorine 21)I'm, the chlorine was removed and a reverse osmosis test was performed again using a 200 ppm aqueous solution of calcium chloride 21)I)m magnesium chloride as raw water. The water overspeed was 2.8 m''/lr+2·day, and the rejection rate was 80%. Next, after treating the raw water with poly(1-ethyleneimine volima 50Dl) III, a reverse osmosis test was performed under the same conditions, and the water overspeed after 25 hours was 2.6 m'/m?・1-1, the exclusion rate was 98.7%, and the n1 division rate was 1311 people, heading for 11J.

実施例3 実施例2と同様の方法で塩素処理及びポリエチレンイミ
ン処理を5回くり返えし逆浸透試験をしたところ、水速
過速度は2.5m”/m2・日、排除率は98.5%維
持し、くり返えし使用しても性能低下は認められなかっ
た。
Example 3 When a reverse osmosis test was conducted by repeating chlorine treatment and polyethyleneimine treatment five times in the same manner as in Example 2, the water velocity overrate was 2.5 m''/m2·day and the rejection rate was 98. No deterioration in performance was observed even when the temperature was maintained at 5% and used repeatedly.

実施例4 参考例2によって得られるFR−PS支持体に参考例1
で得たピペラジン変性ポリエピクロルヒドリン2重足%
水溶液を150m1/m2どなるように塗布し、95℃
の熱風によって30秒間乾燥した。しかる後に、トリフ
ルオロトリクロロエタンにトリメシン酸クロライド0.
025重量%溶解した溶液を60m1/m2塗布し、そ
の後120℃の熱風で3分間乾燥熱処理した。このよう
にして得られた複合膜を、塩化カルシウム500 pp
m水溶液を原水として圧力15h/cot、25℃の条
件下で逆浸透試験をした結果、水速過速度は3.1yn
’/T112・日、排除率は97.5%であった。次に
残留塩素21)i)IIIで25時間連続運転後塩素を
除去し、再び塩化カルシウム500 Ell)III水
溶液を原水とし同一条件下で逆浸透試験を行なったとこ
ろ、水速過速度は3.1m’/m2・日、排除率は91
.0%であった。次に原水にポリ1チレンイミンボリマ
11001)l)を添加し処理後、同一条件で逆浸透試
験をした結果、25時間後の排除率は98.7%、水速
過速度は2.7m’/m2・日となり、初期の性能に回
復した。
Example 4 Reference example 1 was added to the FR-PS support obtained by reference example 2.
Piperazine-modified polyepichlorohydrin double foot% obtained in
Apply the aqueous solution at 150 m1/m2 and 95°C.
It was dried with hot air for 30 seconds. Thereafter, 0.0% trimesic acid chloride was added to trifluorotrichloroethane.
A solution containing 25 wt. The composite membrane thus obtained was treated with 500 pp of calcium chloride.
As a result of a reverse osmosis test using m aqueous solution as raw water at a pressure of 15 h/cot and a temperature of 25°C, the water velocity overrate was 3.1 yn.
'/T112·day, the elimination rate was 97.5%. Next, after 25 hours of continuous operation with residual chlorine 21)i)III, the chlorine was removed, and a reverse osmosis test was performed again under the same conditions using calcium chloride 500 Ell)III aqueous solution as raw water, and the water overrate was 3. 1m'/m2・day, exclusion rate is 91
.. It was 0%. Next, poly 1 tyrene imine volima 11001) l) was added to the raw water and after treatment, a reverse osmosis test was performed under the same conditions. As a result, the rejection rate after 25 hours was 98.7%, and the water velocity overrate was 2.7 m '/m2·day, and the performance recovered to its initial level.

実施例5 実施例4と同様の方法で塩素処理およびポリエチレンイ
ミン処理を5回くり返えし逆浸透試験をしたところ、水
速過速度は2.5m’/m2・日、排除率は97.7%
を維持し、くり返えし使用しても性能低下は認められな
かった。
Example 5 When a reverse osmosis test was carried out by repeating chlorine treatment and polyethyleneimine treatment five times in the same manner as in Example 4, the water velocity overrate was 2.5 m'/m2·day and the rejection rate was 97. 7%
No deterioration in performance was observed even after repeated use.

〔発明の効果〕〔Effect of the invention〕

本発明の複合逆浸透膜は従来のものに比べて2価陽イオ
ンの脱塩にイj効であり、かつ塩素処理によって性能が
損なわれず、簡単に製造できて、耐久性も優れているこ
とがわかった。また分離性能が低下した膜の性能回復処
理にも簡単に応用できるという顕著な効果を奏する。
The composite reverse osmosis membrane of the present invention is more effective in desalinating divalent cations than conventional membranes, does not lose its performance due to chlorine treatment, is easy to manufacture, and has excellent durability. I understand. It also has the remarkable effect of being easily applicable to performance recovery treatment for membranes whose separation performance has deteriorated.

さらに簡便な操作によって処理することができ、活性層
の負固定荷電型基との相H作用によって正固定荷電型基
を有する有機重合体は、表面によく吸着され、使用中に
はがれて流失することも少ないという効果を奏する。
Furthermore, it can be processed by a simple operation, and organic polymers having positively charged groups are well adsorbed on the surface due to the phase H interaction with the negatively charged groups in the active layer, and are peeled off and washed away during use. This has the effect that there are fewer problems.

Claims (3)

【特許請求の範囲】[Claims] (1)活性層が、負固定荷電基を有する架橋有機重合体
から成り、その表面を正固定荷電基を有する有機重合体
によって被覆して成る複合半透膜。
(1) A composite semipermeable membrane in which the active layer is made of a crosslinked organic polymer having a fixed negative charge group, and the surface thereof is coated with an organic polymer having a fixed positive charge group.
(2)特許請求の範囲(1)項において、活性層がカル
ボン酸基および/またはスルホン酸基を有する架橋ポリ
アミドである複合半透膜。
(2) A composite semipermeable membrane according to claim (1), wherein the active layer is a crosslinked polyamide having carboxylic acid groups and/or sulfonic acid groups.
(3)特許請求の範囲(1)項において、正固定荷電基
を有する有機重合体が、ポリエチレンイミン、アミン変
性ポリエピハロヒドリン、ポリアリルアミンから選ばれ
る複合半透膜。
(3) A composite semipermeable membrane according to claim (1), wherein the organic polymer having a positively fixed charged group is selected from polyethyleneimine, amine-modified polyepihalohydrin, and polyallylamine.
JP61108500A 1986-05-14 1986-05-14 Composite semipermeable membrane Pending JPS62266103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108500A JPS62266103A (en) 1986-05-14 1986-05-14 Composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108500A JPS62266103A (en) 1986-05-14 1986-05-14 Composite semipermeable membrane

Publications (1)

Publication Number Publication Date
JPS62266103A true JPS62266103A (en) 1987-11-18

Family

ID=14486354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108500A Pending JPS62266103A (en) 1986-05-14 1986-05-14 Composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JPS62266103A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268102A (en) * 1988-08-23 1990-03-07 Filmtec Corp Production and use of polyamide film effective for softening water
EP0718030A2 (en) * 1994-12-22 1996-06-26 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0752266A2 (en) * 1995-07-05 1997-01-08 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
JP2013022580A (en) * 2011-07-26 2013-02-04 Daicen Membrane Systems Ltd Nf membrane, and method for manufacturing the same
CN103084081A (en) * 2013-01-18 2013-05-08 中国科学院宁波材料技术与工程研究所 Preparation method of large-flux amphiprotic nano-filtration membrane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268102A (en) * 1988-08-23 1990-03-07 Filmtec Corp Production and use of polyamide film effective for softening water
US5843351A (en) * 1994-12-22 1998-12-01 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same
EP0718030A3 (en) * 1994-12-22 1997-01-22 Nitto Denko Corp Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
US5614099A (en) * 1994-12-22 1997-03-25 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0718030A2 (en) * 1994-12-22 1996-06-26 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0752266A2 (en) * 1995-07-05 1997-01-08 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
EP0752266A3 (en) * 1995-07-05 1997-08-27 Nitto Denko Corp Highly permeable composite reverse osmosis membrane
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
JP2013022580A (en) * 2011-07-26 2013-02-04 Daicen Membrane Systems Ltd Nf membrane, and method for manufacturing the same
CN103084081A (en) * 2013-01-18 2013-05-08 中国科学院宁波材料技术与工程研究所 Preparation method of large-flux amphiprotic nano-filtration membrane
CN103084081B (en) * 2013-01-18 2015-05-20 中国科学院宁波材料技术与工程研究所 Preparation method of large-flux amphiprotic nano-filtration membrane

Similar Documents

Publication Publication Date Title
JP3954651B2 (en) Method for increasing flux of polyamide membrane
US3808305A (en) Crosslinked,interpolymer fixed-charge membranes
US4012324A (en) Crosslinked, interpolymer fixed-charge membranes
US5658460A (en) Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying
JPH0568293B2 (en)
JPS63218208A (en) Composite semipermeable membrane and its production
JPS6312310A (en) Production of semipermeable composite membrane
JPS62266103A (en) Composite semipermeable membrane
Kamiyama et al. New thin-film composite reverse osmosis membranes and spiral wound modules
JP3646362B2 (en) Semipermeable membrane and method for producing the same
JPH0596140A (en) Production of composite translucent membrane
CN112334218B (en) Alkali-stable nanofiltration composite membrane and manufacturing method thereof
JP3780734B2 (en) Composite semipermeable membrane
JP4400123B2 (en) Liquid separation membrane and liquid processing method
JP7120523B2 (en) Method for producing water treatment separation membrane and water treatment separation membrane produced thereby
JP2005144211A (en) Composite semi-permeable membrane, its production method and treatment method for fluid separation element
JPH04161234A (en) Manufacture of composite membrane
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JPS61101203A (en) Highly permeable composite membrane
JPS5980304A (en) Reverse osmosis treatment of liquid containing organic and inorganic substances by employing semi-permeable composite membrane
JPH04104825A (en) Manufacture of composite membrane
KR0137384B1 (en) Reverse osmosis module using antibiotic permeation water collection tube
KR970003058B1 (en) Water filter of domestics and process for preparation of membrane for water
JPH11169689A (en) Method for evaluating performance of composite reverse osmosis membrane and treatment of liquid using same
JP2005152818A (en) Liquid separation membrane and its manufacturing method