JP3954651B2 - Method for increasing flux of polyamide membrane - Google Patents

Method for increasing flux of polyamide membrane Download PDF

Info

Publication number
JP3954651B2
JP3954651B2 JP52767097A JP52767097A JP3954651B2 JP 3954651 B2 JP3954651 B2 JP 3954651B2 JP 52767097 A JP52767097 A JP 52767097A JP 52767097 A JP52767097 A JP 52767097A JP 3954651 B2 JP3954651 B2 JP 3954651B2
Authority
JP
Japan
Prior art keywords
membrane
amine
reverse osmosis
flux
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52767097A
Other languages
Japanese (ja)
Other versions
JP2000504270A (en
Inventor
イー ミコルス,ウィリアム
Original Assignee
ダウ グローバル テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ グローバル テクノロジーズ インコーポレーテッド filed Critical ダウ グローバル テクノロジーズ インコーポレーテッド
Publication of JP2000504270A publication Critical patent/JP2000504270A/en
Application granted granted Critical
Publication of JP3954651B2 publication Critical patent/JP3954651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Description

本発明はポリアミド複合膜をアミンで処理して、濾過操作中に膜を通るフラックス又は流量(フローレート)を増大する方法に関する。
逆浸透膜または微小濾過(nanofiltration)膜は、溶媒または分散媒質、一般に水、から溶解した又は分散した物質を分離するのに使用される。これは膜が混合物中の分離すべきある種の成分に対し選択浸透性であるため達成される。通常、水はこのような膜を浸透しうる成分である。この分離法は典型的には、水性供給溶液を膜の一面と加圧下に接触させて膜中への水性層の浸透を行なうが、溶解した又は分散した物質の透過は阻止することを含む。
逆浸透および微小濾過の膜は通常多孔質支持体に固定された複合膜と呼ばれる弁別層をもつ。支持体は物理的強度は与えるが、その多孔性のために流量への抵抗は殆ど与えない。他方、弁別層は多孔性がなく、溶解したもしくは分散した物質を排除する。それ故、一般に、弁別層は排除率(rejection rate)、すなわち排除される特定の溶解物質の百分率、及びフラックス、すなわち溶液が膜を通過する流量とを決定する。
逆浸透膜と微小濾過膜は、異なったイオンおよび有機化合物へのそれらの不浸透性の程度が相互に異なる。逆浸透膜は塩化ナトリウムを含めて本質的にすべてのイオンに相対的に不浸透性である。それ故、逆浸透膜は黒色水または海水の脱塩に広範囲に使用されて工業用、商業用、又は家庭用に相対的に塩分のない水を提供する。これは逆浸透膜のNaClの排除率は通常95〜100%であるからである。
他方、微小濾過膜は通常イオンの排除により特異的である。一般に、微小濾過膜は、ラジウム、マグネシウム、カルシウム、硫酸塩、および硝酸塩等の2価イオンを排除する。また、微小濾過膜は約200以上の分子量をもつ有機化合物に対して一般に不浸透性である。また、微小濾過膜は逆浸透膜よりも高いフラックスをもつ。これらの特性は微小濾過膜を、水の“軟化”および水からの殺菌剤の除去のような種々の用途に有用なものとする。例として、微小濾過膜は0〜95%のNaCl排除率をもつが、硫酸マグネシウム及びアトラジンのような有機化合物の塩には比較的高い排除率をもつ。
逆浸透および微小濾過の用途に特に有用な膜は、弁別層がポリアミドである膜である。逆浸透膜のポリアミド弁別層は、たとえば米国特許第4,277,344号に記載されているような、多官能性芳香族アミンと多官能性アシルハライドとの間の界面重縮合反応等によってえられる。
逆浸透膜とは対照的に、微小濾過膜のポリアミド弁別層は、典型的には、ピペラジン又はアミン置換ピペラジン又はシクロヘキサンと多官能性アシルハライドとの間の界面重合たとえば米国特許第4,769,148号および第4,859,384号に記載されている界面重合によりえられる。微小濾過に好適なポリアミド弁別層を得る別の方法としては、たとえば米国特許第4,765,897号;4,812,270;及び4,824,574に記載されている方法がある。これらの特許は逆浸透膜、たとえば米国特許第4,277,344号の膜、を微小濾過膜に変化させることを述べている。これらの方法は、逆浸透ポリアミド弁別層をリン酸のような強い鉱酸と接触させてからタンニン酸コロイドのような排除率増強剤と接触させることを要求している。不幸なことに、この方法の膜は連続的には製造することができない。これは残存する酸が膜に存在すると、膜製造装置、たとえばドライヤー、が損傷するからである。
逆浸透および微小濾過複合膜の双方が商業的に有意義であるためには、これらの膜は溶解した又は分散した物質が溶媒から分離するに十分な高い排除率をもち、また適度の膜横断圧力で高いフラックスまたは流量をもつことが好ましい。高いフラックスにおいてほど、高容量の精製溶媒が圧力の増大なしに同じ時間でえられる。従って、ある特定の物質に対する高い排除特性と高いフラックスの双方をもつ膜が殆どの用途にとって望ましい。
ポリアミド膜への種々の処理が、水精製用途での性能を増大させるために使用されている。米国特許第4,634,531号は膜を2種の非常に希薄な水溶液で処理することを述べている。第1溶液の典型例はアミンである。第2溶液はアルデヒドである。この処理は2種の異なった溶液の使用を必要とする点で煩雑である。処理の結果は、膜の排除性能はやや増大するが、フラックスは妨害されるか又は影響を受けない。特開平2−2827はポリアミド逆浸透膜を広範囲の種類の水溶性アミノ化合物で処理することを意図している。然し、この処理は使用した特定のアミンについて低いフラックスをもたらすものにすぎない。
圧力の増大なしにそこを通る流量を増大させる、又は圧力が減少するときにそこを通る流量を保つポリアミド弁別層の処理を見出すことは有利なことである。また処理が腐食性でない溶液の1段適用からなるものであればそれは更に有利である。特定イオンの排除率を制御して、逆浸透膜を微小濾過膜に変化しうるならば、又は逆浸透膜のフラックスを、NaClの排除率を実質的に保ちながら、増大しうるならば、それは更に有利である。
ここにポリアミド弁別層をもつ複合膜のフラックスを増大させる1段法を見出した。この方法は該弁別層をアンモニア;1〜2個の炭素をもつアルキル基1〜3個で置換されたアンモニア(このアルキル基はヒドロキシ、フェニルまたはアミノからえらばれた1以上の置換基で置換されていてもよい);ブチルアミン;シクロヘキシルアミン;1,6−ヘキサンジアミン及びそれの混合物からなる群から選ばれたアミンと、膜のフラックスを少なくとも10%増大させる条件下に接触させることから本質的になる。上記の処理した弁別層を用いて製造した膜の排除率およびフラックスは、アミン、アミンの濃度、接触時間、接触温度、およびアミン溶液のpHを変えることによって制御することができる。排除率およびフラックスを制御することによって、逆浸透膜を微小濾過膜に転化することができる。逆浸透膜のフラックスも、NaClの排除率を実質的に保ちながら、増大させることができる。
図1は種々のアミンで処理した後の垂直軸上のフラックス%の増大を示す(対照標準の非処理膜は100%のフラックスをもつものとして示される)。図2は塩すなわちNaClの通過(SP)の増大%を示す。使用したアミンは、トリメチルアミン(TMA)、エタノールアミン(EA)、アンモニア(NH3)、トリエタノールアミン(TEA)、14の高いpHでのTEA、ジメチルアミン(DMA)、N,N−ジメチルエタノールアミン(NNDMEA)、メチルアミン(MA)、およびエチレンジアミン(EDA)である。
ここに使用する“排除率”とは、溶媒で膜中を流れない特定の溶解物質の%である。排除率は100マイナス膜を通る溶解物質の%に等しい。すなわち溶解物質が塩であるならば塩通過である。
ここに使用するフラックスは、溶液が膜を通過する流量である。
ここに使用する“逆浸透膜”とは95〜100%のNaClの排除率をもつ膜である。
ここに使用する“微小濾過膜”とは0〜95%のNaClの排除率をもち、90〜100%の少なくとも1の2価イオンまたは有機化合物の排除率をもつ膜である。
ここに使用する“2価イオン”とは2個の電子を失うか又は得たイオンであり、従って(+2)又は(−2)の電荷をもつ。このようなイオンは無機塩の添加の際に水溶液中に存在する。2価イオンの好適な例として、マグネシウムイオン(Mg+2)、カルシウムイオン(Ca+2)、ラジウムイオン(Ra+2)、硫酸塩イオン(SO4 -2)、及び硝酸塩イオン(NO3 -2)があげられる。
ここに使用する“有機化合物”とは、炭素を含み、200以上の分子量をもち、微細濾過膜によって排除しうる化合物のことをいう。有機化合物の例としてアトラジンのような殺菌剤、グルコースのような単糖類、塩素化炭化水素、ペプチド、及び長鎖炭化水素を含む石鹸があげられる。
ここに使用する“ポリアミド”とは、アミド結合(−C(O)NH−)が分子鎖にそってもつポリマーである。
本発明に有用なアミンとして1〜2の炭素の1以上のアルキル基で任意に置換されるアンモニア、このアルキル基はヒドロキシ、フェニル、又はアミノからえらばれた1以上の置換基で更に任意に置換されうる;ブチルアミン;シクロヘキシルアミン;1,6−ヘキサンジアミン及びそれらの混合物のような物質があげられる。好ましい置換アンモニア物質として、ジメチルアミン、トリメチルアミン、エチルアミン;トリエタノールアミン;N,N−ジメチルエタノールアミン;エチレンジアミン;及びベンジルアミンのような物質があげられる。
上記のアミンを、逆浸透の又は微小濾過の複合膜の弁別層(交差結合ポリアミドポリマーからなる弁別層)と接触させることによって、フラックスが増大し、特定物質の排除率が変化しうる、ということが見出された。逆浸透膜の弁別層として有用なポリアミドポリマーは、たとえば米国特許第4,277,344号に記載されているような、多官能芳香族アミンと多官能アシルハライドとの間の界面重縮合反応によって代表的に製造される。微小濾過膜の弁別層として有用なポリアミドポリマーは、米国特許第4,769,148号および第4,859,384号に記載されているような、ピペラジンもしくはアミン置換ピペラジン又はシクロヘキサンと多官能アシルハライドとの間の界面重合によって代表的に製造される。微小濾過に好適なポリアミド膜の別の製造法は、逆浸透膜を米国特許第4,765,897号、第4,812,270号、および第4,824,574号の方法によって変性する方法である。これらの特許は、逆浸透膜を強い鉱酸と接触させてから排除率増強剤と接触させて微小濾過膜を作ることを包含する。
ポリアミド弁別層が形成される限り、ポリアミド弁別層をアミンと接触させる時期は特に重要なことではない。たとえば、アミンと弁別層の接触は、最終の膜形態への弁別層の製造の前に行なうことができる。すなわち、アミンとポリアミド弁別層との接触は、ポリアミドが形成された後に、然し支持体が固定される前に、使用することができる。同様に、アミンの接触は、膜が支持体上に直接に作られる場合のように、弁別層がその最終複合形態にある後に行なうことができる。アミンとポリアミド弁別層との接触は、膜が依然として操作性である限り、複合膜が濾過操作中に達成された後にさえ使用することができる。
膜を、それが最終膜形態になった後に接触させようとするときは、膜の形状と組成は、ポリアミド弁別層が上記のアミン化合物と接触されうるようにあるべきである。種々の膜形状が商業的に入手することができ、本発明に有用である。これらには、ラセン状の織った、中空繊維の、管状の又は平らなシート型膜が含まれる。膜の組成に関して、多くの場合、弁別層は弁別層の表面に被覆したポリアミド以外の吸湿性ポリマーをもつ。これらのポリマーの中にはポリマー状界面活性剤、ポリビニルアルコール及びポリアクリル酸がある。これらのポリマーの存在は、アミンとポリアミド弁別層が接触する限り、本発明に一般に影響しない。
同様に、複合膜の多孔質支持体の構成材料は、本発明にとって重要ではない。弁別層に物理的強度を与えるすべての多孔質支持体を使用することができる。当業技術に知られている代表的な支持体材料として、セルロースエステル、ポリスルホン、ポリエーテルスルホン、ポリビニルクロライド、塩素化ポリビニルクロライド、ポリスチレン、ポリカーボネート、ポリアクリロニトリル、及びポリエステルがあげられる。特に有用な種類の支持体材料はポリスルホンである。このような支持体の製造は米国特許第3,926,798号、第4,039,440号、及び4,277,344号に記載されている。
殆どのポリアミド膜において、膜のフラックスが増大しうるほど、イオンの排除率は減少する、すなわち膜は選択性が少なくなる。本発明はこのように使用して逆浸透膜を微小濾過膜に変えることができる。これは、以下に述べるようにして、弁別層を開示するアミンと、十分な条件下で、たとえば十分な時間および十分に高い濃度で接触させてフラックスを増大させ、排除率を変えることによって一般に達成される。然しながら、本発明は逆浸透膜のフラックスを増大させ、そしてNaClの排除率を保つために使用することもできる。すなわち10%以上のNaClの排除率を低下させない、好ましくは5%以上低下させない、更に好ましくは2%以上低下させない。これは弁別層を開示するアミンと接触させることにより、然し使用するアミン、濃度、接触時間、接触温度、pH、又はそれらの組合せのいづれかを、逆浸透膜を微小濾過膜に変えるときに使用するときに使用するものから変えることにより達成される。下記に与える一般のガイドラインは当業者に実験なしに本発明を利用して逆浸透膜を微小濾過膜に変化するか又は逆浸透膜のフラックスを増大させてNaClの排除率を実質的に保つことを可能にする。
上記のように、膜のフラックスを増大もしくは増強させる程度は、使用する特定のアミン、アミンの濃度、弁別層とアミンとの接触時間、接触温度、アミン溶液のpH、又はそれらの組合せ、を変えることによって制御することができる。一般に、上記の条件は、膜のフラックスが少なくとも10%、好ましくは少なくとも20%、最も好ましくは少なくとも50%増大するようにあるべきである。フラックスが増大するにつれて、膜の選択率は変化しうる。すなわち、膜は一価イオンたとえばナトリウムを高速度で膜中を通過させ、然も2価イオン及び有機化合物のみを排除する。
ポリアミド弁別層を処理するのに使用するアミンは、それがポリアミドと接触しうる限り、溶液状、正味、又は気相でさえありうる。気相は代表的に低分子量アミンたとえばアンモニア、メチルアミンおよびジメチルアミンが使用される。
溶媒はフラックスの増強又は膜の性能が溶媒との接触によって妨害されない限りアミンが可溶性であるすべての溶媒でありうる。代表的な溶媒として、水、及び有機化合物たとえばアルコール及び炭化水素があげられるが、ただし支持体は溶媒には溶解しないものとする。一般に、取扱いの容易さとその入手性のために、溶媒を望む場合には水が使用される。
膜のフラックスが本発明のアミンで処理するときに増大する程度は、使用する特定のアミンに応じて変化する。然しながら、少なくとも1つの一般傾向が殆どの場合に適用される。その傾向は、アミン上に存在するより官能性の基、たとえばアルコール及び/又はアミノ基が存在するほど、フラックスの増加は大きい、ということである。
これに対応して、アミンの濃度と接触時間は相互に関連し、フラックス増強の程度に影響を与える。特定のアミンを弁別層と接触させてフラックスを増大させるに必要な最小の時間は、アミンの濃度に大きな程度保存する。一般に、アミンの濃度が高いほど、フラックスの増大に必要な時間は短い。殆どの場合、アミンの濃度は少なくとも5、好ましくは少なくとも20、最も好ましくは少なくとも50から100重量%である。室温で接触させたとき、最小の接触時間は少なくとも15秒、好ましくは少なくとも1分、更に好ましくは少なくとも30分でありうる。
一般に、接触時間が長いほど、そしてアミン濃度が高いほど、フラックスの増加は大きい。長い接触時間の後に、フラックスはその最大増加に達し、それ以上の増加はない。この点で、膜は使用することができ、あるいはアミン中に貯蔵され続ける。最大増加に達する時間は、使用する特定のアミン、そのアミン濃度、及び接触温度に応じて変化するが、上記の一般傾向を使用することによって、不当な実験なしに当業者によって確認しうる。殆どのアミンと濃度について、膜のフラックスは、弁別層がアミンと5日間接触したならば、最大になる。
最小の接触時間を短くすることを望むならば、ポリアミド弁別層の表面温度は増大させることができる。これは一般に適用されるけれども、長い接触時間を要する低濃度アミンを使用する場合、これは特に有利である。0°〜30℃の温度が最も好都合に使用されるけれども、増大した温度は必要な接触時間を短くすることができる。増大した温度は、膜の性能が減少するほど高くあるべきではない、すなわち130℃より高くあるべきではない。膜のフラックス効果を高める代表的な温度は少なくとも30℃からの好ましくは少なくとも60℃から130℃の温度である。これらの温度は、アミンとポリアミド弁別層とを、オーブン又はドライヤーのような装置中で、接触させることによって達成されうる。使用しうる代表的なオーブン又はドライヤーとして、対流、赤外、又は強制空気ドライヤーがあげられる。
ポリアミドと接触させるべきアミン溶液のpHは本発明の重要な面ではない。然し、pHは特定のアミンが溶液から沈殿するほど低くあるべきではない。他方、pHはポリアミド弁別層が劣化する又は無効になるほど高くあるべきではない。好ましくは7〜12のpHが本発明において有用であり、あるアミンについてはこれより高いpHがフラックスの増強度を増大させうる。
弁別層をアミンと使用するのに使用する方法は、アミンをポリアミドと十分な時間反応させてフラックスを増大させるすべての方法でありうる。たとえば、ポリアミドは、アミン又はアミン溶液に部分的に又は完全に浸漬もしくは浸すことができる。アミン又はアミン溶液はまた弁別層中を通過させる、又は弁別層上に噴霧またはロール巻きすることもできる。上記の方法はアミンがガスであるときにも有用であるけれども、ガス状アミンと弁別層との接触は使用するアミンの量が最小になる密閉容器中で有利に達成される。
実施例
例 1
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、表1に示すように60℃で1時間種々の水性濃度のトリエタノールアミンと接触させる。膜を次いで室温の水に浸漬し、フラックスを試験する。フラックスはガロン/フィート/日(gfd)及びリットル/平方メートル/時(L/m2-hr)の両単位で測定した。%塩通過(100%排除率)は百万部当りの2000部(ppm)の塩化ナトリウム(NaCl)水溶液を使用し、そして225ポンド/平方インチ(psi)の膜横断圧力は1.55メガパスカル(MPa)である。これらの結果を表1に示す。

Figure 0003954651
例 2
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、100%エタノールアミンと60℃で表2に示す種々の時間接触させる。次いでこの膜を室温の水中に、2000ppmのNaCl水溶液および膜横断圧力225psi(1.55MPa)を使用してフラックス及び塩通過%を試験するまで、貯蔵した。これらの結果を表2に示す。
Figure 0003954651
例 3
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、ブチルアミン、シクロヘキシルアミン、1,6−ヘキサンジアミン及びベンジルアミンの1モル溶液と25℃で5日間接触させる。逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を1,6−ヘキサンジアミンとベンジルアミンとの1モル溶液と25℃で1日接触させる。上記の処理膜を次いで室温の水中に、2000ppmのNaCl水溶液と225psi(1.55のメガパスカル(MPa))を使用してフラックスと塩通過を試験するまで、貯蔵する。これらの結果を表3aおよび表3bに示す。
Figure 0003954651
Figure 0003954651
例 4
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、100%のトリエタノールアミンと60℃で表4に示す種々の時間、接触させる。次いでこの膜を、2000ppmのNaCl水溶液、1000ppmのMgSO4水溶液、0.5%のグルコース水溶液、及び120psi(0.83メガパスカル(MPa))の膜横断圧力を使用してフラックス及び%通過を試験する。これらの結果を表4に示す。
Figure 0003954651
例 5
微小濾過膜(フィルムテックコーポレーションから入手しうるNF−45TM)を、100%トリエタノールアミンと60℃で1時間接触させる。次いでこの膜を室温で水中に、2000ppmのNaCl水溶液および225psiの膜横断圧力を使用してフラックスおよび塩通過を試験するまで貯蔵する。これらの結果を表5に示す。
Figure 0003954651
例 6
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、90℃で20分間表6の種々の溶液と接触させる。これら3枚の膜のそれぞれを次いで試験して、表6に示す膜横断圧力および濃度を使用して、アトラジン、硫酸マグネシウム(MgSO4)、塩化カルシウム(CaCl2)、及び塩化ナトリウム(NaCl)の排除率を決定する。これらの結果を表6に示す。
Figure 0003954651
例 7
逆浸透膜(フィルムテックコーポレーションから入手しうるFT−30TM)を、表7に示すように50℃および70℃の双方で20分間、エタノールアミン(TEA)の50%溶液に接触させる。150psiの膜横断圧力および2000ppmのNaCl溶液を用いて測定した平均フラックスおよび平均排除率を、下記の表7に示す。
Figure 0003954651
The present invention relates to a method of treating a polyamide composite membrane with an amine to increase the flux or flow rate through the membrane during a filtration operation.
Reverse osmosis membranes or nanofiltration membranes are used to separate dissolved or dispersed materials from a solvent or dispersion medium, typically water. This is achieved because the membrane is selectively permeable to certain components to be separated in the mixture. Usually, water is a component that can penetrate such a membrane. This separation method typically involves contacting the aqueous feed solution with one side of the membrane under pressure to allow penetration of the aqueous layer into the membrane, but preventing permeation of dissolved or dispersed material.
Reverse osmosis and microfiltration membranes usually have a discriminating layer called a composite membrane fixed to a porous support. The support provides physical strength but provides little resistance to flow due to its porosity. On the other hand, the discriminating layer is not porous and excludes dissolved or dispersed material. Thus, in general, the discriminating layer determines the rejection rate, i.e., the percentage of a particular dissolved substance that is rejected, and the flux, i.e., the flow rate of the solution through the membrane.
Reverse osmosis membranes and microfiltration membranes differ from each other in their degree of impermeability to different ions and organic compounds. Reverse osmosis membranes are relatively impermeable to essentially all ions, including sodium chloride. Therefore, reverse osmosis membranes are widely used for desalination of black water or seawater to provide relatively salt-free water for industrial, commercial, or domestic use. This is because the rejection rate of NaCl in the reverse osmosis membrane is usually 95 to 100%.
On the other hand, microfiltration membranes are usually specific by the exclusion of ions. In general, microfiltration membranes exclude divalent ions such as radium, magnesium, calcium, sulfate, and nitrate. Microfiltration membranes are generally impermeable to organic compounds having a molecular weight of about 200 or greater. The microfiltration membrane has a higher flux than the reverse osmosis membrane. These properties make microfiltration membranes useful for a variety of applications such as “softening” water and removing disinfectants from water. As an example, microfiltration membranes have a NaCl rejection of 0-95%, but salts of organic compounds such as magnesium sulfate and atrazine have a relatively high rejection.
A particularly useful membrane for reverse osmosis and microfiltration applications is a membrane in which the discriminating layer is polyamide. The polyamide discrimination layer of the reverse osmosis membrane is obtained by interfacial polycondensation reaction between a polyfunctional aromatic amine and a polyfunctional acyl halide as described in, for example, US Pat. No. 4,277,344. It is done.
In contrast to reverse osmosis membranes, the polyamide discriminating layer of a microfiltration membrane typically contains interfacial polymerization between piperazine or amine-substituted piperazine or cyclohexane and a polyfunctional acyl halide, such as US Pat. No. 4,769, No. 148 and No. 4,859,384. Another method for obtaining a polyamide discriminating layer suitable for microfiltration is, for example, the methods described in US Pat. Nos. 4,765,897; 4,812,270; and 4,824,574. These patents describe converting a reverse osmosis membrane, such as the membrane of US Pat. No. 4,277,344, to a microfiltration membrane. These methods require that the reverse osmosis polyamide discriminating layer be contacted with a strong mineral acid such as phosphoric acid and then contacted with an exclusion rate enhancer such as a tannic acid colloid. Unfortunately, the membrane of this method cannot be produced continuously. This is because if the remaining acid is present in the film, the film production apparatus, for example, a dryer, is damaged.
In order for both reverse osmosis and microfiltration composite membranes to be commercially meaningful, these membranes have a high enough rejection rate to allow dissolved or dispersed material to separate from the solvent, and moderate transmembrane pressures. And preferably have a high flux or flow rate. The higher the flux, the higher the volume of purified solvent is obtained in the same time without increasing the pressure. Therefore, membranes with both high exclusion properties for certain materials and high flux are desirable for most applications.
Various treatments on polyamide membranes have been used to increase performance in water purification applications. U.S. Pat. No. 4,634,531 describes treating a membrane with two very dilute aqueous solutions. A typical example of the first solution is an amine. The second solution is an aldehyde. This process is complicated in that it requires the use of two different solutions. The result of the treatment is a slight increase in membrane rejection, but the flux is disturbed or unaffected. JP-A-2-2827 is intended to treat polyamide reverse osmosis membranes with a wide variety of water-soluble amino compounds. However, this treatment only provides a low flux for the specific amine used.
It would be advantageous to find a process for the polyamide discriminating layer that increases the flow rate therethrough without an increase in pressure, or maintains the flow rate therethrough as the pressure decreases. It is also advantageous if the treatment consists of a one-step application of a non-corrosive solution. If the exclusion rate of specific ions can be controlled and the reverse osmosis membrane can be changed to a microfiltration membrane, or if the flux of the reverse osmosis membrane can be increased while substantially maintaining the NaCl exclusion rate, it is Further advantageous.
Here we have found a one-step method to increase the flux of composite membranes with polyamide discriminating layers. In this method, the discriminating layer is ammonia; ammonia substituted with 1 to 3 alkyl groups having 1 to 2 carbons (the alkyl group is substituted with one or more substituents selected from hydroxy, phenyl or amino). Essentially contacting with an amine selected from the group consisting of 1,6-hexanediamine and mixtures thereof under conditions that increase the flux of the membrane by at least 10%. Become. The rejection rate and flux of the membranes produced using the treated discriminating layer described above can be controlled by changing the amine, amine concentration, contact time, contact temperature, and pH of the amine solution. By controlling the rejection rate and flux, the reverse osmosis membrane can be converted to a microfiltration membrane. The flux of the reverse osmosis membrane can also be increased while substantially maintaining the NaCl rejection.
FIG. 1 shows the increase in flux% on the vertical axis after treatment with various amines (control untreated membranes are shown as having 100% flux). FIG. 2 shows the% increase in salt (NaCl) passage (SP). Amine used is trimethylamine (TMA), ethanolamine (EA), ammonia (NH 3), triethanolamine (TEA), TEA at a high pH of 14, dimethylamine (DMA), N, N-dimethylethanolamine (NNDMEA), methylamine (MA), and ethylenediamine (EDA).
As used herein, “exclusion rate” is the percentage of a particular dissolved material that does not flow through the membrane with a solvent. The rejection rate is equal to 100% of the dissolved material that passes through the membrane. That is, if the dissolved substance is a salt, it passes through the salt.
The flux used here is the flow rate at which the solution passes through the membrane.
As used herein, a “reverse osmosis membrane” is a membrane having an NaCl rejection of 95-100%.
The “microfiltration membrane” used herein is a membrane having a rejection rate of NaCl of 0 to 95% and a rejection rate of at least one divalent ion or organic compound of 90 to 100%.
As used herein, a “divalent ion” is an ion that loses or gains two electrons and therefore has a charge of (+2) or (−2). Such ions are present in the aqueous solution upon addition of the inorganic salt. As preferable examples of the divalent ions, magnesium ions (Mg +2 ), calcium ions (Ca +2 ), radium ions (Ra +2 ), sulfate ions (SO 4 −2 ), and nitrate ions (NO 3 − 2 ).
As used herein, “organic compound” refers to a compound that contains carbon, has a molecular weight of 200 or more, and can be eliminated by a microfiltration membrane. Examples of organic compounds include fungicides such as atrazine, monosaccharides such as glucose, chlorinated hydrocarbons, peptides, and soaps containing long chain hydrocarbons.
As used herein, “polyamide” is a polymer in which amide bonds (—C (O) NH—) are aligned along the molecular chain.
Ammonia optionally substituted with one or more alkyl groups of 1 to 2 carbons as amines useful in the present invention, wherein the alkyl groups are further optionally substituted with one or more substituents selected from hydroxy, phenyl, or amino Butylamine; cyclohexylamine; 1,6-hexanediamine and mixtures thereof. Preferred substituted ammonia materials include materials such as dimethylamine, trimethylamine, ethylamine; triethanolamine; N, N-dimethylethanolamine; ethylenediamine; and benzylamine.
By contacting the above amines with a discriminating layer of a reverse osmosis or microfiltration composite membrane (a discriminating layer comprising a cross-linked polyamide polymer), the flux can be increased and the exclusion rate of specific substances can be changed. Was found. Polyamide polymers useful as a discrimination layer for reverse osmosis membranes can be obtained by interfacial polycondensation reaction between polyfunctional aromatic amines and polyfunctional acyl halides as described, for example, in US Pat. No. 4,277,344. Typically manufactured. Polyamide polymers useful as discriminating layers for microfiltration membranes are piperazine or amine substituted piperazine or cyclohexane and polyfunctional acyl halides as described in US Pat. Nos. 4,769,148 and 4,859,384. And is typically produced by interfacial polymerization. Another method for producing a polyamide membrane suitable for microfiltration is to modify a reverse osmosis membrane by the methods of U.S. Pat. Nos. 4,765,897, 4,812,270, and 4,824,574. It is. These patents involve contacting a reverse osmosis membrane with a strong mineral acid and then with an exclusion rate enhancer to make a microfiltration membrane.
As long as the polyamide discrimination layer is formed, the timing of contacting the polyamide discrimination layer with the amine is not particularly important. For example, the contact of the amine with the discrimination layer can be made prior to the manufacture of the discrimination layer to the final membrane form. That is, contact between the amine and the polyamide discriminating layer can be used after the polyamide is formed, but before the support is fixed. Similarly, amine contact can occur after the discriminating layer is in its final composite form, such as when a membrane is made directly on a support. Contact between the amine and the polyamide discriminating layer can be used even after the composite membrane has been achieved during the filtration operation, so long as the membrane is still operational.
When the membrane is to be contacted after it is in the final membrane form, the shape and composition of the membrane should be such that the polyamide discriminating layer can be contacted with the amine compound described above. Various membrane shapes are commercially available and are useful in the present invention. These include helical woven, hollow fiber, tubular or flat sheet membranes. With regard to the composition of the membrane, the discrimination layer often has a hygroscopic polymer other than polyamide coated on the surface of the discrimination layer. Among these polymers are polymeric surfactants, polyvinyl alcohol and polyacrylic acid. The presence of these polymers generally does not affect the present invention so long as the amine and polyamide discriminating layer are in contact.
Similarly, the material of construction of the composite membrane porous support is not critical to the present invention. Any porous support that provides physical strength to the discrimination layer can be used. Representative support materials known in the art include cellulose esters, polysulfones, polyether sulfones, polyvinyl chloride, chlorinated polyvinyl chloride, polystyrene, polycarbonate, polyacrylonitrile, and polyester. A particularly useful type of support material is polysulfone. The manufacture of such supports is described in U.S. Pat. Nos. 3,926,798, 4,039,440, and 4,277,344.
In most polyamide membranes, the greater the membrane flux, the lower the ion rejection rate, i.e. the membrane is less selective. The present invention can be used in this way to convert a reverse osmosis membrane to a microfiltration membrane. This is generally accomplished by contacting the amines that disclose the discriminating layer under sufficient conditions, for example, for a sufficient amount of time and at a sufficiently high concentration to increase the flux and change the rejection rate, as described below. Is done. However, the present invention can also be used to increase reverse osmosis membrane flux and to maintain NaCl rejection. That is, the rejection rate of NaCl of 10% or more is not lowered, preferably 5% or more is not lowered, more preferably 2% or more is not lowered. This is used by contacting the discriminating layer with the disclosed amine, but using either the amine used, concentration, contact time, contact temperature, pH, or a combination thereof, to reverse osmosis membrane to microfiltration membrane. This is accomplished by changing from what is sometimes used. The general guidelines given below use the present invention without experimentation to those skilled in the art to change the reverse osmosis membrane to a microfiltration membrane or increase the flux of the reverse osmosis membrane to substantially maintain NaCl rejection. Enable.
As noted above, the degree to which the membrane flux is increased or enhanced varies the specific amine used, the concentration of the amine, the contact time between the discrimination layer and the amine, the contact temperature, the pH of the amine solution, or a combination thereof. Can be controlled. In general, the above conditions should be such that the membrane flux is increased by at least 10%, preferably at least 20%, and most preferably at least 50%. As the flux increases, the selectivity of the membrane can change. That is, the membrane allows monovalent ions, such as sodium, to pass through the membrane at a high rate, yet excludes only divalent ions and organic compounds.
The amine used to treat the polyamide discrimination layer can be in solution, net, or even in the gas phase as long as it can contact the polyamide. The gas phase typically uses low molecular weight amines such as ammonia, methylamine and dimethylamine.
The solvent can be any solvent in which the amine is soluble unless flux enhancement or membrane performance is hindered by contact with the solvent. Representative solvents include water and organic compounds such as alcohols and hydrocarbons, provided that the support is not soluble in the solvent. Generally, water is used when a solvent is desired for ease of handling and availability.
The degree to which the membrane flux increases when treating with the amines of the present invention will vary depending on the particular amine used. However, at least one general trend applies in most cases. The trend is that the more functional groups present on the amine, such as alcohol and / or amino groups, the greater the increase in flux.
Correspondingly, amine concentration and contact time are interrelated and affect the degree of flux enhancement. The minimum time required to bring a particular amine into contact with the discriminating layer to increase the flux is stored to a large extent in the amine concentration. In general, the higher the amine concentration, the shorter the time required to increase the flux. In most cases, the concentration of amine is at least 5, preferably at least 20, and most preferably at least 50 to 100% by weight. When contacted at room temperature, the minimum contact time can be at least 15 seconds, preferably at least 1 minute, more preferably at least 30 minutes.
In general, the longer the contact time and the higher the amine concentration, the greater the flux increase. After a long contact time, the flux reaches its maximum increase and there is no further increase. At this point, the membrane can be used or continues to be stored in the amine. The time to reach the maximum increase will vary depending on the particular amine used, its amine concentration, and the contact temperature, but can be ascertained by one skilled in the art without undue experimentation by using the above general trend. For most amines and concentrations, the membrane flux is maximized if the discriminating layer is in contact with the amine for 5 days.
If it is desired to shorten the minimum contact time, the surface temperature of the polyamide discrimination layer can be increased. Although this is generally applied, this is particularly advantageous when using low concentration amines that require long contact times. Although temperatures from 0 ° to 30 ° C. are most conveniently used, increased temperatures can shorten the required contact time. The increased temperature should not be so high that the membrane performance decreases, i.e. should not be higher than 130 ° C. Typical temperatures that enhance the flux effect of the membrane are temperatures of at least 30 ° C, preferably at least 60 ° C to 130 ° C. These temperatures can be achieved by contacting the amine and polyamide discriminating layer in an apparatus such as an oven or a dryer. Typical ovens or dryers that can be used include convection, infrared, or forced air dryers.
The pH of the amine solution to be contacted with the polyamide is not an important aspect of the present invention. However, the pH should not be so low that a particular amine precipitates out of solution. On the other hand, the pH should not be so high that the polyamide discrimination layer degrades or becomes ineffective. Preferably a pH of 7-12 is useful in the present invention, and for certain amines a higher pH may increase the flux enhancement.
The method used to use the discriminating layer with the amine can be any method in which the amine is reacted with the polyamide for a sufficient amount of time to increase the flux. For example, the polyamide can be partially or fully immersed or immersed in an amine or amine solution. The amine or amine solution can also be passed through the discrimination layer or sprayed or rolled onto the discrimination layer. While the above method is also useful when the amine is a gas, contact between the gaseous amine and the discriminating layer is advantageously achieved in a closed vessel where the amount of amine used is minimized.
Example
Example 1
A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with various aqueous concentrations of triethanolamine for 1 hour at 60 ° C. as shown in Table 1. The membrane is then immersed in room temperature water and tested for flux. Flux was measured in units of both gallons / ft / day (gfd) and liters / square meter / hour (L / m 2 -hr). % Salt passage (100% rejection) uses 2000 parts per million (ppm) aqueous sodium chloride (NaCl) solution and a transmembrane pressure of 225 pounds per square inch (psi) is 1.55 megapascals. (MPa). These results are shown in Table 1.
Figure 0003954651
Example 2
A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with 100% ethanolamine at 60 ° C. for various times as shown in Table 2. The membrane was then stored in water at room temperature until 2000% NaCl aqueous solution and transmembrane pressure 225 psi (1.55 MPa) were tested for flux and% salt passage. These results are shown in Table 2.
Figure 0003954651
Example 3
The reverse osmosis membrane (FT-30 TM, available from FilmTec Corporation), butylamine, cyclohexylamine, is contacted for 5 days with 1 molar solution and 25 ° C. of 1,6-hexanediamine and benzylamine. A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with a 1 molar solution of 1,6-hexanediamine and benzylamine at 25 ° C. for 1 day. The treated membrane is then stored in water at room temperature until tested for flux and salt passage using 2000 ppm aqueous NaCl and 225 psi (1.55 megapascals (MPa)). These results are shown in Tables 3a and 3b.
Figure 0003954651
Figure 0003954651
Example 4
A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with 100% triethanolamine at 60 ° C. for various times as shown in Table 4. The membrane was then tested for flux and% passage using 2000 ppm NaCl aqueous solution, 1000 ppm MgSO 4 aqueous solution, 0.5% glucose aqueous solution, and 120 psi (0.83 megapascal (MPa)) transmembrane pressure. To do. These results are shown in Table 4.
Figure 0003954651
Example 5
A microfiltration membrane (NF-45 available from Filmtech Corporation) is contacted with 100% triethanolamine at 60 ° C. for 1 hour. The membrane is then stored in water at room temperature until tested for flux and salt passage using 2000 ppm NaCl aqueous solution and 225 psi transmembrane pressure. These results are shown in Table 5.
Figure 0003954651
Example 6
A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with the various solutions in Table 6 at 90 ° C. for 20 minutes. Each of these three membranes was then tested and tested for atrazine, magnesium sulfate (MgSO 4 ), calcium chloride (CaCl 2 ), and sodium chloride (NaCl) using the transmembrane pressures and concentrations shown in Table 6. Determine the rejection rate. These results are shown in Table 6.
Figure 0003954651
Example 7
A reverse osmosis membrane (FT-30 available from Filmtech Corporation) is contacted with a 50% solution of ethanolamine (TEA) for 20 minutes at both 50 ° C. and 70 ° C. as shown in Table 7. The average flux and average rejection measured using a 150 psi transmembrane pressure and 2000 ppm NaCl solution are shown in Table 7 below.
Figure 0003954651

Claims (10)

ポリアミド弁別層を、アンモニア;ヒドロキシ、フェニル又はアミノからえらばれた1以上の置換基で置換されていてもよい1〜2個の炭素をもつアルキル基1〜3個で置換されたアンモニア;ブチルアミン;シクロヘキシルアミン;1,6−ヘキサンジアミン及びそれらの混合物からなる群からえらばれたアミンと接触させることを特徴とするポリアミド弁別層をもつ複合膜のフラックスを増大させる方法。The polyamide discriminating layer is ammonia; ammonia substituted with 1-3 alkyl groups having 1-2 carbons optionally substituted with one or more substituents selected from hydroxy, phenyl or amino; butylamine; A method for increasing the flux of a composite membrane having a polyamide discriminating layer, characterized by contacting with an amine selected from the group consisting of cyclohexylamine; 1,6-hexanediamine and mixtures thereof. アミンがアンモニア;ジメチルアミン;トリメチルアミン;エチルアミン;トリエタノールアミン;N,N−ジメチルエタノールアミン;エチレンジアミン;ベンジルアミン;またはそれらの混合物である請求項1の方法。The method of claim 1 wherein the amine is ammonia; dimethylamine; trimethylamine; ethylamine; triethanolamine; N, N-dimethylethanolamine; ethylenediamine; benzylamine; アミンがトリエタノールアミンである請求項2の方法。The process of claim 2 wherein the amine is triethanolamine. 弁別層を15秒〜5日の期間アミンと接触させる請求項1〜3のいずれか1項の方法。The method of any one of claims 1 to 3 , wherein the discrimination layer is contacted with the amine for a period of 15 seconds to 5 days. 弁別層を0℃〜130℃の温度でアミンと接触させる請求項1〜4のいずれか1項の方法。The method according to any one of claims 1 to 4, wherein the discrimination layer is contacted with an amine at a temperature of 0C to 130C. 弁別層をアミンとの接触の後に60°〜80℃の温度で乾燥する請求項1〜5のいずれか1項の方法。The process according to any one of claims 1 to 5, wherein the discriminating layer is dried at a temperature of 60 ° to 80 ° C after contact with the amine. アミンのpHが7〜12である請求項1〜6のいずれか1項の方法。The method according to any one of claims 1 to 6 , wherein the pH of the amine is 7 to 12. 複合膜が逆浸透膜または微小濾過(nanofiltration)膜である請求項1〜7のいずれか1項の方法。The method according to any one of claims 1 to 7, wherein the composite membrane is a reverse osmosis membrane or a nanofiltration membrane. 複合膜が逆浸透膜であり、条件が逆浸透膜を微小濾過膜に変化させる条件である請求項1〜7のいずれか1項の方法。The method according to any one of claims 1 to 7, wherein the composite membrane is a reverse osmosis membrane, and the conditions are conditions for changing the reverse osmosis membrane to a microfiltration membrane. 複合膜が逆浸透膜であり、条件が排除率を実質的に保つ条件である請求項1〜7のいずれか1項の方法。The method according to any one of claims 1 to 7, wherein the composite membrane is a reverse osmosis membrane, and the conditions are conditions that substantially maintain the rejection rate.
JP52767097A 1996-02-02 1997-01-16 Method for increasing flux of polyamide membrane Expired - Lifetime JP3954651B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/595,707 1996-02-02
US08/595,707 US5755964A (en) 1996-02-02 1996-02-02 Method of treating polyamide membranes to increase flux
PCT/US1997/000648 WO1997027935A1 (en) 1996-02-02 1997-01-16 Method of treating polyamide membranes to increase flux

Publications (2)

Publication Number Publication Date
JP2000504270A JP2000504270A (en) 2000-04-11
JP3954651B2 true JP3954651B2 (en) 2007-08-08

Family

ID=24384335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52767097A Expired - Lifetime JP3954651B2 (en) 1996-02-02 1997-01-16 Method for increasing flux of polyamide membrane

Country Status (11)

Country Link
US (1) US5755964A (en)
EP (1) EP0880401B1 (en)
JP (1) JP3954651B2 (en)
KR (1) KR100460168B1 (en)
AU (1) AU708211B2 (en)
CA (1) CA2243558C (en)
DE (1) DE69702747T2 (en)
DK (1) DK0880401T3 (en)
ES (1) ES2149568T3 (en)
TW (1) TW396186B (en)
WO (1) WO1997027935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194672A (en) * 2007-02-13 2008-08-28 Saehan Industries Inc Selective separation membrane excellent in fouling-proof property

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW422737B (en) * 1997-08-29 2001-02-21 Hydranautics Reverse osmosis filter assembly, process of manufacturing a filter assembly, and filter assembly made by the process
US6280853B1 (en) 1999-06-10 2001-08-28 The Dow Chemical Company Composite membrane with polyalkylene oxide modified polyamide surface
KR100371901B1 (en) * 1999-10-30 2003-02-11 한국화학연구원 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers
US6337018B1 (en) 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
DE60212637T2 (en) * 2001-07-20 2007-05-24 Mcmaster University, Hamilton ASYMMETRIC FILLED MICROPOROUS MEMBRANES
DE60209811T2 (en) * 2001-10-18 2006-10-12 Sterix Ltd., Slough STEROIDAL COMPOUNDS FOR INHIBITING STEROIDSULFATASES
EP1483033A4 (en) * 2002-03-01 2005-04-13 Osmonics Inc A process for preparing semipermeable membranes having improved permeability
US20040140259A1 (en) * 2003-01-20 2004-07-22 Cummings James A. Membrane flux enhancement
US7279097B2 (en) * 2003-06-18 2007-10-09 Toray Industries, Inc. Composite semipermeable membrane, and production process thereof
GB0317839D0 (en) * 2003-07-30 2003-09-03 Univ Surrey Solvent removal process
US20050056589A1 (en) * 2003-09-16 2005-03-17 General Electric Company Treatment of semi-permeable filtration membranes
US7604746B2 (en) * 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
KR20080003789A (en) * 2005-03-09 2008-01-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Nanocomposite membranes and methods of making and using same
KR100680109B1 (en) * 2005-07-27 2007-02-07 웅진코웨이주식회사 Polyamide reverse osmosis composite membrane and preparation method thereof
US7727434B2 (en) * 2005-08-16 2010-06-01 General Electric Company Membranes and methods of treating membranes
KR100716210B1 (en) * 2005-09-20 2007-05-10 웅진코웨이주식회사 Preparation method of polyamide reverse osmosis composite membrane and polyamide reverse osmosis composite membrane prepared therefrom
US7913857B2 (en) * 2006-02-01 2011-03-29 Woongjin Chemical Co., Ltd. Selective membrane having a high fouling resistance
US20070251883A1 (en) * 2006-04-28 2007-11-01 Niu Q Jason Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface
WO2007133362A1 (en) 2006-05-12 2007-11-22 Dow Global Technologies Inc. Modified membrane
KR100905901B1 (en) * 2006-09-07 2009-07-02 웅진코웨이주식회사 Amine aqueous solution for forming an active layer of polyamide reverse osmosis composite membrane, polyamide reverse osmosis composite membrane prepared thereby, and preparation method thereof
JP2010508140A (en) * 2006-10-27 2010-03-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Micro and nanocomposite support structures for reverse osmosis thin films
JP4921565B2 (en) * 2007-02-05 2012-04-25 ダウ グローバル テクノロジーズ エルエルシー Modified polyamide membrane
JP5130967B2 (en) * 2007-03-19 2013-01-30 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP5131028B2 (en) * 2007-05-30 2013-01-30 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP5131027B2 (en) * 2007-05-31 2013-01-30 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP2010540215A (en) * 2007-09-21 2010-12-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nano-composite membrane and method for making and using
US8567612B2 (en) * 2008-04-15 2013-10-29 Nanoh2O, Inc. Hybrid TFC RO membranes with nitrogen additives
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
KR20100003799A (en) * 2008-07-02 2010-01-12 웅진케미칼 주식회사 Selective membrane having a high fouling resistance and preparation method thereof
US8147735B2 (en) * 2008-07-09 2012-04-03 Eltron Research & Development, Inc. Semipermeable polymers and method for producing same
US7815987B2 (en) * 2008-12-04 2010-10-19 Dow Global Technologies Inc. Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds
TWI398353B (en) * 2009-03-02 2013-06-11 Ind Tech Res Inst Nano-fiber material and salt-rejecting filtration material
WO2011040354A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Method for improving rejection of permeable membrane and permeable membrane
EP2490794A1 (en) 2009-10-19 2012-08-29 Dow Global Technologies LLC Method of testing the integrity of spiral wound modules
KR101788534B1 (en) 2009-10-27 2017-10-20 다우 글로벌 테크놀로지스 엘엘씨 Method for applying tape layer to outer periphery of spiral wound module
WO2011087536A1 (en) 2010-01-12 2011-07-21 Dow Global Technologies Llc Method of testing spiral wound modules by thermal imaging
WO2011112351A1 (en) 2010-03-10 2011-09-15 Dow Global Technologies Llc Polyamide membrane with a coating comprising polyalkylene oxide and acetophenone compounds
US8640886B2 (en) 2010-04-26 2014-02-04 Dow Global Technologies Llc Composite membrane including coating of polyalkylene oxide and triazine compounds
US8757396B2 (en) 2010-05-24 2014-06-24 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and oxy-substituted phenyl compounds
US8646616B2 (en) 2010-05-24 2014-02-11 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and imidazol compounds
WO2011149571A1 (en) 2010-05-24 2011-12-01 Dow Global Technologies Llc Polyamide membrane with coating comprising polyalkylene oxide and biguanide compounds
JP2013530824A (en) * 2010-06-07 2013-08-01 デュポン ニュートリション バイオサイエンシーズ エーピーエス Separation method
WO2012064939A2 (en) 2010-11-10 2012-05-18 Nanoh2O, Inc. Improved hybrid tfc ro membranes with non-metallic additives
JP5929296B2 (en) * 2012-02-21 2016-06-01 栗田工業株式会社 Reverse osmosis membrane rejection improvement method
EP2684598B1 (en) 2011-03-09 2019-05-01 Kurita Water Industries Ltd. Method for improving blocking rate of reverse osmosis membrane, and use of a treatment agent for improving blocking rate of a reverse osmosis membrane
JP5914973B2 (en) * 2011-03-09 2016-05-11 栗田工業株式会社 Method for improving rejection rate of permeable membrane and treatment agent for improving rejection rate
JP5772083B2 (en) * 2011-03-09 2015-09-02 栗田工業株式会社 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
US8778182B2 (en) 2011-07-28 2014-07-15 Dow Global Technologies Llc Spiral wound element and seal assembly
CA2856174A1 (en) 2011-12-07 2013-06-13 Dupont Nutrition Biosciences Aps Nanofiltration process with pre-treatment to enhance solute flux
EP2874733A1 (en) * 2012-07-19 2015-05-27 Dow Global Technologies LLC Composite polyamide membrane with increased carboxylic acid functionality
US9346023B2 (en) 2012-08-21 2016-05-24 General Electric Company Flux enhancing agent for improving composite polyamide reverse osmosis membrane performance
WO2014179024A1 (en) 2013-05-03 2014-11-06 Dow Global Technologies Llc Composite polyamide membrane derived from an aliphatic acyclic tertiary amine compound
CN103638832B (en) * 2013-11-14 2016-06-08 株洲时代新材料科技股份有限公司 A kind of polyamide composite film and preparation method thereof
US10384167B2 (en) 2013-11-21 2019-08-20 Oasys Water LLC Systems and methods for improving performance of osmotically driven membrane systems
CN103933878A (en) * 2014-04-25 2014-07-23 浙江理工大学 High-flux composite reverse osmosis membrane
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
CN113750798B (en) * 2020-06-01 2022-07-19 天津工业大学 Preparation method of double electric layer composite nanofiltration membrane

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039440A (en) * 1972-09-19 1977-08-02 The United States Of America As Represented By The Secretary Of The Interior Reverse osmosis membrane
NL174020C (en) * 1973-09-07 1984-04-16 Sumitomo Chemical Co METHOD FOR MANUFACTURING A MEMBRANE FOR SEPARATING SUBSTANCES, AND THE MANUFACTURED MEMBRANE
US3926798A (en) * 1974-10-17 1975-12-16 Us Interior Reverse osmosis membrane
JPS5695304A (en) * 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production
JPS5811005A (en) * 1981-07-10 1983-01-21 Toray Ind Inc Treatment of semipermeamble membrane
CH656626A5 (en) * 1982-02-05 1986-07-15 Pall Corp POLYAMIDE MEMBRANE HAVING CONTROLLED SURFACE PROPERTIES, ITS USE AND ITS PREPARATION METHOD.
JPS59115704A (en) * 1982-12-24 1984-07-04 Toray Ind Inc Treatment of semipermeable membrane
US4765897A (en) * 1986-04-28 1988-08-23 The Dow Chemical Company Polyamide membranes useful for water softening
US4812270A (en) * 1986-04-28 1989-03-14 Filmtec Corporation Novel water softening membranes
US4824574A (en) * 1986-04-28 1989-04-25 The Dow Chemical Company Novel water softening process using membranes
US4812238A (en) * 1987-01-15 1989-03-14 The Dow Chemical Company Membranes prepared via reaction of diazonium compounds or precursors
JPS63271847A (en) * 1987-04-28 1988-11-09 Mitsubishi Electric Corp Shadow mask type color cathode-ray tube
JP2682071B2 (en) * 1987-11-13 1997-11-26 東レ株式会社 Cross-linked polyamide reverse osmosis membrane treatment method
JPH081202B2 (en) * 1989-04-03 1996-01-10 株式会社豊田自動織機製作所 Operating circuit of single-acting hydraulic cylinder
US4964998A (en) * 1989-12-13 1990-10-23 Filmtec Corporation Use of treated composite polyamide membranes to separate concentrated solute
JP2505631B2 (en) * 1990-08-09 1996-06-12 東レ株式会社 Composite semipermeable membrane, method for producing the same, and method for producing high-purity water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194672A (en) * 2007-02-13 2008-08-28 Saehan Industries Inc Selective separation membrane excellent in fouling-proof property

Also Published As

Publication number Publication date
AU1580097A (en) 1997-08-22
ES2149568T3 (en) 2000-11-01
DE69702747D1 (en) 2000-09-14
WO1997027935A1 (en) 1997-08-07
DK0880401T3 (en) 2000-10-30
CA2243558A1 (en) 1997-08-07
CA2243558C (en) 2004-06-22
DE69702747T2 (en) 2001-03-29
KR100460168B1 (en) 2005-05-13
TW396186B (en) 2000-07-01
US5755964A (en) 1998-05-26
KR19990082137A (en) 1999-11-15
AU708211B2 (en) 1999-07-29
JP2000504270A (en) 2000-04-11
EP0880401A1 (en) 1998-12-02
EP0880401B1 (en) 2000-08-09

Similar Documents

Publication Publication Date Title
JP3954651B2 (en) Method for increasing flux of polyamide membrane
US5876602A (en) Treatment of composite polyamide membranes to improve performance
JP5110802B2 (en) Polyamide reverse osmosis composite membrane and method for producing the same
JP5013927B2 (en) Polyamide reverse osmosis composite membrane excellent in boron removal performance and production method thereof
KR970006838B1 (en) Chlorine-resistant semipermeable membranes
US4828708A (en) Semipermeable membranes
EP0117919A2 (en) A membrane treatment method for semipermeable membranes
US7708150B2 (en) Process for preparing semipermeable membranes
JPH05192660A (en) Method for treating outflowing liquid
KR20110086141A (en) A process for preparing semipermeable membranes having improved permeability
KR100666483B1 (en) Producing method of polyamide reverse osmosis membrane having high salt rejection property
JPS62266103A (en) Composite semipermeable membrane
KR20180107605A (en) Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
JP2005144211A (en) Composite semi-permeable membrane, its production method and treatment method for fluid separation element
JPH10235173A (en) Composite semipermeable membrane and its production
KR100539332B1 (en) Metod of Treating Polyamide Membranes to increase Flux
KR101825632B1 (en) Preparation Method of High Flux Polyamide composite Membrane
JP5126155B2 (en) Manufacturing method of composite semipermeable membrane
JP2005152818A (en) Liquid separation membrane and its manufacturing method
JPH04504076A (en) Chlorine resistant semipermeable membrane
JPH08973A (en) Composite semipermeable membrane and its preparation
JPS637807A (en) Production of low-pressure highly-permeable semipermeable composite membrane
JPS61245804A (en) Preparation of composite semipermeable membrane having high permeability at low pressure
JPS6260922B2 (en)
JPS61129004A (en) Treatment of water containing silicic acid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term