JP5772083B2 - Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane - Google Patents

Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane Download PDF

Info

Publication number
JP5772083B2
JP5772083B2 JP2011051530A JP2011051530A JP5772083B2 JP 5772083 B2 JP5772083 B2 JP 5772083B2 JP 2011051530 A JP2011051530 A JP 2011051530A JP 2011051530 A JP2011051530 A JP 2011051530A JP 5772083 B2 JP5772083 B2 JP 5772083B2
Authority
JP
Japan
Prior art keywords
amino
organic compound
reverse osmosis
compound
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011051530A
Other languages
Japanese (ja)
Other versions
JP2012187469A (en
Inventor
孝博 川勝
孝博 川勝
青木 哲也
哲也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011051530A priority Critical patent/JP5772083B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to PCT/JP2012/055549 priority patent/WO2012121208A1/en
Priority to EP12755214.9A priority patent/EP2684598B1/en
Priority to CN201280012319.5A priority patent/CN103429324B/en
Priority to MYPI2013701488A priority patent/MY164964A/en
Priority to BR112013022550-5A priority patent/BR112013022550B1/en
Priority to ES12755214T priority patent/ES2734078T3/en
Priority to AU2012226983A priority patent/AU2012226983B2/en
Priority to PL12755214T priority patent/PL2684598T3/en
Priority to KR1020137023695A priority patent/KR101932782B1/en
Priority to SG2013062294A priority patent/SG192806A1/en
Priority to US13/985,666 priority patent/US9498754B2/en
Priority to KR1020187028366A priority patent/KR101979178B1/en
Priority to TW101107920A priority patent/TWI528998B/en
Publication of JP2012187469A publication Critical patent/JP2012187469A/en
Application granted granted Critical
Publication of JP5772083B2 publication Critical patent/JP5772083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Description

本発明は逆浸透膜の阻止率(脱塩率)向上方法に係り、特に劣化した逆浸透(RO)膜を修復して、その阻止率を効果的に向上させる方法に関する。   The present invention relates to a method for improving a rejection rate (desalting rate) of a reverse osmosis membrane, and more particularly to a method for repairing a deteriorated reverse osmosis (RO) membrane and effectively improving the rejection rate.

本発明はまた、この逆浸透膜の阻止率向上方法により阻止率向上処理がなされた逆浸透膜と、この方法に用いられる阻止率向上処理剤に関する。   The present invention also relates to a reverse osmosis membrane that has been subjected to a treatment for improving the rejection rate by the method for improving the rejection rate of the reverse osmosis membrane, and a treatment for improving the rejection rate used in this method.

近年、水資源を有効に利用するために、排水を回収し、再生、再利用するプロセスや海水、かん水を淡水化するプロセスの導入が進んでいる。このような背景のもと、水質の高い処理水を得るためには、電解質除去、中低分子除去が可能なナノ濾過膜や逆浸透膜(RO膜)等の選択的透過膜の使用が不可欠である。   In recent years, in order to effectively use water resources, introduction of a process for recovering, reclaiming, and reusing wastewater and a process for desalinating seawater and brine has been promoted. Under these circumstances, in order to obtain treated water with high water quality, it is essential to use selective permeation membranes such as nanofiltration membranes and reverse osmosis membranes (RO membranes) that can remove electrolytes and medium and small molecules. It is.

しかし、RO膜等の透過膜の無機電解質や水溶性有機物等の分離対象物に対する阻止率は、水中に存在する酸化性物質や還元性物質などの影響、その他の原因による素材高分子の劣化によって低下し、必要とされる処理水質が得られなくなる。この劣化は、長期間使用しているうちに少しずつ起こることもあり、また事故によって突発的に起こることもある。また、製品としての透過膜の阻止率自体が要求されるレベルに達していない場合もある。   However, the blocking rate of permeable membranes such as RO membranes against separation targets such as inorganic electrolytes and water-soluble organic substances is due to the effects of oxidizing substances and reducing substances present in water, and deterioration of polymer materials due to other causes. The required quality of treated water cannot be obtained. This deterioration may occur little by little during long-term use, or it may occur suddenly due to an accident. In some cases, the rejection rate of the permeable membrane as a product does not reach the required level.

特に、RO膜等の透過膜システムにおいては、膜面でのスライムによるバイオファウリングを防止するために、前処理工程において塩素(次亜塩素酸ソーダなど)による原水の処理が行われているが、塩素は強力な酸化作用があるため、残留塩素を十分に処理せずに透過膜に供給すると、透過膜が劣化することが知られている。   In particular, in permeable membrane systems such as RO membranes, raw water is treated with chlorine (sodium hypochlorite, etc.) in the pretreatment process to prevent biofouling due to slime on the membrane surface. Since chlorine has a strong oxidizing action, it is known that when the residual chlorine is supplied to the permeable membrane without being sufficiently treated, the permeable membrane deteriorates.

また、残留塩素を分解させるために、重亜硫酸ソーダなどの還元剤を添加することも行われているが、重亜硫酸ソーダが過剰に添加されている還元環境下においても、Cu、Coなどの金属が共存すると膜が劣化することも知られている(特許文献1、非特許文献1)。膜が劣化すると、透過膜の阻止率が大きく損なわれる。   In order to decompose residual chlorine, a reducing agent such as sodium bisulfite is also added, but even in a reducing environment where sodium bisulfite is excessively added, metals such as Cu and Co are used. It is also known that the film deteriorates when coexisting (Patent Document 1, Non-Patent Document 1). When the membrane deteriorates, the blocking rate of the permeable membrane is greatly impaired.

従来、RO膜等の逆浸透膜の阻止率向上方法としては、以下のようなものが提案されている。   Conventionally, the following methods have been proposed as methods for improving the blocking rate of reverse osmosis membranes such as RO membranes.

(1) アニオン又はカチオンのイオン性高分子化合物を膜表面に付着させることにより、透過膜の阻止率を向上させる方法(特許文献2)。 (1) A method of improving the blocking rate of a permeable membrane by attaching an anionic or cationic ionic polymer compound to the membrane surface (Patent Document 2).

本方法は、ある程度の阻止率向上効果を示すが、劣化膜に対する阻止率向上効果は十分ではない。   Although this method shows a certain rejection rate improvement effect, the suppression rate improvement effect for the deteriorated film is not sufficient.

(2) ポリアルキレングリコール鎖を有する化合物を膜表面に付着させることにより、ナノ濾過膜やRO膜の阻止率を向上させる方法(特許文献3)。 (2) A method for improving the rejection of nanofiltration membranes and RO membranes by attaching a compound having a polyalkylene glycol chain to the membrane surface (Patent Document 3).

本方法も、阻止率向上効果は得られるが、劣化膜に対して透過流束を大きく低下させることなく阻止率を向上させるという要求においては、十分に満足し得るものではない。   Although this method can also achieve the effect of improving the rejection rate, it is not fully satisfactory in the demand for improving the rejection rate without greatly reducing the permeation flux with respect to the deteriorated membrane.

(3) 透過流束が増加した、アニオン荷電を有するナノ濾過膜やRO膜に対し、ノニオン系界面活性剤を用いた処理を行って、その透過流束を適正範囲まで低減させて、膜汚染や透過水質の悪化を防止する方法(特許文献4)。この方法では、透過流束が使用開始時の+20〜−20%の範囲となるように、ノニオン性界面活性剤を膜面に接触、付着させる。 (3) Treating nanofiltration membranes and RO membranes with anion charge with increased permeation flux with nonionic surfactants to reduce the permeation flux to an appropriate range, resulting in membrane contamination And a method for preventing deterioration of permeated water quality (Patent Document 4). In this method, the nonionic surfactant is brought into contact with and adhered to the membrane surface so that the permeation flux is in the range of +20 to −20% at the start of use.

本方法の阻止率向上の有効性は、特許文献4に記載される実施例と比較例との対比においても確認できるが、著しく劣化が生じた膜(脱塩率で95%以下)においては、相当量の界面活性剤を膜面に付着させる必要があり、透過流束の劇的な低下を伴うと考えられる。また、この特許文献4の実施例においては、製造時の初期性能が、透過流束で1.20m/m・day、NaCl阻止率が99.7%、シリカ阻止率が99.5%の芳香族系ポリアミドRO膜を2年間使用して酸化劣化した膜を使用するとあるが、NaCl阻止率99.5%、シリカ阻止率98.0%と大きな劣化には至っていない膜を対象としており、この方法で、劣化した透過膜の阻止率を十分に向上させることができるかは不明である。 The effectiveness of this method in improving the rejection rate can also be confirmed by comparing the Examples and Comparative Examples described in Patent Document 4, but in a membrane (95% or less in the desalination rate) in which deterioration has occurred significantly, A considerable amount of surfactant needs to be deposited on the membrane surface, which is thought to be accompanied by a dramatic decrease in permeation flux. Moreover, in the Example of this patent document 4, the initial performance at the time of manufacture is 1.20 m 3 / m 2 · day in terms of permeation flux, the NaCl rejection is 99.7%, and the silica rejection is 99.5%. It is intended to use a membrane that has been oxidized and deteriorated for 2 years using an aromatic polyamide RO membrane, but has not yet been greatly degraded, with a NaCl rejection of 99.5% and a silica rejection of 98.0%. It is unclear whether this method can sufficiently improve the rejection of a deteriorated permeable membrane.

(4) タンニン酸などを劣化膜に付着させて脱塩率を改善させる方法(非特許文献2)。 (4) A method of improving the desalination rate by attaching tannic acid or the like to a deteriorated film (Non-patent Document 2).

この方法による阻止率の向上効果は大きいとは言えず、例えば、劣化したRO膜であるES20(日東電工社製)、SUL−G20F(東レ社製)の透過水電気伝導度は、処理前後でそれぞれ、82%→88%、92%→94%であり、透過水の溶質濃度を1/2にするまでに阻止率を高めることはできない。
(5) タンニン酸にポリビニルメチルエーテル(PVME)を添加してRO膜の阻止率を向上させる(非特許文献5)。薬剤の使用濃度がそれぞれ10ppm以上と高い。脱塩率は65%を90%まで回復させているが、透過流束の低下は35%、84%を95%に回復させた場合の透過流束の低下は4%である。持続性が低く、新膜98.5%→修復直後99.2%→190時間後98.7%である。
It cannot be said that the improvement effect of the rejection rate by this method is large. For example, the permeated water conductivity of ES20 (manufactured by Nitto Denko) and SUL-G20F (manufactured by Toray Industries), which are deteriorated RO membranes, are measured before and after the treatment. They are 82% → 88% and 92% → 94%, respectively, and the rejection rate cannot be increased until the solute concentration of the permeated water is halved.
(5) Polyvinyl methyl ether (PVME) is added to tannic acid to improve the RO membrane rejection (Non-patent Document 5). The drug use concentration is as high as 10 ppm or more. The desalination rate is recovered from 65% to 90%, but the decrease in permeation flux is 35%, and the decrease in permeation flux is 4% when 84% is recovered to 95%. Sustainability is low, 98.5% of new film → 99.2% immediately after repair → 98.7% after 190 hours.

なお、透過膜の劣化については、例えばポリアミド膜の酸化剤による劣化で、膜素材のポリアミド結合のC−N結合が分断され、膜本来のふるい構造が崩壊していることが知られている(非特許文献3,4等)。   As for the deterioration of the permeable membrane, for example, it is known that the CN bond of the polyamide bond of the membrane material is broken due to the deterioration of the polyamide membrane by the oxidizing agent, and the original sieve structure of the membrane is collapsed ( Non-patent documents 3 and 4).

特開平7−308671号公報JP-A-7-308671 特開2006−110520号公報JP 2006-110520 A 特開2007−289922号公報JP 2007-289922 A 特開2008−86945号公報JP 2008-86945 A

Fujiwara et al.,Desalination,Vol.96(1994),431-439Fujiwara et al., Desalination, Vol.96 (1994), 431-439 佐藤、田村、化学工学論文集、Vol.34(2008),493-498Sato, Tamura, Chemical Engineering, Vol.34 (2008), 493-498 植村ら,Bulletin of the Society of Sea Water Science,Japan,57,498-507(2003)Uemura et al., Bulletin of the Society of Sea Water Science, Japan, 57, 498-507 (2003) 神山義康,表面,vol.31,No.5(1993),408-418Yoshiyasu Kamiyama, Surface, vol.31, No.5 (1993), 408-418 S.T.Mitrouli, A.J.Karabelas, N.P.Isaias, D.C. Sioutopoulos, and A.S. Al Rammah, Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance, IDA Journal I Second Quarter 2010, p22-34S.T.Mitrouli, A.J.Karabelas, N.P.Isaias, D.C.Sioutopoulos, and A.S.Al Rammah, Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance, IDA Journal I Second Quarter 2010, p22-34

上述の如く、従来、逆浸透膜の阻止率向上方法としては各種の方法が提案されているが、従来の阻止率向上方法は、透過膜表面に新たに物質を付着させるため、透過流束の低下が起こる。例えば、阻止率を回復させて透過水の溶質濃度を1/2にするために、透過流束については処理前に対して20%以上も低下させてしまう場合もあった。   As described above, various methods have conventionally been proposed as methods for improving the rejection rate of reverse osmosis membranes. However, the conventional method for improving the rejection rate is that a new substance adheres to the surface of the permeable membrane. A drop occurs. For example, in order to recover the rejection rate and reduce the solute concentration of the permeated water to ½, the permeation flux may be reduced by 20% or more compared to before the treatment.

また、非常に大きな劣化(例えば、電気伝導度阻止率で95%以下)を起こした膜に対しては、既存の技術では、阻止率の回復が困難であった。   In addition, it is difficult to recover the rejection rate with the existing technology for a film that has undergone very large deterioration (for example, an electrical conductivity rejection rate of 95% or less).

また、高濃度の薬剤を添加することで、濃縮水TOCを増加させるなどのオペレーション上、コスト上の課題が生じ、被処理水を通水して、採水しながら修復することが容易でないという問題もあった。   In addition, the addition of high-concentration chemicals causes operational problems such as increasing the concentrated water TOC, and it is not easy to restore the water to be treated by passing water to be treated. There was also a problem.

本発明は上記従来の問題点を解決し、透過流束を大きく低下させることなく、また著しい劣化膜であっても阻止率を効果的に向上させることができる逆浸透膜の阻止率向上方法とその処理剤を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and a method for improving the rejection rate of a reverse osmosis membrane, which can effectively improve the rejection rate even if it is a significantly deteriorated membrane without greatly reducing the permeation flux, It aims at providing the processing agent.

本発明はまた、このような逆浸透膜の阻止率向上方法により阻止率向上処理が施された逆浸透膜を提供することを目的とする。   Another object of the present invention is to provide a reverse osmosis membrane that has been subjected to a rejection improvement process by such a reverse osmosis membrane rejection improvement method.

本発明者らは、上記課題を解決すべく、実機での劣化膜の調査解析を繰り返し行うなどして鋭意検討を重ね、次のような知見を得た。   In order to solve the above-mentioned problems, the present inventors have made extensive studies by repeatedly investigating and analyzing a deteriorated film with an actual machine, and obtained the following knowledge.

(1) 従来法のように、膜の劣化で膜にあいた穴を、新たな物質(例えば、ノニオン系界面活性剤やカチオン系界面活性剤などの化合物)を膜に付着させることにより塞ぐ方法では、膜の疎水化や、高分子物質の付着による膜の透過流束の低下が著しく、水量の確保が困難である。 (1) As in the conventional method, in the method of closing the hole in the film due to the deterioration of the film by attaching a new substance (for example, a compound such as a nonionic surfactant or a cationic surfactant) to the film In addition, membrane permeabilization and membrane permeation flux decrease significantly due to adhesion of polymer substances, and it is difficult to ensure the amount of water.

(2) 逆浸透膜、例えばポリアミド膜は、酸化剤による劣化で、ポリアミドのC−N結合が分断され、膜本来のふるい構造が崩壊するが、膜の劣化箇所においては、アミド結合の分断でアミド基は消失してしまうものの、カルボキシル基が一部残存する。 (2) A reverse osmosis membrane, for example, a polyamide membrane, is degraded by an oxidant, so that the CN bond of the polyamide is broken and the original sieving structure of the membrane is broken. Although the amide group disappears, a part of the carboxyl group remains.

(3) この劣化膜のカルボキシル基にアミノ化合物を効率良く付着・結合させることにより、劣化膜を修復して阻止率を回復させることができる。この場合、カルボキシル基に結合させるアミノ化合物として、アミノ基を有する低分子量化合物を用いることにより、膜表面の疎水化や、高分子物質を付着させることによる透過流束の著しい低下を抑制することができる。 (3) By efficiently attaching and bonding an amino compound to the carboxyl group of the deteriorated film, the deteriorated film can be repaired and the blocking rate can be recovered. In this case, by using a low molecular weight compound having an amino group as the amino compound to be bonded to the carboxyl group, it is possible to suppress the membrane surface from being hydrophobized or a significant decrease in the permeation flux due to the attachment of a polymer substance. it can.

本発明は、このような知見をもとに完成されたものであり、以下を要旨とする。   The present invention has been completed based on such knowledge, and the gist thereof is as follows.

請求項1の逆浸透膜の阻止率向上方法は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を逆浸透膜に通水する工程を有する逆浸透膜の阻止率向上方法であって、該逆浸透膜がポリアミド膜であり、該第1の有機化合物及び第2の有機化合物が低分子量アミノ化合物であり、該第3の有機化合物が、カルボキシル基、アミノ基、あるいはヒドロキシル基を有する化合物であることを特徴とするものである。
請求項2の逆浸透膜の阻止率向上方法は、請求項1において、前記第1の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物より選ばれる有機化合物であり、前記第2の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物、ペプチドあるいはその誘導体より選ばれる有機化合物であることを特徴とするものである。
The method for improving the rejection of a reverse osmosis membrane according to claim 1 includes a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more. A method for improving the rejection of a reverse osmosis membrane comprising a step of passing an aqueous solution through a reverse osmosis membrane, wherein the reverse osmosis membrane is a polyamide membrane, and the first organic compound and the second organic compound are low molecular weight amino acids. It is a compound, and the third organic compound is a compound having a carboxyl group, an amino group, or a hydroxyl group .
The method for improving the rejection of a reverse osmosis membrane according to claim 2 is the method according to claim 1, wherein the first organic compound is an aromatic amino compound having a benzene skeleton and an amino group, a benzene skeleton, two or more amino groups, and an amino group. Aromatic aminocarboxylic acid compounds having less than the number of carboxyl groups, linear or branched hydrocarbon groups having 1 to 20 carbon atoms and aliphatic amino compounds having one or more amino groups, linear or branched An organic compound selected from an aliphatic amino alcohol having an amino group and a hydroxyl group in a hydrocarbon group having 1 to 20 carbon atoms, a heterocyclic amino compound having a heterocyclic ring and an amino group, and an amino acid compound, wherein the second organic compound is , Aromatic amino compounds having a benzene skeleton and an amino group, aromatics having a benzene skeleton and two or more amino groups and a carboxyl group less than the number of amino groups A minocarboxylic acid compound, an aliphatic amino compound having a linear or branched hydrocarbon group having 1 to 20 carbon atoms and one or more amino groups, an amino group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms And an aliphatic amino alcohol having a hydroxyl group, a heterocyclic amino compound having a heterocyclic ring and an amino group, an amino acid compound, a peptide or a derivative thereof.

請求項の逆浸透膜の阻止率向上方法は、請求項において、前記第1の有機化合物がアミノ酸又はアミノ酸誘導体であることを特徴とするものである。 According to a third aspect of the present invention, there is provided the reverse osmosis membrane blocking rate improving method according to the second aspect , wherein the first organic compound is an amino acid or an amino acid derivative.

請求項の逆浸透膜の阻止率向上方法は、請求項1ないし3のいずれか1項において、前記第3の有機化合物が環状構造を有することを特徴とするものである。 According to a fourth aspect of the present invention, there is provided the reverse osmosis membrane blocking rate improving method according to any one of the first to third aspects, wherein the third organic compound has a cyclic structure.

請求項の逆浸透膜の阻止率向上方法は、請求項1ないしのいずれか1項において、前記逆浸透膜の前記水溶液を通水する前の脱塩率が90%以下であることを特徴とするものである。 The method for improving the rejection rate of a reverse osmosis membrane according to claim 5 is the method according to any one of claims 1 to 4 , wherein the desalination rate of the reverse osmosis membrane before passing the aqueous solution is 90% or less. It is a feature.

請求項の逆浸透膜の阻止率向上方法は、請求項1ないしのいずれか1項において、前記第1の有機化合物と第2の有機化合物との合計の濃度が1〜500mg/Lであり、第3の有機化合物の濃度が1〜500mg/Lであることを特徴とするものである。 The method for improving the rejection of a reverse osmosis membrane according to claim 6 is the method according to any one of claims 1 to 5 , wherein the total concentration of the first organic compound and the second organic compound is 1 to 500 mg / L. And the concentration of the third organic compound is 1 to 500 mg / L.

請求項の逆浸透膜は、請求項1ないしのいずれか1項に記載の逆浸透膜の阻止率向上方法により阻止率向上処理が施されたことを特徴とするものである。 A reverse osmosis membrane according to a seventh aspect is characterized in that a rejection rate improving process is performed by the method for improving the rejection rate of the reverse osmosis membrane according to any one of the first to sixth aspects.

請求項の逆浸透膜の阻止率向上剤は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む逆浸透膜の阻止率向上剤であって、該逆浸透膜がポリアミド膜であり、該第1の有機化合物及び第2の有機化合物が低分子量アミノ化合物であり、該第3の有機化合物が、カルボキシル基、アミノ基、あるいはヒドロキシル基を有する化合物であるものである。
請求項9の逆浸透膜の阻止率向上剤は、請求項8において、前記第1の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物より選ばれる有機化合物であり、前記第2の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物、ペプチドあるいはその誘導体より選ばれる有機化合物であることを特徴とするものである。
The blocking ratio improver for a reverse osmosis membrane according to claim 8 includes a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more. A reverse osmosis membrane rejection rate improver, wherein the reverse osmosis membrane is a polyamide membrane, the first organic compound and the second organic compound are low molecular weight amino compounds, and the third organic compound is: It is a compound having a carboxyl group, an amino group, or a hydroxyl group .
The reverse osmosis membrane rejection rate improver according to claim 9 is the reverse osmosis membrane rejection rate improver according to claim 8, wherein the first organic compound is an aromatic amino compound having a benzene skeleton and an amino group, a benzene skeleton, two or more amino groups, and an amino group. Aromatic aminocarboxylic acid compounds having less than the number of carboxyl groups, linear or branched hydrocarbon groups having 1 to 20 carbon atoms and aliphatic amino compounds having one or more amino groups, linear or branched An organic compound selected from an aliphatic amino alcohol having an amino group and a hydroxyl group in a hydrocarbon group having 1 to 20 carbon atoms, a heterocyclic amino compound having a heterocyclic ring and an amino group, and an amino acid compound, wherein the second organic compound is , An aromatic amino compound having a benzene skeleton and an amino group, an aromatic amine having a benzene skeleton and two or more amino groups and a carboxyl group less than the number of amino groups A nocarboxylic acid compound, an aliphatic amino compound having a linear or branched hydrocarbon group having 1 to 20 carbon atoms and one or more amino groups, an amino group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms And an aliphatic amino alcohol having a hydroxyl group, a heterocyclic amino compound having a heterocyclic ring and an amino group, an amino acid compound, a peptide or a derivative thereof.

本発明によれば、酸化剤等により劣化した逆浸透膜に、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を通水することにより、この逆浸透膜の透過流束を大きく低下させることなく、膜の劣化部分を修復し、阻止率を効果的に向上させることができる。   According to the present invention, a reverse osmosis membrane deteriorated by an oxidizing agent or the like, a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more. By passing the aqueous solution containing, the deteriorated portion of the membrane can be repaired and the rejection rate can be effectively improved without greatly reducing the permeation flux of the reverse osmosis membrane.

以下に、本発明による劣化膜の修復のメカニズムを図1を参照して説明する。   Hereinafter, a mechanism for repairing a deteriorated film according to the present invention will be described with reference to FIG.

逆浸透膜、例えば、ポリアミド膜の正常なアミド結合は図1(a)に示すような構造をとっている。この膜が塩素などの酸化剤で劣化した場合、アミド結合のC−N結合が分断され、最終的には図1(b)に示すような構造となる。   A normal amide bond of a reverse osmosis membrane such as a polyamide membrane has a structure as shown in FIG. When this film is deteriorated by an oxidizing agent such as chlorine, the amide bond CN bond is broken, and finally the structure shown in FIG. 1B is obtained.

図1(b)に示されるように、アミド結合の分断で、アミノ基は消失することがあるが、この分断部分にカルボキシル基は形成される。   As shown in FIG. 1B, the amino group may disappear due to the breakage of the amide bond, but a carboxyl group is formed at this breakage portion.

劣化が進行すると、間隙が大きくなり、様々な大きさの間隙が形成されるが、間隙の大きさに応じて第1〜第3の有機化合物を定着させることにより、劣化膜の種々のサイズの各穴が修復され、阻止率が回復する。   As the deterioration progresses, the gap becomes larger, and various sizes of gaps are formed. By fixing the first to third organic compounds according to the size of the gap, various sizes of the deteriorated film are formed. Each hole is repaired and the blocking rate is restored.

有機化合物を膜に透過させる際には、分子量や骨格(構造)の異なるアミノ化合物を複数種類併用し、これらを同時に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効率が高められる。   When permeating an organic compound through a membrane, a plurality of amino compounds having different molecular weights or skeletons (structures) are used in combination, and these are allowed to permeate at the same time. By prolonging the residence time in the degradation portion, the probability of contact between the carboxyl group of the film and the amino group of the low molecular weight amino compound is increased, and the repair efficiency of the film is increased.

また、分子量500以上の第3の有機化合物を併用することにより、膜の大きな劣化箇所を塞ぐことができ、修復効率が高まる。この第3の有機化合物としては、膜のカルボキシル基と作用する官能基(カチオン基:1〜4級アミノ基)、添加しているアミノ基を有する化合物と作用するもの(アニオン基:カルボキシル基、スルホン基)、あるいは、ポリアミド膜と作用する官能基(ヒドロキシル基)、環状構造を有するものであってもよい。   In addition, by using a third organic compound having a molecular weight of 500 or more in combination, it is possible to block a greatly deteriorated portion of the film and improve the repair efficiency. As this third organic compound, a functional group that acts with the carboxyl group of the film (cation group: 1 to 4 quaternary amino group), a compound that has an added amino group (anion group: carboxyl group, (Sulfone group), or a functional group (hydroxyl group) that acts on the polyamide membrane, or a cyclic structure.

本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。It is explanatory drawing of a chemical structural formula which shows the mechanism of the rejection improvement process by this invention. 実施例で用いた平膜試験装置を示す模式図である。It is a schematic diagram which shows the flat film test apparatus used in the Example.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[逆浸透膜の阻止率向上方法]
本発明の逆浸透膜の阻止率向上方法は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を透過膜に通水する工程を有することを特徴とするものである。
[Reverse osmosis membrane rejection improvement method]
The method for improving the rejection of a reverse osmosis membrane according to the present invention includes an aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more. A step of passing water through the permeable membrane.

<阻止率向上処理剤>
本発明において、分子量200未満の第1の有機化合物、分子量200以上500未満の第2の有機化合物としては、例えば、次のようなものが挙げられる。
<Inhibition rate improving treatment agent>
In the present invention, examples of the first organic compound having a molecular weight of less than 200 and the second organic compound having a molecular weight of 200 or more and less than 500 include the following.

・ 芳香族アミノ化合物:例えば、アニリン、ジアミノベンゼンなどのベンゼン骨格とアミノ基を有するもの
・ 芳香族アミノカルボン酸化合物:例えば、3,5−ジアミノ安息香酸、3,4−ジアミノ安息香酸、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、2,4,6−トリアミノ安息香酸などのベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有するもの。
Aromatic amino compounds: For example, those having a benzene skeleton and an amino group such as aniline and diaminobenzene. Aromatic aminocarboxylic acid compounds: For example, 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2, Those having a benzene skeleton such as 4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 2,4,6-triaminobenzoic acid, two or more amino groups, and a carboxyl group less than the number of amino groups.

・ 脂肪族アミノ化合物:例えば、メチルアミン、エチルアミン、オクチルアミン、1,9−ジアミノノナン(本明細書中では「NMDA」と略記することがある。)(C18(NH)等の炭素数1〜20程度の直鎖炭化水素基と1個又は複数のアミノ基を有するもの、及び、アミノペンタン(本明細書中では「IAAM」と略記することがある。)(NH(CHCH(CH)、2−メチルオクタジアミン(本明細書中では「MODA」と略記することがある。)(NHCHCH(CH)(CHNH)等の炭素数1〜20程度の分岐炭化水素基と1個又は複数のアミノ基を有するもの。 Aliphatic amino compounds: for example, methylamine, ethylamine, octylamine, 1,9-diaminononane (may be abbreviated as “NMDA” in this specification) (C 9 H 18 (NH 2 ) 2 ), etc. And those having a straight-chain hydrocarbon group of about 1 to 20 carbon atoms and one or more amino groups, and aminopentane (in this specification, sometimes abbreviated as “IAAM”) (NH 2 ( CH 2) 2 CH (CH 3 ) 2), a 2-methyl-octa-diamine (herein sometimes abbreviated as "MODA".) (NH 2 CH 3 CH (CH 3) (CH 2) 6 NH 2 ) A compound having a branched hydrocarbon group having about 1 to 20 carbon atoms and one or more amino groups.

・ 脂肪族アミノアルコール:モノアミノイソペンタノール(本明細書中では「AMB」と略記することがある。)(NH(CHCH(CH)CHOH)等の直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有するもの。 Aliphatic amino alcohol: Monoaminoisopentanol (in this specification, sometimes abbreviated as “AMB”) (NH 2 (CH 2 ) 2 CH (CH 3 ) CH 2 OH) or the like A branched hydrocarbon group having 1 to 20 carbon atoms and having an amino group and a hydroxyl group.

・ 複素環アミノ化合物:テトラヒドロフルフリルアミン(本明細書中では「FAM」と略記することがある。)(下記構造式)などの複素環とアミノ基を有するもの。   Heterocyclic amino compound: A compound having a heterocyclic ring and an amino group such as tetrahydrofurfurylamine (may be abbreviated as “FAM” in the present specification) (the following structural formula).

Figure 0005772083
・ アミノ酸化合物:例えば、アルギニンやリシン等の塩基性アミノ酸化合物、アスパラギンやグルタミン等のアミド基を有するアミノ酸化合物、グリシンやフェニルアラニン等のその他アミノ酸化合物。
Figure 0005772083
Amino acid compounds: For example, basic amino acid compounds such as arginine and lysine, amino acid compounds having an amide group such as asparagine and glutamine, and other amino acid compounds such as glycine and phenylalanine.

第1の有機化合物(分子量200未満)としては、これらのうちアミノ酸又はアミノ酸化合物(アミノ酸誘導体)が好適である。   Of these, amino acids or amino acid compounds (amino acid derivatives) are preferred as the first organic compound (with a molecular weight of less than 200).

例えば、塩基性アミノ酸である、アルギニン(分子量174)、リシン(分子量146)、ヒスチジン(分子量155)を第1の有機化合物として有効に用いることができる。また、ペプチドあるいはその誘導体として、例えば、フェニルアラニンとアスパラギン酸のジペプチドのメチルエステルであるアスパルテーム(分子量294)を第2の有機化合物として有効に用いることができる。   For example, arginine (molecular weight 174), lysine (molecular weight 146), and histidine (molecular weight 155), which are basic amino acids, can be effectively used as the first organic compound. Further, as a peptide or a derivative thereof, for example, aspartame (molecular weight 294) which is a methyl ester of a dipeptide of phenylalanine and aspartic acid can be effectively used as the second organic compound.

これらの低分子量アミノ化合物は、水に対する溶解性が高く、安定な水溶液として逆浸透膜に通水することができ、前述の如く、膜のカルボキシル基と反応して逆浸透膜に結合し、不溶性の塩を形成して、膜の劣化により生じた穴を塞ぎ、これにより膜の阻止率を高める。   These low molecular weight amino compounds are highly soluble in water and can be passed through the reverse osmosis membrane as a stable aqueous solution. As described above, they react with the carboxyl group of the membrane and bind to the reverse osmosis membrane, making it insoluble. The salt is formed to close the hole caused by the deterioration of the film, thereby increasing the blocking rate of the film.

これらの低分子量アミノ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。特に、本発明においては、分子量や骨格構造の異なる低分子量アミノ化合物を2種以上併用し、これらを同時に透過膜に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効果が高められるため好ましい。   These low molecular weight amino compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them. In particular, in the present invention, two or more kinds of low molecular weight amino compounds having different molecular weights and skeleton structures are used in combination, and these are simultaneously permeated through the permeable membrane. It is preferable that the residence time at the deteriorated portion is increased because the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound is increased and the repair effect of the film is enhanced.

阻止率向上処理水中の第1及び第2の有機化合物の含有量は、膜の劣化の度合により異なるが、過度に多いと透過流束を大きく低下させることがあり、過度に少ないと修復が不十分になるため、阻止率向上処理水中の第1及び第2の有機化合物の合計の濃度が、0.2〜500mg/L、特に1〜200mg/L程度となるようにすることが好ましい。   The contents of the first and second organic compounds in the rejection improvement treatment water differ depending on the degree of deterioration of the membrane. However, if the amount is excessively large, the permeation flux may be greatly reduced. Therefore, it is preferable that the total concentration of the first and second organic compounds in the rejection-improving treatment water is about 0.2 to 500 mg / L, particularly about 1 to 200 mg / L.

また、分子量500以上(好ましくは500〜500,000特に好ましくは500〜50,000)の有機化合物としては、カルボキシル基、アミノ基、あるいはヒドロキシル基を有するものが好適である。例として、タンニン酸やペプチドを挙げることができる。タンニン酸としては、加水分解型の五倍子、没食子、縮合型のケブラチョ、ミモザなどを挙げることができる。ペプチドとしては、分子量500以上のポリグリシン、ポリリシン、ポリトリプトファン、ポリアラニンなどを挙げることができる。   Moreover, as an organic compound having a molecular weight of 500 or more (preferably 500 to 500,000, particularly preferably 500 to 50,000), those having a carboxyl group, an amino group, or a hydroxyl group are suitable. Examples include tannic acid and peptides. Examples of tannic acid include hydrolyzable pentaploid, gallic, condensed kebracho and mimosa. Examples of the peptide include polyglycine, polylysine, polytryptophan, polyalanine and the like having a molecular weight of 500 or more.

阻止率向上処理水中における第3の有機化合物の濃度は0.1〜500mg/L特に0.5〜100mg/L程度が好適である。   The concentration of the third organic compound in the rejection improvement treatment water is preferably about 0.1 to 500 mg / L, particularly about 0.5 to 100 mg / L.

阻止率向上処理水には、トレーサーとして、食塩(NaCl)等の無機電解質やイソプロピルアルコールやグルコース等の中性有機物及びポリマレイン酸などの低分子ポリマーなどを添加してもよく、これにより、逆浸透膜の透過水への食塩やグルコースの透過の程度を分析して、膜の修復の程度を確認することができる。   The treated water with improved rejection rate may contain, as a tracer, inorganic electrolytes such as sodium chloride (NaCl), neutral organic substances such as isopropyl alcohol and glucose, and low molecular weight polymers such as polymaleic acid. By analyzing the degree of permeation of salt and glucose into the permeated water of the membrane, the degree of membrane repair can be confirmed.

また、阻止率向上処理水を逆浸透膜に通水するときの給水圧力は、過度に高いと劣化していない箇所への吸着が進むという問題があり、過度に低いと劣化箇所への吸着も進まないことから、当該逆浸透膜の通常運転圧力の30〜150%、特に50〜130%とすることが好ましい。   In addition, when the water supply pressure when passing the treated water with improved rejection rate through the reverse osmosis membrane is excessively high, there is a problem that the adsorption to the undegraded portion proceeds, and when it is excessively low, the adsorption to the deteriorating portion is also caused. Since it does not advance, it is preferable to set it as 30 to 150%, especially 50 to 130% of the normal operating pressure of the reverse osmosis membrane.

この阻止率向上処理工程は、常温、例えば10〜35℃程度の温度で行うことができ、また、その処理時間としては、逆浸透膜中を各有機化合物が十分に透過して、透過水側に有機化合物が検出される程度の時間であれば良く、特に制限とりわけ上限はないが、通常0.5〜100時間、特に1〜50時間程度とすることが好ましい。   This blocking rate improving treatment step can be performed at room temperature, for example, a temperature of about 10 to 35 ° C., and the treatment time is such that each organic compound is sufficiently permeated through the reverse osmosis membrane and the permeated water side. It is sufficient that the organic compound is detected for a long time, and there is no particular upper limit. However, it is usually preferably 0.5 to 100 hours, particularly preferably about 1 to 50 hours.

阻止率向上処理は、阻止率向上処理剤を逆浸透膜装置の定常運転時に被処理水に添加することにより行われてもよい。薬剤添加の時間は、1〜500時間程度であるが、常時添加も可能である。   The rejection improvement process may be performed by adding a rejection improvement agent to the water to be treated during the steady operation of the reverse osmosis membrane device. The time for adding the drug is about 1 to 500 hours, but the addition is always possible.

長時間運転を行っている場合、膜汚染により透過流束が低下している場合は、洗浄を行った後に実施することが望ましいが、その限りではない。   When the operation is performed for a long time, when the permeation flux is decreased due to membrane contamination, it is desirable to perform the operation after cleaning, but this is not restrictive.

洗浄の薬剤としては、酸洗浄では、塩酸、硝酸、硫酸などの鉱酸、クエン酸、シュウ酸といった有機酸を上げることができる。アルカリ洗浄では、水酸化ナトリウム、水酸化カリウムなどを上げることができる。一般的に、酸洗浄ではpH2付近とし、アルカリ洗浄ではpH12付近とする。   As a cleaning agent, acid cleaning can increase mineral acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as citric acid and oxalic acid. In alkali cleaning, sodium hydroxide, potassium hydroxide, etc. can be raised. In general, the pH is about 2 for acid cleaning and about 12 for alkali cleaning.

[逆浸透膜]
逆浸透膜(RO膜)は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質を阻止し、溶媒を透過する液体分離膜である。RO膜の膜構造としては、非対称膜、複合膜などの高分子膜などを挙げることができる。RO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系素材などを挙げることができる。これらの中で、芳香族系ポリアミド素材の透過膜であって、劣化することによりC−N結合の分断でカルボキシル基を多く有する膜に、本発明の逆浸透膜の阻止率向上方法を特に好適に適用することができる。
[Reverse osmosis membrane]
A reverse osmosis membrane (RO membrane) is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between solutions through the membrane to the high concentration side to block solutes and permeate the solvent. Examples of the membrane structure of the RO membrane include polymer membranes such as asymmetric membranes and composite membranes. Examples of the RO membrane material include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate. Among these, the reverse osmosis membrane inhibition rate improving method of the present invention is particularly suitable for a membrane made of an aromatic polyamide material and having many carboxyl groups due to degradation of CN bonds due to deterioration. Can be applied to.

なお、阻止率向上処理前のRO膜の脱塩率が90%以下である場合、本発明方法を適用するのに好適である。   In addition, when the desalination rate of the RO membrane before the rejection improvement process is 90% or less, it is suitable for applying the method of the present invention.

また、逆浸透膜のモジュール形式に特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。   Moreover, there is no restriction | limiting in particular in the module format of a reverse osmosis membrane, For example, a tubular membrane module, a plane membrane module, a spiral membrane module, a hollow fiber membrane module etc. can be mentioned.

本発明の方法で処理された逆浸透膜は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の回収・再利用のための水処理、あるいは工業用水や市水からの超純水製造、その他の分野の水処理に有効に適用される。処理対象とする被処理水は特に限定されるものではないが、有機物含有水に好適に用いることができ、例えばTOC=0.01〜100mg/L、好ましくは0.1〜30mg/L程度の有機物含有水の処理に好適に用いられる。このような有機物含有水としては電子デバイス製造工場排水、輸送機械製造工場排水、有機合成工場排水又は印刷製版・塗装工場排水など、あるいはそれらの一次処理水など挙げることができるが、これらに限定されない。   The reverse osmosis membrane treated by the method of the present invention is a water treatment for recovery and reuse of wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields. Alternatively, it is effectively applied to the production of ultrapure water from industrial water and city water, and water treatment in other fields. The water to be treated is not particularly limited, but can be suitably used for organic substance-containing water. For example, TOC = 0.01 to 100 mg / L, preferably about 0.1 to 30 mg / L. It is suitably used for the treatment of organic substance-containing water. Examples of such organic substance-containing water include, but are not limited to, wastewater from electronic device manufacturing factories, transportation machinery manufacturing factories, organic synthesis factories, printing plate making / painting factories, or the primary treatment water thereof. .

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

まず、比較例1〜6,実施例1〜6について説明する。
[比較例1]
以下の条件で被処理水を図2に示す平膜試験装置に通水した。
First, Comparative Examples 1-6 and Examples 1-6 will be described.
[Comparative Example 1]
The treated water was passed through the flat membrane test apparatus shown in FIG. 2 under the following conditions.

この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で被処理水を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。濃縮水取り出し配管13には圧力計6と開閉バルブ7が設けられている。   This flat membrane test apparatus is provided with a flat membrane cell 2 at an intermediate position in the height direction of a cylindrical container 1 having a bottom and a lid, and the inside of the container is divided into a raw water chamber 1A and a permeated water chamber 1B, and the container 1 is divided into a stirrer. 3, water to be treated is supplied to the raw water chamber 1 </ b> A via the pipe 11 by the pump 4, and the stirrer 5 in the container 1 is rotated to stir the raw water chamber 1 </ b> A so that the permeated water passes through the permeated water. While taking out from the chamber 1B through the pipe 12, the concentrated water is taken out from the raw water chamber 1A through the pipe 13. The concentrated water outlet pipe 13 is provided with a pressure gauge 6 and an opening / closing valve 7.

劣化膜:日東電工社製超低圧逆浸透膜ES20を、次亜塩素酸ナトリウム(遊離塩素1
mg/L)を含む溶液に24時間浸漬して加速劣化させたもの。オリジナル膜
の透過流束、脱塩率、IPA除去率はそれぞれ0.81m/(m・d)
0.972、0.875である。
被処理水:野木町水を活性炭で脱塩素処理し、NaClを500mg/L、IPAを10
0mg/L添加したもの
運転圧力:0.75 MPa
温度:24℃±2℃
Deteriorated membrane: Ultra-low pressure reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation, sodium hypochlorite (free chlorine 1
mg / L) for 24 hours soaking in a solution. Original membrane
Permeation flux, desalination rate, and IPA removal rate of 0.81 m 3 / (m 2 · d), respectively
0.972 and 0.875.
Water to be treated: Dechlorinated Nogicho water with activated charcoal, NaCl 500 mg / L, IPA 10
0 mg / L added Operating pressure: 0.75 MPa
Temperature: 24 ° C ± 2 ° C

[比較例2]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にタンニン酸(シグマ・アルドリッチ社製403040−50G)1mg/L添加したものを被処理水とすること以外は比較例1の条件で通水を行った。
[Comparative Example 2]
Comparative Example, except that after passing water under the conditions of Comparative Example 1 and confirming the deterioration state, the water to be treated was added with 1 mg / L of tannic acid (403040-50G manufactured by Sigma-Aldrich) to the water to be treated. Water was passed under the condition of 1.

[比較例3]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にポリエチレングリコール(分子量4000、和光純薬製)1mg/L添加したものを被処理水として2時間通水すること以外は比較例1の条件で通水を行った。
[Comparative Example 3]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, water to be treated was added with 1 mg / L of polyethylene glycol (molecular weight 4000, manufactured by Wako Pure Chemical Industries, Ltd.) for 2 hours as treated water. Conducted water under the conditions of Comparative Example 1.

[比較例4]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にポリオキシエチレン(10)オレイルエーテル(分子量708、和光純薬製)1mg/L添加したものを被処理水として2時間通水すること以外は比較例1の条件で通水を行った。
[Comparative Example 4]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, water treated with polyoxyethylene (10) oleyl ether (molecular weight 708, manufactured by Wako Pure Chemical Industries) 1 mg / L was added to the water to be treated. Water was passed under the conditions of Comparative Example 1 except that water was passed for hours.

[比較例5]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にアスパルテーム(味の素製、食品添加物グレード、分子量294)1mg/L添加したものを被処理水として2時間通水すること以外は比較例1の条件で通水を行った。
[Comparative Example 5]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, water treated with aspartame (Ajinomoto Co., Inc., food additive grade, molecular weight 294) 1 mg / L was added to the water to be treated for 2 hours. Except for this, water was passed under the conditions of Comparative Example 1.

[比較例6]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にアルギニン(味の素製、食品添加物グレード、分子量174)1mg/L添加したものを被処理水とすること以外は比較例1の条件で通水を行った。
[Comparative Example 6]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, comparison was made except that 1 mg / L of arginine (made by Ajinomoto Co., Inc., food additive grade, molecular weight 174) was added to the water to be treated. Water was passed under the conditions of Example 1.

[比較例7]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にアルギニンを2mg/L、アスパルテーム1mg/L添加したものを被処理水とすること以外は比較例1の条件で通水を行った。
[Comparative Example 7]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, water was passed under the conditions of Comparative Example 1 except that arginine added at 2 mg / L and aspartame at 1 mg / L was used as the water to be treated. Went water.

[実施例1]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にアルギニンを2mg/L、アスパルテーム1mg/L添加、ポリグリシン(シグマ・アルドリッチ社製P8791−500MG、分子量500〜5000)1mg/L添加したものを被処理水として24時間通水すること以外は比較例1の条件で通水を行った。
[Example 1]
After passing water under the conditions of Comparative Example 1 and confirming the deterioration state, 2 mg / L of arginine and 1 mg / L of aspartame were added to the water to be treated, polyglycine (P8791-500MG, molecular weight 500-5000, manufactured by Sigma-Aldrich) Water was passed under the conditions of Comparative Example 1 except that 1 mg / L added was passed as treated water for 24 hours.

[実施例2]
比較例1の条件で通水を行い劣化状態を確認した後、被処理水にアルギニンを2mg/L、アスパルテーム1mg/L添加、食添タンニン酸AL(富士化学工業社製、分子量500以上)1mg/L添加したものを被処理水として24時間通水すること以外は比較例1の条件で通水を行った。
[Example 2]
After confirming the deterioration state by passing water under the conditions of Comparative Example 1, 2 mg / L of arginine and 1 mg / L of aspartame were added to the water to be treated, and 1 mg of dietary tannic acid AL (manufactured by Fuji Chemical Industry Co., Ltd., molecular weight of 500 or more) Water was passed under the conditions of Comparative Example 1 except that water added with / L was passed as treated water for 24 hours.

なお、透過流束、脱塩率、IPA除去率は以下の式より算出した。
透過流束[m/(md)]=透過水量[m/d]/膜面積[m]×温度換算係数[−]
脱塩率[%]=(1−透過液の導電率[mS/m]/濃縮液の導電率[mS/m])×100
IPA除去率[%]=(1−透過液のTOC[mg/L]/濃縮液のTOC[mg/L])×100
The permeation flux, desalting rate, and IPA removal rate were calculated from the following equations.
Permeation flux [m 3 / (m 2 d)] = permeated water amount [m 3 / d] / membrane area [m 2 ] × temperature conversion coefficient [−]
Desalination rate [%] = (1-permeate conductivity [mS / m] / concentrate conductivity [mS / m]) × 100
IPA removal rate [%] = (1—TOC [mg / L] of permeate / TOC [mg / L] of concentrate) × 100

表1に結果を示す。本発明では、脱塩率向上効率及びIPA除去率の向上効率が高く、オリジナルあるいはオリジナル以上の値が得られていることが分かる。   Table 1 shows the results. In this invention, it turns out that the desalination rate improvement efficiency and the improvement efficiency of an IPA removal rate are high, and the value beyond the original or the original is obtained.

Figure 0005772083
Figure 0005772083

次に比較例8,9、実施例3について説明する。   Next, Comparative Examples 8 and 9 and Example 3 will be described.

[比較例8]
次の条件で被処理水を図2に示す平膜試験装置に2時間通水した。
劣化膜:排水回収に使用した8インチ日東電工社製低圧逆浸透膜NTR759HRをpH12NaOH水溶液に15時間浸漬、純水リンスした後、2%クエン酸で2時間浸漬、純水リンスしたもの。
被処理水:純水にNaClを500mg/L、IPAを100mg/L溶解させたもの。
運転圧力:1.4 MPa
温度:24℃±2℃
[Comparative Example 8]
The treated water was passed through the flat membrane test apparatus shown in FIG. 2 for 2 hours under the following conditions.
Deteriorated membrane: Low-pressure reverse osmosis membrane NTR759HR manufactured by Nitto Denko Corporation used for wastewater recovery was immersed in a pH12 NaOH aqueous solution for 15 hours, rinsed with pure water, then immersed in 2% citric acid for 2 hours and rinsed with pure water.
Water to be treated: NaCl dissolved in pure water at 500 mg / L and IPA at 100 mg / L.
Operating pressure: 1.4 MPa
Temperature: 24 ° C ± 2 ° C

[比較例9]
比較例8の条件で通水を行い劣化状態を確認した後、被処理水にPEG(ポリエチレングリコール)4000(分子量4000、和光純薬製)5mg/L添加したものを被処理水として2時間通水すること以外は比較例8の条件で通水を行った。
[Comparative Example 9]
After passing water under the conditions of Comparative Example 8 and confirming the deterioration state, PEG (polyethylene glycol) 4000 (molecular weight 4000, manufactured by Wako Pure Chemical Industries) 5 mg / L was added to the water to be treated for 2 hours. Water was passed under the conditions of Comparative Example 8 except that water was used.

[実施例3]
比較例8の条件で通水を行い劣化状態を確認した後、被処理水にアルギニンを20mg/L、アスパルテーム20mg/L添加、食添タンニン酸AL(富士化学工業社製、分子量500以上)10mg/L添加したものを被処理水として2時間通水すること以外は試験方法2の条件で通水を行った。
[Example 3]
After passing water under the conditions of Comparative Example 8 and confirming the deterioration state, 20 mg / L of arginine, 20 mg / L of aspartame were added to the water to be treated, and 10 mg of dietary tannic acid AL (manufactured by Fuji Chemical Industry Co., Ltd., molecular weight of 500 or more) 10 mg Water was passed under the conditions of Test Method 2 except that water added with / L was passed as treated water for 2 hours.

表2に結果を示す。表2の通り、本発明によると、透過流束の低下を10%以内に止め、脱塩率及びIPA除去率を大きく向上させることができる。   Table 2 shows the results. As shown in Table 2, according to the present invention, the decrease in the permeation flux can be stopped within 10%, and the desalination rate and the IPA removal rate can be greatly improved.

Figure 0005772083
Figure 0005772083

以上の実施例及び比較例からも明らかな通り、本発明によれば、被処理水に薬剤を添加して通常の運転圧力で通水することによって、採水を行いながら、劣化膜を大きく透過水量を低下させることなく、脱塩率を回復することができる。また、脱塩率90%以下の著しい劣化膜においても本発明は適用できる。   As is clear from the above examples and comparative examples, according to the present invention, the chemical is added to the water to be treated and the water is passed through at a normal operating pressure, so that the deteriorated membrane can be largely permeated while collecting water. The desalination rate can be recovered without reducing the amount of water. The present invention can also be applied to a significantly deteriorated film having a desalination rate of 90% or less.

1 容器
1A 原水室
1B 透過水室
2 平膜セル
3 スターラー
1 container 1A raw water chamber 1B permeate water chamber 2 flat membrane cell 3 stirrer

Claims (9)

分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を逆浸透膜に通水する工程を有する逆浸透膜の阻止率向上方法であって、
該逆浸透膜がポリアミド膜であり、
該第1の有機化合物及び第2の有機化合物が低分子量アミノ化合物であり、
該第3の有機化合物が、カルボキシル基、アミノ基、あるいはヒドロキシル基を有する化合物であることを特徴とする逆浸透膜の阻止率向上方法。
Reverse osmosis having a molecular weight first organic compound of less than 200, a second organic compound having a molecular weight of less than 200 or 500, the step of passing water an aqueous solution containing a third organic compound having a molecular weight of at least 500 in the reverse osmosis membrane A method for improving the rejection rate of a membrane,
The reverse osmosis membrane is a polyamide membrane;
The first organic compound and the second organic compound are low molecular weight amino compounds;
A method for improving the rejection of a reverse osmosis membrane, wherein the third organic compound is a compound having a carboxyl group, an amino group, or a hydroxyl group .
請求項1において、前記第1の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物より選ばれる有機化合物であり、2. The aromatic aminocarboxylic acid according to claim 1, wherein the first organic compound is an aromatic amino compound having a benzene skeleton and an amino group, a benzene skeleton, two or more amino groups, and a carboxyl group less than the number of amino groups. Compound, aliphatic amino compound having a linear or branched hydrocarbon group having 1 to 20 carbon atoms and one or more amino groups, amino group and hydroxyl group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms An organic compound selected from an aliphatic amino alcohol having a heterocyclic amino compound having a heterocyclic ring and an amino group, and an amino acid compound,
前記第2の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物、ペプチドあるいはその誘導体より選ばれる有機化合物であることを特徴とする逆浸透膜の阻止率向上方法。The second organic compound is an aromatic amino compound having a benzene skeleton and an amino group, an aromatic aminocarboxylic acid compound having a benzene skeleton, two or more amino groups, and a carboxyl group less than the number of amino groups, and one carbon atom Aliphatic amino compounds having -20 linear or branched hydrocarbon groups and one or more amino groups, aliphatic amino compounds having amino groups and hydroxyl groups on linear or branched hydrocarbon groups having 1 to 20 carbon atoms A method for improving the rejection of a reverse osmosis membrane, which is an organic compound selected from alcohols, heterocyclic amino compounds having a heterocyclic ring and an amino group, amino acid compounds, peptides or derivatives thereof.
請求項において、前記第1の有機化合物がアミノ酸又はアミノ酸誘導体であることを特徴とする逆浸透膜の阻止率向上方法。 3. The method for improving the rejection of a reverse osmosis membrane according to claim 2 , wherein the first organic compound is an amino acid or an amino acid derivative. 請求項1ないし3のいずれか1項において、前記第3の有機化合物が環状構造を有することを特徴とする逆浸透膜の阻止率向上方法。 4. The method for improving the rejection of a reverse osmosis membrane according to any one of claims 1 to 3 , wherein the third organic compound has a cyclic structure. 請求項1ないしのいずれか1項において、前記逆浸透膜の前記水溶液を通水する前の脱塩率が90%以下であることを特徴とする逆浸透膜の阻止率向上方法。 In any one of claims 1 to 4, rejection enhancing method of the reverse osmosis membrane, wherein the salt rejection before passed through the aqueous solution of said reverse osmosis membrane is 90% or less. 請求項1ないしのいずれか1項において、前記第1の有機化合物と第2の有機化合物との合計の濃度が1〜500mg/Lであり、第3の有機化合物の濃度が1〜500mg/Lであることを特徴とする逆浸透膜の阻止率向上方法。 In any one of claims 1 to 5, wherein the first organic compound is the sum of the concentration of 1-500 mg / L of the second organic compound, the concentration of the third organic compound is 1-500 mg / A method for improving the rejection rate of a reverse osmosis membrane, which is L. 請求項1ないしのいずれか1項に記載の逆浸透膜の阻止率向上方法により阻止率向上処理が施されたことを特徴とする逆浸透膜。 A reverse osmosis membrane, which has been subjected to a rejection improvement process by the method for improving the rejection of a reverse osmosis membrane according to any one of claims 1 to 6 . 分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む逆浸透膜の阻止率向上剤であって、
該逆浸透膜がポリアミド膜であり、
該第1の有機化合物及び第2の有機化合物が低分子量アミノ化合物であり、
該第3の有機化合物が、カルボキシル基、アミノ基、あるいはヒドロキシル基を有する化合物である逆浸透膜の阻止率向上剤。
A reverse osmosis membrane rejection rate improver comprising a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more ,
The reverse osmosis membrane is a polyamide membrane;
The first organic compound and the second organic compound are low molecular weight amino compounds;
A reverse osmosis membrane rejection improvement agent, wherein the third organic compound is a compound having a carboxyl group, an amino group, or a hydroxyl group .
請求項8において、前記第1の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物より選ばれる有機化合物であり、9. The aromatic aminocarboxylic acid according to claim 8, wherein the first organic compound is an aromatic amino compound having a benzene skeleton and an amino group, a benzene skeleton, two or more amino groups, and a carboxyl group less than the number of amino groups. Compound, aliphatic amino compound having a linear or branched hydrocarbon group having 1 to 20 carbon atoms and one or more amino groups, amino group and hydroxyl group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms An organic compound selected from an aliphatic amino alcohol having a heterocyclic amino compound having a heterocyclic ring and an amino group, and an amino acid compound,
前記第2の有機化合物が、ベンゼン骨格とアミノ基を有する芳香族アミノ化合物、ベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有する芳香族アミノカルボン酸化合物、炭素数1〜20の直鎖又は分岐の炭化水素基と1個又は複数のアミノ基を有する脂肪族アミノ化合物、直鎖又は分岐の炭素数1〜20の炭化水素基にアミノ基と水酸基を有する脂肪族アミノアルコール、複素環とアミノ基を有する複素環アミノ化合物、アミノ酸化合物、ペプチドあるいはその誘導体より選ばれる有機化合物であることを特徴とする逆浸透膜の阻止率向上剤。The second organic compound is an aromatic amino compound having a benzene skeleton and an amino group, an aromatic aminocarboxylic acid compound having a benzene skeleton, two or more amino groups, and a carboxyl group less than the number of amino groups, and one carbon atom Aliphatic amino compounds having -20 linear or branched hydrocarbon groups and one or more amino groups, aliphatic amino compounds having amino groups and hydroxyl groups on linear or branched hydrocarbon groups having 1 to 20 carbon atoms A reverse osmosis membrane blocking rate improver, which is an organic compound selected from alcohols, heterocyclic amino compounds having a heterocyclic ring and an amino group, amino acid compounds, peptides or derivatives thereof.
JP2011051530A 2011-03-09 2011-03-09 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane Active JP5772083B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2011051530A JP5772083B2 (en) 2011-03-09 2011-03-09 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
SG2013062294A SG192806A1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
CN201280012319.5A CN103429324B (en) 2011-03-09 2012-03-05 Prevention rate raising method, the prevention rate of reverse osmosis membrane improve treatment agent and reverse osmosis membrane
MYPI2013701488A MY164964A (en) 2011-03-09 2012-03-05 Method for improving rejection of reverse osmosis membrane, treatment agent for improving rejection, and reverse osmosis membrane
BR112013022550-5A BR112013022550B1 (en) 2011-03-09 2012-03-05 method to improve the rejection of a reverse osmosis membrane and use of an aqueous solution to improve the rejection of a reverse osmosis membrane
ES12755214T ES2734078T3 (en) 2011-03-09 2012-03-05 Method to improve the blocking rate of a reverse osmosis membrane, and use of a treatment agent to improve the blocking rate of a reverse osmosis membrane
AU2012226983A AU2012226983B2 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
PL12755214T PL2684598T3 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, and use of a treatment agent for improving blocking rate of a reverse osmosis membrane
PCT/JP2012/055549 WO2012121208A1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
EP12755214.9A EP2684598B1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, and use of a treatment agent for improving blocking rate of a reverse osmosis membrane
US13/985,666 US9498754B2 (en) 2011-03-09 2012-03-05 Method for improving rejection of reverse osmosis membrane, treatment agent for improving rejection, and reverse osmosis membrane
KR1020187028366A KR101979178B1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
KR1020137023695A KR101932782B1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
TW101107920A TWI528998B (en) 2011-03-09 2012-03-08 The method of improving the rejection rate of the reverse osmosis membrane, the reducing treatment rate and the reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051530A JP5772083B2 (en) 2011-03-09 2011-03-09 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JP2012187469A JP2012187469A (en) 2012-10-04
JP5772083B2 true JP5772083B2 (en) 2015-09-02

Family

ID=47081240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051530A Active JP5772083B2 (en) 2011-03-09 2011-03-09 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP5772083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251953B2 (en) 2012-12-28 2017-12-27 栗田工業株式会社 Reverse osmosis membrane rejection improvement method
JP5910696B1 (en) * 2014-10-06 2016-04-27 栗田工業株式会社 Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP6090362B2 (en) * 2015-05-20 2017-03-08 栗田工業株式会社 Washing liquid and washing method for polyamide-based reverse osmosis membrane
JP6090377B2 (en) * 2015-07-27 2017-03-08 栗田工業株式会社 Cleaning agent for polyamide reverse osmosis membrane for water treatment, cleaning liquid, and cleaning method
JP2018047406A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682071B2 (en) * 1987-11-13 1997-11-26 東レ株式会社 Cross-linked polyamide reverse osmosis membrane treatment method
JP2762358B2 (en) * 1988-08-23 1998-06-04 ザ ダウ ケミカル カンパニー Production method and use of polyamide membrane effective for water softening
JP2727594B2 (en) * 1988-10-25 1998-03-11 東レ株式会社 Method for producing composite semipermeable membrane
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5755964A (en) * 1996-02-02 1998-05-26 The Dow Chemical Company Method of treating polyamide membranes to increase flux
JP2009172531A (en) * 2008-01-25 2009-08-06 Kurita Water Ind Ltd Method of improving rejection ratio of permeable membrane, permeable membrane improved in rejection ratio, and permeable membrane treatment method and device

Also Published As

Publication number Publication date
JP2012187469A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5633517B2 (en) Method for improving rejection of permeable membrane and permeable membrane
JP5914973B2 (en) Method for improving rejection rate of permeable membrane and treatment agent for improving rejection rate
WO2012121208A1 (en) Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
JP6251953B2 (en) Reverse osmosis membrane rejection improvement method
US6709590B1 (en) Composite reverse osmosis membrane and method for producing the same
JP2003088730A (en) Treatment method for reverse osmosis membrane element and reverse osmosis membrane module
JP5772083B2 (en) Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
AU2013247863B2 (en) Agent and method for improving blocking rate of reverse osmosis membrane, and reverse osmosis membrane
JP5929296B2 (en) Reverse osmosis membrane rejection improvement method
JP2015097990A (en) Rejection enhancing method of reverse osmosis membrane, reverse osmosis membrane and water treatment method
WO2018056242A1 (en) Reverse osmosis membrane rejection rate-improving agent and rejection rate-improving method
JP2014050783A (en) Check ratio improvement method of reverse osmotic membrane
JP2015016448A (en) Rejection rate improving method of composite semipermeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150