JP2003088730A - Treatment method for reverse osmosis membrane element and reverse osmosis membrane module - Google Patents

Treatment method for reverse osmosis membrane element and reverse osmosis membrane module

Info

Publication number
JP2003088730A
JP2003088730A JP2001287573A JP2001287573A JP2003088730A JP 2003088730 A JP2003088730 A JP 2003088730A JP 2001287573 A JP2001287573 A JP 2001287573A JP 2001287573 A JP2001287573 A JP 2001287573A JP 2003088730 A JP2003088730 A JP 2003088730A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane element
free chlorine
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001287573A
Other languages
Japanese (ja)
Inventor
Masaaki Ando
雅明 安藤
Terutaka Watanabe
輝隆 渡辺
Masahiko Hirose
雅彦 廣瀬
Hisao Hachisuga
久雄 蜂須賀
Mark Wilf
マーク・ウイルフ
Craig Bartels
クレイグ・バーテルス
Keith Andes
キース・アンデス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Hydranautics Corp
Original Assignee
Nitto Denko Corp
Hydranautics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Hydranautics Corp filed Critical Nitto Denko Corp
Priority to JP2001287573A priority Critical patent/JP2003088730A/en
Priority to EP02021216A priority patent/EP1295631B1/en
Priority to US10/245,713 priority patent/US6821430B2/en
Priority to ES02021216T priority patent/ES2278851T3/en
Priority to IL15180802A priority patent/IL151808A0/en
Publication of JP2003088730A publication Critical patent/JP2003088730A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for a reverse osmosis membrane capable of keeping effect for reducing the concentration of a solute in water permeated through the reverse osmosis membrane for a long time and capable of separating even non-electrolyte organic matter or boron or the like not dissociated in a neutral region in a high blocking ratio, and a reverse osmosis membrane module. SOLUTION: In a membrane separator loaded with the reverse osmosis membrane element having a polyamide skin layer, the pressure container in the membrane separator is filled with the reverse osmosis membrane element and a free chlorine aqueous solution containing bromine is subsequently brought into contact with the reverse osmosis membrane element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、逆浸透膜を搭載し
た膜分離装置において、搭載している逆浸透膜エレメン
トに化学処理を施すことにより、運転時に得られる逆浸
透膜透過水中の溶質濃度を低減することができる逆浸透
膜エレメントの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device equipped with a reverse osmosis membrane, in which the solute concentration in the reverse osmosis membrane permeate water obtained during operation is obtained by subjecting the installed reverse osmosis membrane element to a chemical treatment. The present invention relates to a method for treating a reverse osmosis membrane element capable of reducing the above.

【0002】[0002]

【従来の技術】従来の逆浸透(以下、「RO」ともい
う)膜は、脱塩性能、水透過性能およびイオン状物質分
離性能に優れるものもある。しかし、従来の逆浸透膜
は、イソプロピルアルコール(IPA)のような非電解
質有機物の阻止率や、中性領域では解離しない物質(例
えばホウ素)の阻止率が充分でなかった。
2. Description of the Related Art Some conventional reverse osmosis (hereinafter, also referred to as "RO") membranes have excellent desalination performance, water permeation performance and ionic substance separation performance. However, the conventional reverse osmosis membranes have insufficient blocking rates for non-electrolyte organic substances such as isopropyl alcohol (IPA) and substances that do not dissociate in the neutral region (for example, boron).

【0003】また、従来は、逆浸透膜の経時的な自然性
能変化や、化学薬品洗浄での逆浸透膜の膨潤によって、
脱塩率の低下が生じた逆浸透膜の一時的な性能回復方法
として、ポリビニルメチルエーテルやタンニン酸等のポ
リマー水溶液を逆浸透膜エレメントと接触させ、ポリマ
ーを逆浸透膜表面に吸着させたり、目詰めする物理的効
果を狙った処理が行われていた。
Further, conventionally, due to changes in natural performance of the reverse osmosis membrane over time and swelling of the reverse osmosis membrane due to chemical cleaning,
As a method for temporarily recovering the performance of the reverse osmosis membrane in which the desalination rate has decreased, a polymer aqueous solution such as polyvinyl methyl ether or tannic acid is brought into contact with the reverse osmosis membrane element to adsorb the polymer on the surface of the reverse osmosis membrane, Processing was performed aiming at the physical effect of clogging.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ポリマー水溶液を用いた逆浸透膜の一次的な性能回復方
法では、ポリマーを単に逆浸透膜表面に吸着あるいは目
詰めしているため、原水を通水していると時間と共にこ
のポリマーが膜表面から脱離するか、あるいは化学薬品
洗浄時に膜表面から脱離してしまう。そのため、該処理
によって逆浸透膜透過水中の溶質濃度低減効果を長時間
持続させることは困難であった。
However, in the conventional primary method for recovering the performance of a reverse osmosis membrane using an aqueous polymer solution, the polymer is simply adsorbed or clogged on the surface of the reverse osmosis membrane, so that the raw water is not passed through. When water is added, the polymer will be detached from the membrane surface over time, or will be detached from the membrane surface during chemical cleaning. Therefore, it was difficult to maintain the solute concentration reducing effect in the reverse osmosis membrane permeation water for a long time by the treatment.

【0005】また、例えば逆浸透膜を用いた海水淡水化
の場合、ホウ素は除去が難しく問題となる物質とされて
いるが、最近、日本では海水淡水化施設に限定して、監
視項目から基準項目として運用が変更され、海水に含ま
れるホウ素の含有量が1.0mg/L以下とされた。こ
の1.0mg/L以下という数値は、従来の逆浸透膜の
場合、運転条件または逆浸透膜の経時的な自然性能変化
によって必ずしもクリアーできない場合が生じていた。
[0005] For example, in the case of seawater desalination using a reverse osmosis membrane, it is considered that boron is a substance that is difficult to remove and is a problem. The operation was changed as an item, and the content of boron contained in seawater was set to 1.0 mg / L or less. In the case of the conventional reverse osmosis membrane, the numerical value of 1.0 mg / L or less could not always be cleared due to operating conditions or changes in natural performance of the reverse osmosis membrane over time.

【0006】そこで、本発明は、逆浸透膜透過水中の溶
質濃度低減効果を長時間持続させることができ、非電解
質有機物や中性領域では解離しないホウ素等も高い阻止
率で分離できる逆浸透膜の処理方法、および逆浸透膜モ
ジュールを提供することを目的とする。
In view of the above, the present invention provides a reverse osmosis membrane capable of maintaining a solute concentration reducing effect in permeated water of a reverse osmosis membrane for a long time, and separating non-electrolyte organic substances and boron which are not dissociated in a neutral region with a high blocking rate. And a reverse osmosis membrane module.

【0007】[0007]

【課題を解決するための手段】本発明は、逆浸透膜エレ
メントを搭載した膜分離装置において、装置に搭載して
いる逆浸透膜エレメントに臭素を含む遊離塩素水溶液を
接触させ、ポリアミドスキン層内に臭素を導入すること
により、運転時に得られる逆浸透膜透過水中の溶質濃度
が低減する、との知見に基づいてなされたものである。
According to the present invention, in a membrane separation device equipped with a reverse osmosis membrane element, an aqueous solution of free chlorine containing bromine is brought into contact with the reverse osmosis membrane element installed in the device so that the polyamide skin layer It was made based on the finding that the solute concentration in the reverse osmosis membrane permeate water obtained during operation is reduced by introducing bromine into the.

【0008】すなわち、前記目的を達成するために、本
発明は、ポリアミドスキン層を有する逆浸透膜エレメン
トを搭載した膜分離装置において、逆浸透膜エレメント
を膜分離装置内の圧力容器に充填した後、前記逆浸透膜
エレメントに臭素を含む遊離塩素水溶液を接触させるこ
とを特徴とする逆浸透膜エレメントの処理方法を提供す
るものである。
That is, in order to achieve the above-mentioned object, the present invention provides a membrane separation device equipped with a reverse osmosis membrane element having a polyamide skin layer, after filling the reverse osmosis membrane element into a pressure vessel in the membrane separation device. The present invention provides a method for treating a reverse osmosis membrane element, which comprises contacting the reverse osmosis membrane element with a free chlorine aqueous solution containing bromine.

【0009】本発明の処理方法によれば、従来の逆浸透
膜によって高い阻止率で分離できるイオン状物質のみな
らず、従来の逆浸透膜では阻止率が低かった低分子量の
非電解質有機物やホウ素等の溶質も、高い阻止率で分離
できる逆浸透膜が得られる。また、逆浸透膜の経時的な
自然性能変化や、化学薬品洗浄での逆浸透膜の膨潤によ
って脱塩率の低下が生じた逆浸透膜の性能回復も可能で
ある。従って、従来の逆浸透膜エレメントを用いた既設
の膜分離装置の場合でも、本発明の逆浸透膜エレメント
処理を施すことにより、逆浸透膜のホウ素阻止率を向上
させることができ、逆浸透膜透過水中のホウ素濃度を
1.0mg以下に下げることが可能となる。また、遊離
塩素水溶液によって化学的な処理を行うため、従来のポ
リマー水溶液の吸着処理や目詰め処理に比べて、処理剤
の脱離による逆浸透膜性能の低下が少ない点でも優れて
いる。また本発明の処理方法によれば、処理後の逆浸透
膜の性能は、35000ppmの塩化ナトリウムを含む
食塩水を、99.7%阻止できるため、従来の逆浸透膜
と同様の高い塩阻止率を有しつつ、ホウ素濃度を1.0
mg以下に下げることが可能となる。
According to the treatment method of the present invention, not only ionic substances which can be separated at a high rejection rate by conventional reverse osmosis membranes, but also low molecular weight non-electrolyte organic substances and boron, which have a low rejection rate by conventional reverse osmosis membranes, are used. It is possible to obtain a reverse osmosis membrane capable of separating solutes such as the above with a high rejection rate. Further, it is also possible to recover the performance of the reverse osmosis membrane in which the desalination rate is lowered due to the natural performance change of the reverse osmosis membrane over time and the swelling of the reverse osmosis membrane due to chemical cleaning. Therefore, even in the case of an existing membrane separation device using a conventional reverse osmosis membrane element, it is possible to improve the boron rejection rate of the reverse osmosis membrane by performing the reverse osmosis membrane element treatment of the present invention. It is possible to reduce the boron concentration in the permeated water to 1.0 mg or less. In addition, since the chemical treatment is performed with the free chlorine aqueous solution, the reverse osmosis membrane performance is less deteriorated due to the desorption of the treatment agent, as compared with the conventional adsorption treatment and the filling treatment of the polymer aqueous solution. Further, according to the treatment method of the present invention, the performance of the reverse osmosis membrane after treatment can prevent salt solution containing 35,000 ppm of sodium chloride by 99.7%, and thus has the same high salt rejection as the conventional reverse osmosis membrane. While having a boron concentration of 1.0
It is possible to reduce it to mg or less.

【0010】本発明の逆浸透膜エレメントの処理方法に
おいて、前記遊離塩素水溶液の遊離塩素濃度は、1〜1
00mg/Lの範囲が好ましい。1mg/L以上であれ
ば、前記非電解質有機物(例えばIPA)および中性領
域では解離しない物質(例えばホウ素)の阻止率がさら
に向上し、100mg/L以下であれば、透過流束の低
下が防止できる。前記遊離塩素濃度は、5〜50mg/
Lの範囲がより好ましい。
In the method for treating a reverse osmosis membrane element of the present invention, the free chlorine concentration of the free chlorine aqueous solution is 1 to 1
A range of 00 mg / L is preferred. If it is 1 mg / L or more, the rejection rate of the non-electrolyte organic substance (for example, IPA) and a substance that does not dissociate in the neutral region (for example, boron) is further improved, and if it is 100 mg / L or less, the permeation flux is lowered. It can be prevented. The free chlorine concentration is 5 to 50 mg /
The range of L is more preferable.

【0011】前記遊離塩素水溶液中の臭素濃度は、0.
5〜100mg/Lの範囲が好ましい。臭素濃度が0.
5mg/L以上であれば、さらに非電解質有機物および
中性領域では解離しない物質の阻止率が向上し、臭素濃
度が100mg/L以下であれば、透過流速の低下が防
止される。前記臭素濃度は、1〜50mg/Lの範囲が
より好ましい。
The bromine concentration in the free chlorine aqueous solution is 0.
The range of 5-100 mg / L is preferable. Bromine concentration is 0.
When it is 5 mg / L or more, the rejection rate of the non-electrolyte organic substance and substances that are not dissociated in the neutral region is further improved, and when the bromine concentration is 100 mg / L or less, the reduction of the permeation flow rate is prevented. The bromine concentration is more preferably in the range of 1 to 50 mg / L.

【0012】前記遊離塩素水溶液のpHは、4〜11の
範囲が好ましい。遊離塩素水溶液のpHが4以上であれ
ば、遊離塩素が塩素ガスとなることを防止できる。また
pHが11以下であれば、臭素をより一層効果的にポリ
アミドスキン層に付加することができる。前記pHは、
4〜6.8の範囲がより好ましく、特に5〜6.5の範
囲が好ましい。
The pH of the free chlorine aqueous solution is preferably in the range of 4-11. When the pH of the free chlorine aqueous solution is 4 or more, it is possible to prevent the free chlorine from becoming chlorine gas. When the pH is 11 or less, bromine can be added to the polyamide skin layer more effectively. The pH is
The range of 4 to 6.8 is more preferable, and the range of 5 to 6.5 is particularly preferable.

【0013】前記遊離塩素水溶液は、逆浸透膜エレメン
トによる脱塩水であることが好ましい。遊離塩素水溶液
として逆浸透膜エレメント脱塩水を用いることにより、
既設装置に搭載された脱塩率が低下した逆浸透膜の性能
回復を簡単に行うことができる。
The free chlorine aqueous solution is preferably demineralized water by a reverse osmosis membrane element. By using reverse osmosis membrane element demineralized water as the free chlorine aqueous solution,
It is possible to easily recover the performance of the reverse osmosis membrane mounted on the existing device and having a reduced desalination rate.

【0014】また、本発明の逆浸透膜エレメントの処理
方法は、加圧下で行うことが好ましい。処理効率の観点
から、圧力は0.1〜20MPaの範囲が好ましく、よ
り好ましくは0.2〜10MPaの範囲であり、特に
0.5〜6MPaの範囲が好ましい。
The method for treating a reverse osmosis membrane element of the present invention is preferably carried out under pressure. From the viewpoint of treatment efficiency, the pressure is preferably in the range of 0.1 to 20 MPa, more preferably 0.2 to 10 MPa, and particularly preferably 0.5 to 6 MPa.

【0015】本発明の逆浸透膜エレメントの処理方法に
おいて、前記ポリアミドスキン層は、2つ以上の反応性
アミノ基を有する芳香族化合物と、2つ以上の反応性酸
ハライド基を有する多官能性酸ハライド化合物とを反応
させて形成されたポリアミドスキン層であることが好ま
しい。このような構成の逆浸透膜は、脱塩性能、水透過
性およびイオン状物質の分離性能に優れるとともに、I
PA等の非電解質有機物および中性領域では解離しない
ホウ素等の溶質も高い阻止率で分離できる。
In the method for treating a reverse osmosis membrane element of the present invention, the polyamide skin layer is a polyfunctional compound having an aromatic compound having two or more reactive amino groups and two or more reactive acid halide groups. It is preferably a polyamide skin layer formed by reacting with an acid halide compound. The reverse osmosis membrane having such a structure is excellent in desalination performance, water permeability and separation performance of ionic substances, and
Non-electrolyte organic substances such as PA and solutes such as boron that do not dissociate in the neutral region can also be separated with a high blocking rate.

【0016】次に、本発明は、前記処理方法で処理した
逆浸透膜エレメントを組込んでなる逆浸透膜モジュール
を提供する。このような構成の逆浸透膜モジュールは、
従来の逆浸透膜によって高い阻止率で分離できるイオン
状物質をより一層高い阻止率で分離できるとともに、従
来の逆浸透膜では阻止率が低かった前記非電解質有機物
(例えばIPA)および中性領域では解離しない物質
(例えばホウ素)も高い阻止率で分離できる。
Next, the present invention provides a reverse osmosis membrane module incorporating a reverse osmosis membrane element treated by the above treatment method. The reverse osmosis membrane module having such a configuration,
The conventional reverse osmosis membrane can separate ionic substances which can be separated with a high rejection rate at a higher rejection rate, and the conventional reverse osmosis membrane has a low rejection rate in the non-electrolyte organic matter (eg IPA) and neutral region. A substance that does not dissociate (for example, boron) can also be separated with a high rejection rate.

【0017】[0017]

【発明の実施の形態】本発明の逆浸透膜エレメントの処
理方法は、ポリアミドスキン層を有する逆浸透膜エレメ
ントを搭載した膜分離装置において、逆浸透膜エレメン
トを膜分離装置内の圧力容器に充填した後、前記逆浸透
膜エレメントに臭素を含む遊離塩素水溶液を接触させ
る。すなわち、本発明の処理方法では、ポリアミドスキ
ン層を有する逆浸透膜エレメントに、臭素を含む遊離塩
素水溶液を接触させる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for treating a reverse osmosis membrane element according to the present invention is a membrane separation device equipped with a reverse osmosis membrane element having a polyamide skin layer, and the reverse osmosis membrane element is filled in a pressure vessel in the membrane separation device. After that, the reverse osmosis membrane element is contacted with a free chlorine aqueous solution containing bromine. That is, in the treatment method of the present invention, the reverse osmosis membrane element having the polyamide skin layer is brought into contact with a free chlorine aqueous solution containing bromine.

【0018】本発明の処理方法は、ポリアミドスキン層
を有する逆浸透膜エレメントであれば特に制限なく適用
できる。したがって、逆浸透膜エレメントを搭載した新
設の膜分離装置において、逆浸透膜エレメントを膜分離
装置内の圧力容器に装填後、臭素を含む遊離塩素水溶液
を調整し、逆浸透膜エレメントに接触させればよい。ま
た、既に逆浸透膜エレメントが搭載された既設の膜分離
装置においても、同様に臭素を含む遊離塩素水溶液を逆
浸透膜エレメントに接触させればよい。本発明の処理方
法では、逆浸透膜エレメントを膜分離装置の圧力容器に
1本から複数本装填した状態で処理を行うことができる
ため、膜分離装置の規模が大きくなればなるほど、逆浸
透膜エレメント当たりに要する処理時間が短縮でき、そ
のため、製造効率の向上が可能となる。
The treatment method of the present invention can be applied without particular limitation as long as it is a reverse osmosis membrane element having a polyamide skin layer. Therefore, in a new membrane separation device equipped with a reverse osmosis membrane element, after loading the reverse osmosis membrane element into the pressure vessel inside the membrane separation device, adjust the free chlorine aqueous solution containing bromine to bring it into contact with the reverse osmosis membrane element. Good. Further, also in the existing membrane separation device already equipped with the reverse osmosis membrane element, the free chlorine aqueous solution containing bromine may similarly be brought into contact with the reverse osmosis membrane element. In the treatment method of the present invention, the treatment can be performed in a state in which one or more reverse osmosis membrane elements are loaded in the pressure vessel of the membrane separation device. Therefore, the larger the size of the membrane separation device, the larger the reverse osmosis membrane. The processing time required for each element can be shortened, so that the manufacturing efficiency can be improved.

【0019】本発明の処理を行った逆浸透膜エレメント
は、従来の逆浸透膜によって高い阻止率が得られるイオ
ン状物質以外に、従来の逆浸透膜では阻止率が低かった
IPAやホウ素等の溶質でも従来以上に阻止することが
できる。したがって、本発明の処理方法は、新設あるい
は既設の逆浸透膜エレメントを搭載した膜分離装置にお
いて、性能向上を目的として用いることができる。この
場合、前記装置に搭載されている逆浸透膜の性能は、処
理前と比べて、イオン状物質の阻止率が低下することな
く、IPAやホウ素等の溶質の阻止率が向上する。
The reverse osmosis membrane element subjected to the treatment of the present invention includes, in addition to ionic substances which can obtain a high blocking rate by the conventional reverse osmosis membrane, IPA, boron and the like which have a low blocking rate by the conventional reverse osmosis membrane. Even solutes can be blocked more than before. Therefore, the treatment method of the present invention can be used for the purpose of improving performance in a membrane separation device equipped with a new or existing reverse osmosis membrane element. In this case, as for the performance of the reverse osmosis membrane mounted on the apparatus, the rejection rate of ionic substances is not reduced and the rejection rate of solutes such as IPA and boron is improved as compared with that before treatment.

【0020】また、既設の逆浸透膜エレメントを搭載し
た膜分離装置において、逆浸透膜の経時的な自然性能変
化による脱塩率の低下や、化学薬品洗浄により逆浸透膜
が膨潤して脱塩率の低下が生じた場合、本発明の逆浸透
膜処理を施すことによって、逆浸透膜透過水中の溶質濃
度を低減できる。したがって、本発明の処理方法は、逆
浸透膜の性能回復を目的として用いることもできる。こ
の場合、既存装置に搭載されている逆浸透膜のイオン状
物質の阻止率は、処理前と比べて向上する。よって、本
発明の処理方法は、従来の逆浸透膜での阻止対象であっ
たイオン状物質の阻止性能向上を目的として利用するこ
ともできる。
Further, in a membrane separation device equipped with an existing reverse osmosis membrane element, the desalination rate is lowered due to a change in natural performance of the reverse osmosis membrane over time, and the reverse osmosis membrane is swollen and desalted by chemical washing. When the rate decreases, the solute concentration in the permeate of the reverse osmosis membrane can be reduced by performing the reverse osmosis membrane treatment of the present invention. Therefore, the treatment method of the present invention can also be used for the purpose of recovering the performance of the reverse osmosis membrane. In this case, the rejection rate of ionic substances in the reverse osmosis membrane mounted on the existing device is improved as compared with that before the treatment. Therefore, the treatment method of the present invention can also be used for the purpose of improving the blocking performance of ionic substances, which was the target of blocking in the conventional reverse osmosis membrane.

【0021】前記処理に用いる臭素を含む遊離塩素水溶
液は、例えば、水に臭素化合物および遊離塩素を溶解さ
せることにより調製できる。臭素化合物としては水に溶
解できるものであれば特に限定されない。例えば、臭化
ナトリウム、臭化カリウム、臭化カルシウム、臭化マグ
ネシウム、臭化アンモニウム、臭化リチウム、臭化カド
ミウム、臭化ゲルマニウム、臭化コバルト、臭化ストロ
ンチウム、臭化セシウム、臭化タングステン、臭化鉄、
臭化テルル、臭化銅、臭化バリウム、臭化マンガン、臭
化水素等の臭化化合物が挙げられる。この中でアルカリ
金属の臭素化合物、アルカリ土類金属の臭素化合物が好
ましく、より好ましくはアルカリ金属の臭素化合物であ
る。
The free chlorine aqueous solution containing bromine used in the above treatment can be prepared, for example, by dissolving a bromine compound and free chlorine in water. The bromine compound is not particularly limited as long as it can be dissolved in water. For example, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, ammonium bromide, lithium bromide, cadmium bromide, germanium bromide, cobalt bromide, strontium bromide, cesium bromide, tungsten bromide, Iron bromide,
Brominated compounds such as tellurium bromide, copper bromide, barium bromide, manganese bromide, hydrogen bromide and the like can be mentioned. Of these, alkali metal bromine compounds and alkaline earth metal bromine compounds are preferable, and alkali metal bromine compounds are more preferable.

【0022】このような臭素を含有する遊離塩素水溶液
は、例えば海水、地下水のように、元来臭素を含んだ水
や逆浸透膜エレメントの脱塩水に、遊離塩素を加え、必
要に応じpHを前記所定の範囲に調整することができ
る。なかでも、逆浸透膜エレメントの脱塩水を用いるこ
とにより、既設装置に搭載された逆浸透膜の性能向上、
性能回復を簡単に行うことができる。
Such a free chlorine aqueous solution containing bromine is added with free chlorine to water originally containing bromine or desalted water of a reverse osmosis membrane element, such as seawater and groundwater, and the pH is adjusted as necessary. It can be adjusted within the predetermined range. Above all, by using demineralized water of the reverse osmosis membrane element, the performance of the reverse osmosis membrane installed in the existing device is improved,
Performance recovery can be performed easily.

【0023】本発明の逆浸透膜エレメントの処理方法に
おいて、前記遊離塩素水溶液の遊離塩素濃度は、1〜1
00mg/Lの範囲が好ましく、5〜50mg/Lの範
囲がより好ましい。1mg/L以上であれば、前記非電
解質有機物(例えばIPA)および中性領域では解離し
ない物質(例えばホウ素)の阻止率がさらに向上し、1
00mg/L以下であれば、透過流束の低下が防止でき
る。
In the method for treating a reverse osmosis membrane element of the present invention, the concentration of free chlorine in the free chlorine aqueous solution is 1 to 1
The range of 00 mg / L is preferable, and the range of 5 to 50 mg / L is more preferable. If it is 1 mg / L or more, the rejection rate of the non-electrolyte organic substance (for example, IPA) and the substance that does not dissociate in the neutral region (for example, boron) is further improved, and 1
When the amount is 00 mg / L or less, the permeation flux can be prevented from decreasing.

【0024】前記遊離塩素水溶液中の臭素濃度は、0.
5〜100mg/Lの範囲が好ましく、1〜50mg/
Lの範囲がより好ましい。臭素濃度が0.5mg/L以
上であれば、さらに非電解質有機物および中性領域では
解離しない物質の阻止率が向上し、臭素濃度が100m
g/L以下であれば、透過流速の低下が防止される。
The bromine concentration in the free chlorine aqueous solution is 0.
The range of 5 to 100 mg / L is preferable, and 1 to 50 mg / L
The range of L is more preferable. When the bromine concentration is 0.5 mg / L or more, the rejection rate of non-electrolyte organic substances and substances that do not dissociate in the neutral region is further improved, and the bromine concentration is 100 m.
When it is not more than g / L, the permeation flow rate is prevented from decreasing.

【0025】前記臭素濃度は、 前記遊離塩素水溶液の
pHは、4〜11の範囲が好ましく、より好ましくは4
〜6.8の範囲であり、特に5〜6.5の範囲が好まし
い。遊離塩素水溶液のpHが4以上であれば、遊離塩素
が塩素ガスとなることを防止できる。またpHが11以
下であれば、臭素をより一層効果的にポリアミドスキン
層に付加することができる。
With respect to the bromine concentration, the pH of the free chlorine aqueous solution is preferably in the range of 4 to 11, more preferably 4
The range is from 6.8 to 6.8, and the range from 5 to 6.5 is particularly preferable. When the pH of the free chlorine aqueous solution is 4 or more, it is possible to prevent the free chlorine from becoming chlorine gas. When the pH is 11 or less, bromine can be added to the polyamide skin layer more effectively.

【0026】本発明の処理方法が用いられるポリアミド
スキン層を有する逆浸透膜は、特に限定されない。脱塩
性能、水透過性およびイオン状物質の分離性能に優れ、
IPA等の非電解質有機物および中性領域では解離しな
いホウ素等の溶質も高い阻止率で分離できる観点より、
2つ以上の反応性アミノ基を有する芳香族化合物と、2
つ以上の反応性酸ハライド基を有する多官能性酸ハライ
ド化合物とを反応させて形成されたポリアミドスキン層
を有する逆浸透膜が好ましい。
The reverse osmosis membrane having a polyamide skin layer in which the treatment method of the present invention is used is not particularly limited. Excellent in desalination performance, water permeability and separation performance of ionic substances,
From the viewpoint that non-electrolyte organic substances such as IPA and solutes such as boron that do not dissociate in the neutral region can be separated with a high rejection rate,
An aromatic compound having two or more reactive amino groups, and 2
A reverse osmosis membrane having a polyamide skin layer formed by reacting a polyfunctional acid halide compound having one or more reactive acid halide groups is preferable.

【0027】前記ポリアミドスキン層を有する逆浸透膜
としては、例えば、多孔性支持体の上に、2つ以上の反
応性アミノ基を有する芳香族化合物と、2つ以上の反応
性酸ハライド基を有する多官能性酸ハライド化合物とを
反応させてポリアミドスキン層を形成したもの等を挙げ
ることができる。
As the reverse osmosis membrane having the polyamide skin layer, for example, an aromatic compound having two or more reactive amino groups and two or more reactive acid halide groups are provided on a porous support. The thing which formed the polyamide skin layer by making it react with the polyfunctional acid halide compound which it has, etc. can be mentioned.

【0028】2つ以上の反応性アミノ基を有する芳香族
化合物(以下「多官能アミン」ともいう)は、特に限定
されず、例えば、m−フェニレンジアミン、p−フェニ
レンジアミン、1,3,5−トリアミノベンゼン、1,
2,4−トリアミノベンゼン、8,5−ジアミノ安息香
酸、2,4−ジアミノトルエン、2,4−ジアミノアニ
ソール、アミドール、キシリレンジアミン等が挙げられ
る。好ましくは、m−フェニレンジアミン、p−フェニ
レンジアミン、トリアミノベンゼンがあげられる。この
なかで、m−フェニレンジアミン、トリアミノベンゼン
が好ましい。
The aromatic compound having two or more reactive amino groups (hereinafter also referred to as "polyfunctional amine") is not particularly limited, and examples thereof include m-phenylenediamine, p-phenylenediamine, 1,3,5. -Triaminobenzene, 1,
2,4-triaminobenzene, 8,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,4-diaminoanisole, amidole, xylylenediamine and the like can be mentioned. Preferred are m-phenylenediamine, p-phenylenediamine and triaminobenzene. Of these, m-phenylenediamine and triaminobenzene are preferable.

【0029】またこれら芳香族多官能アミンの他に、脂
肪族または脂環式の多官能アミンが混合して用いられて
も良い。かかる脂肪族多官能アミンとしては、例えば、
エチレンジアミン、プロピレンジアミン、トリス(2−
アミノエチル)アミン等が挙げられる。また、脂環式多
官能アミンとしては、例えば、1,3−ジアミノシクロ
ヘキサン、1,2−ジアミノシクロヘキサン、1,4一
ジアミノシクロヘキサンピペラジン、2,5−ジメチル
ピペラジン、4-アミノメチルピペラジン等が挙げられ
る。
In addition to these aromatic polyfunctional amines, aliphatic or alicyclic polyfunctional amines may be mixed and used. As such an aliphatic polyfunctional amine, for example,
Ethylenediamine, propylenediamine, tris (2-
Aminoethyl) amine and the like. Further, examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexanepiperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine and the like. To be

【0030】前記多官能性酸ハロゲン化物(以下「酸ハ
ライド」ともいう)は、特に限定されず、例えば、芳香
族、脂肪族、脂環式等の多官能性酸ハロゲン化物が挙げ
られ、好ましくは芳香族多官能性酸ハロゲン化物であ
る。
The polyfunctional acid halide (hereinafter also referred to as "acid halide") is not particularly limited, and examples thereof include aromatic, aliphatic, alicyclic and other polyfunctional acid halides, and preferred. Is an aromatic polyfunctional acid halide.

【0031】前記芳香族多官能性酸ハロゲン化物として
は、例えば、トリメシン酸クロライド、テレフタル酸ク
ロライド、イソフタル酸クロライド、ビフェニルジカル
ボン酸クロライド、ナフタレンジカルボン酸ジクロライ
ド、ベンゼントリスルホン酸クロライド、ベンゼンジス
ルホン酸クロライド、クロロスルホニルベンゼンジカル
ボン酸クロライド等が挙げられる。このなかで、単環式
芳香族化合物が好ましい。
Examples of the aromatic polyfunctional acid halides include trimesic acid chloride, terephthalic acid chloride, isophthalic acid chloride, biphenyldicarboxylic acid chloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid chloride, benzenedisulfonic acid chloride, Chlorosulfonylbenzene dicarboxylic acid chloride and the like can be mentioned. Of these, monocyclic aromatic compounds are preferred.

【0032】前記脂肪族多官能性酸ハロゲン化物として
は、例えば、プロパントリカルボン酸クロライド、ブタ
ントリカルボン酸クロライド、ペンタントリカルボン酸
クロライド、グルタリルハライド、アジポイルハライド
等が挙げられる。
Examples of the aliphatic polyfunctional acid halides include propane tricarboxylic acid chloride, butane tricarboxylic acid chloride, pentane tricarboxylic acid chloride, glutaryl halide, adipoyl halide and the like.

【0033】前記脂環式多官能性酸ハロゲン化物として
は、例えば、シクロプロパントリカルボン酸クロライ
ド、シクロブタンテトラカルボン酸クロライド、シクロ
ペンタントリカルボン酸クロライド、シクロペンタンテ
トラカルボン酸クロライド、シクロヘキサントリカルボ
ン酸クロライド、テトラハイドロフランテトラカルボン
酸クロライド、シクロペンタンジカルボン酸クロライ
ド、シクロブタンジカルボン酸クロライド、シクロヘキ
サンジカルボン酸クロライド、テトラハイドロフランジ
カルボン酸クロライド等が挙げられる。
Examples of the alicyclic polyfunctional acid halides include cyclopropane tricarboxylic acid chloride, cyclobutane tetracarboxylic acid chloride, cyclopentane tricarboxylic acid chloride, cyclopentane tetracarboxylic acid chloride, cyclohexane tricarboxylic acid chloride and tetrahydro. Furan tetracarboxylic acid chloride, cyclopentane dicarboxylic acid chloride, cyclobutane dicarboxylic acid chloride, cyclohexane dicarboxylic acid chloride, tetrahydrofurandicarboxylic acid chloride and the like can be mentioned.

【0034】前記多孔性支持体は、ポリアミドスキン層
を支持し得る物であれば特に限定されず、例えば、ポリ
スルホン、ポリエーテルスルホンのようなポリアリール
エーテルスルホン、ポリイミド、ポリフッ化ビニリデン
など種々のものを挙げることができるが、特に、化学
的、機械的、熱的に安定である点から、ポリスルホン、
ポリアリールエーテルスルホンからなる多孔性支持膜が
好ましく用いられる。かかる多孔性支持体は、通常、約
25〜125μm、好ましくは約40〜75μmの厚み
を有するが、必ずしもこれらに限定されるものではな
い。
The porous support is not particularly limited as long as it can support the polyamide skin layer, and various materials such as polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyvinylidene fluoride and the like can be used. In particular, polysulfone, because of its chemical, mechanical and thermal stability,
A porous support membrane made of polyarylethersulfone is preferably used. Such a porous support usually has a thickness of about 25 to 125 μm, preferably about 40 to 75 μm, but is not necessarily limited thereto.

【0035】つぎに、前記多官能アミン成分と、前記酸
ハライド成分とを、界面重合させることにより、多孔性
支持体上に架橋ポリアミドを主成分とするポリアミドス
キン層を形成する。例えば、多孔性支持体上に、前記多
官能アミン成分を含有する溶液からなる第1の層を塗布
等により形成し、次いで前記酸ハライド成分を含有する
溶液からなる層を塗布等により前記第1の層上に形成
し、界面重縮合を行って、架橋ポリアミドからなる薄膜
(ポリアミドスキン層)を前記多孔性支持体上に形成さ
せる。
Next, the polyfunctional amine component and the acid halide component are interfacially polymerized to form a polyamide skin layer containing a crosslinked polyamide as a main component on the porous support. For example, a first layer made of a solution containing the polyfunctional amine component is formed on a porous support by coating or the like, and then a layer made of a solution containing the acid halide component is formed by coating or the like. Is formed on the above porous support and subjected to interfacial polycondensation to form a thin film (polyamide skin layer) made of crosslinked polyamide on the porous support.

【0036】多官能アミンを含有する溶液は、製膜を容
易にし、あるいは得られる逆浸透膜の性能を向上させる
ために、さらに、例えば、ポリビニルアルコール、ポリ
ビニルピロリドン、ポリアクリル酸等の重合体や、ソル
ビトール、グリセリン等のような多価アルコールを少量
含有させることもできる。
The solution containing a polyfunctional amine is used for facilitating the film formation or improving the performance of the obtained reverse osmosis membrane. Further, for example, a polymer such as polyvinyl alcohol, polyvinylpyrrolidone or polyacrylic acid, A small amount of polyhydric alcohol such as sorbitol, sorbitol, glycerin, etc. may be contained.

【0037】また、透過流束を高める為、多官能アミン
を含有する溶液若しくは酸ハライド成分を含有する溶
液、または前記両溶液の双方に、溶解度パラメータ(特
開平8−224452号に記載)が8〜14(cal/
cm3)1/2の化合物を添加することができる。前記溶解
度パラメータとは、液体のモル蒸発熱を△Hcal/m
ol、モル体積をVcm3/molとするとき、(△H
/V)1/2(cal/cm 31/2で定義される量をい
う。このような溶解度パラメータを有する物質として
は、例えば、アルコール類、エーテル類、ケトン類、エ
ステル類、ハロゲン化炭化水素類、含硫黄化合物類など
があり、具体的には、特開平8−224452号に記載
の物質があげられる。
In order to increase the permeation flux, a polyfunctional amine is used.
Or a solution containing an acid halide component
Solubility parameters (specific
Kaihei 8-224452) is 8-14 (cal /
cm3)1/2Compounds of can be added. The dissolution
The degree parameter is the heat of vaporization of the liquid by ΔHcal / m
ol, molar volume is Vcm3/ Mol, (△ H
/ V)1/2(Cal / cm 3)1/2The amount defined by
U As a substance with such solubility parameters
Is, for example, alcohols, ethers, ketones,
Steals, halogenated hydrocarbons, sulfur-containing compounds, etc.
Specifically, it is specifically described in JP-A-8-224452.
The substance is.

【0038】特開平2−187135号公報に記載のア
ミン塩、例えばテトラアルキルアンモニウムハライドや
トリアルキルアミンと有機酸とによる塩等も、製膜を容
易にする、アミン溶液の支持体への吸収性を良くする、
縮合反応を促進する等の点で、多官能アミンを含有する
溶液若しくは酸ハライド成分を含有する溶液、または前
記両溶液の双方に好適に用いられる。
The amine salts described in JP-A-2-187135, such as salts of tetraalkylammonium halides and trialkylamines with organic acids, also absorb the amine solution onto the support to facilitate film formation. To improve
From the viewpoint of accelerating the condensation reaction, it is preferably used in a solution containing a polyfunctional amine, a solution containing an acid halide component, or both of the above solutions.

【0039】ドデシルベンゼンスルホン酸ナトリウム、
ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等の
界面活性剤を、多官能アミンを含有する溶液若しくは酸
ハライド成分を含有する溶液、または前記両溶液の双方
に含有させることもできる。これらの界面活性剤は、多
官能アミンを含有する溶液の多孔性支持体への濡れ性を
改善するのに効果がある。
Sodium dodecylbenzene sulfonate,
A surfactant such as sodium dodecyl sulfate or sodium lauryl sulfate may be contained in the solution containing the polyfunctional amine or the solution containing the acid halide component, or both of the solutions. These surfactants are effective in improving the wettability of the solution containing the polyfunctional amine to the porous support.

【0040】前記界面での重縮合反応を促進するため
に、多官能アミンを含有する溶液若しくは酸ハライド成
分を含有する溶液に、または前記両溶液の双方に、界面
反応にて生成するハロゲン化水素を除去し得る水酸化ナ
トリウムやリン酸三ナトリウムを用い、あるいは触媒と
して、アシル化触媒等を用いることも有益である。
In order to accelerate the polycondensation reaction at the interface, hydrogen halide formed in the interface reaction is added to a solution containing a polyfunctional amine or a solution containing an acid halide component, or both of the solutions. It is also advantageous to use sodium hydroxide or trisodium phosphate capable of removing cis, or to use an acylation catalyst or the like as a catalyst.

【0041】前記酸ハライドを含有する溶液及び多官能
アミンを含有する溶液において、酸ハライド及び多官能
アミンの濃度は、特に限定されるものではないが、酸ハ
ライドは、通常0.01〜5質量%、好ましくは0.0
5〜1質量%であり、多官能アミンは、通常0.1〜1
0質量%、好ましくは0.5〜5質量%である。
In the solution containing the acid halide and the solution containing the polyfunctional amine, the concentrations of the acid halide and the polyfunctional amine are not particularly limited, but the acid halide is usually 0.01 to 5 mass. %, Preferably 0.0
5 to 1% by mass, and the polyfunctional amine is usually 0.1 to 1
It is 0% by mass, preferably 0.5 to 5% by mass.

【0042】このようにして、多孔性支持体上に多官能
アミンを含有する溶液を被覆し、次いでその上に多官能
酸ハライド化合物を含有する溶液を被覆した後、それぞ
れ余分の溶液を除去し、次いで、通常約20〜150
℃、好ましくは約70〜130℃で、約1〜10分間、
好ましくは約2〜8分間加熱乾燥して、架橋ポリアミド
からなる水透過性の薄膜を形成させる。この薄膜は、そ
の厚さが、通常約0.05〜2μm、好ましくは約0.
10〜1μmの範囲にある。
In this way, after coating the porous support with the solution containing the polyfunctional amine, and then coating the solution containing the polyfunctional acid halide compound thereon, the excess solution is removed. , Then usually about 20-150
C., preferably about 70-130.degree. C. for about 1-10 minutes,
It is preferably dried by heating for about 2 to 8 minutes to form a water-permeable thin film made of crosslinked polyamide. The thickness of this thin film is usually about 0.05 to 2 μm, preferably about 0.
It is in the range of 10 to 1 μm.

【0043】本発明の処理方法では、ポリアミドスキン
層を有する逆浸透膜エレメントを、膜分離装置の圧力容
器に1本から複数本装填し、前記逆浸透膜エレメントに
臭素を含む遊離塩素水溶液を接触させる。前述のよう
に、この接触は、加圧条件で行うことが好ましい。処理
効率の観点から、この圧力は、例えば、0.1〜20M
Paの範囲であり、好ましくは0.2〜10MPaの範
囲であり、より好ましくは0.5〜6MPaの範囲であ
る。
In the treatment method of the present invention, one or a plurality of reverse osmosis membrane elements having a polyamide skin layer are loaded in a pressure vessel of a membrane separator, and the reverse osmosis membrane element is contacted with a free chlorine aqueous solution containing bromine. Let As mentioned above, this contact is preferably performed under pressure. From the viewpoint of processing efficiency, this pressure is, for example, 0.1 to 20M.
It is in the range of Pa, preferably in the range of 0.2 to 10 MPa, and more preferably in the range of 0.5 to 6 MPa.

【0044】また、逆浸透膜エレメントに臭素を含む遊
離塩素水溶液を接触させる場合、該臭素含有遊離塩素水
溶液を、前記逆浸透膜エレメントに、例えば5〜120
分間、好ましくは15〜60分間通水するのがよい。通
水時間が5分以上であれば、非電解有機物およびホウ素
のような中性域では解離しない物質の阻止率がさらに向
上し、通水時間が120分以下であれば透過流束の低下
が防止できる。
When the reverse osmosis membrane element is contacted with a free chlorine aqueous solution containing bromine, the bromine-containing free chlorine aqueous solution is applied to the reverse osmosis membrane element, for example, 5 to 120.
It is advisable to pass water for 15 minutes, preferably for 15 to 60 minutes. If the water passage time is 5 minutes or more, the rejection rate of non-electrolytic organic substances and substances that do not dissociate in the neutral range such as boron is further improved, and if the water passage time is 120 minutes or less, the permeation flux is lowered. It can be prevented.

【0045】本発明の処理方法で処理された逆浸透膜に
は、ポリアミドスキン層に臭素原子が付加している。な
お、前記ポリアミドスキン層には、塩素原子は付加して
いてもよいが、付加していなくてもよい。前記ポリアミ
ドスキン層が臭素を有していることは、例えば、電子分
光法(ESCA)により確認できる。
Bromine atoms are added to the polyamide skin layer in the reverse osmosis membrane treated by the treatment method of the present invention. It should be noted that chlorine atoms may or may not be added to the polyamide skin layer. The fact that the polyamide skin layer has bromine can be confirmed by, for example, electron spectroscopy (ESCA).

【0046】前記ポリアミドスキン層が有する臭素は、
原子状であってもイオン状であってもよい。ポリアミド
スキン層には、本発明の効果を阻害しない範囲で、臭素
以外の他の物質が付加されていてもよい。また、臭素は
前記ポリアミドスキン層の前記芳香族化合物部分に付加
されていることが好ましい。
Bromine contained in the polyamide skin layer is
It may be atomic or ionic. A substance other than bromine may be added to the polyamide skin layer as long as the effect of the present invention is not impaired. Further, bromine is preferably added to the aromatic compound portion of the polyamide skin layer.

【0047】本発明の処理方法で処理された逆浸透膜の
ポリアミドスキン層は、該ポリアミドスキン層形成時の
反応条件によっても異なるが、臭素原子(Br)とアミ
ノ基を構成する窒素原子(N)との割合(Br/N)
が、0.1以上かつ1.0以下であることが好ましい。
この割合が0.1以上であれば、非電解質有機物および
中性領域では解離しない物質をさらに高い阻止率で分離
できる。また、前記割合が1.0以下であれば、非電解
質有機物および中性領域では解離しない物質をさらに高
い阻止率で分離でき、かつ透過流束が低くなりすぎるこ
とが防止され、操作圧力が高くなりすぎることを防止で
き、経済的に有利となる。前記割合のより好ましい範囲
は0.15以上かつ0.7以下であり、最適の範囲は
0.2以上かつ0.5以下である。
The polyamide skin layer of the reverse osmosis membrane treated by the treatment method of the present invention varies depending on the reaction conditions at the time of forming the polyamide skin layer, but it depends on the nitrogen atom (N) constituting the bromine atom (Br) and the amino group. ) And the ratio (Br / N)
Is preferably 0.1 or more and 1.0 or less.
When this ratio is 0.1 or more, the non-electrolyte organic substance and the substance that does not dissociate in the neutral region can be separated with a higher blocking rate. Further, when the ratio is 1.0 or less, the non-electrolyte organic substance and the substance that does not dissociate in the neutral region can be separated with a higher blocking rate, and the permeation flux is prevented from becoming too low, and the operating pressure is high. It can be prevented from becoming too much, which is economically advantageous. The more preferable range of the ratio is 0.15 or more and 0.7 or less, and the optimum range is 0.2 or more and 0.5 or less.

【0048】以上のように、本発明の処理方法で処理し
た逆浸透膜エレメントを組込んでなる逆浸透膜モジュー
ルは、かん水、海水等の脱塩による淡水化や、超純水の
製造等に好適に使用できる。また染色排水や電着塗料排
水等の公害発生原因である産業排水等から、その中に含
まれる汚染源若しくは有効物質を除去回収する場合にも
使用でき、排水のクローズ化に寄与することができる。
この他に、食品工業等の分野において、有効成分の濃縮
や、上水や下水等の有害成分の除去などの水処理に使用
することができる。
As described above, the reverse osmosis membrane module incorporating the reverse osmosis membrane element treated by the treatment method of the present invention is suitable for desalination by desalting brackish water, seawater or the like, or for producing ultrapure water. It can be preferably used. It can also be used for removing and collecting a pollution source or an effective substance contained in industrial wastewater, which is a cause of pollution such as dyeing wastewater and electrodeposition paint wastewater, and can contribute to closing the wastewater.
In addition to this, it can be used for water treatment such as concentration of active ingredients and removal of harmful components such as tap water and sewage in fields such as food industry.

【0049】[0049]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれら実施例により何ら限定さ
れるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0050】(製造例1)m−フェニレンジアミン(3
重量%)、ラウリル硫酸ナトリウム(0.25重量
%)、トリエチルアミン(2重量%)およびカンファス
ルホン酸(4重量%)を含有する水溶液を多孔性支持体
(ポリスルホン系限外ろ過膜)に塗布した後、余分の水
溶液を除去して上記支持体上に上記水溶液の層を形成し
た。さらに、この層の上に、トリメシン酸クロライト
(0.1重量%)およびイソフタル酸クロライト(0.
15重量%)を含むイソオクタン溶液を塗布し、その後
120℃乾燥器内で3分間保持して前記多孔性支持体上
に重合体薄膜(ポリアミドスキン層)を形成させて逆浸
透膜を得た。この逆浸透膜において、前記多孔性支持体
の平均厚みは50μmであり、前記ポリアミドスキン層
の平均厚みは0.2μmであった。
(Production Example 1) m-phenylenediamine (3
%), Sodium lauryl sulfate (0.25% by weight), triethylamine (2% by weight) and camphorsulfonic acid (4% by weight) were applied to the porous support (polysulfone ultrafiltration membrane). After that, the excess aqueous solution was removed to form a layer of the aqueous solution on the support. Furthermore, on this layer, chlorite trimesic acid (0.1% by weight) and chlorite isophthalate (0.
15% by weight) in an isooctane solution was applied and then kept in a dryer at 120 ° C. for 3 minutes to form a polymer thin film (polyamide skin layer) on the porous support to obtain a reverse osmosis membrane. In this reverse osmosis membrane, the average thickness of the porous support was 50 μm, and the average thickness of the polyamide skin layer was 0.2 μm.

【0051】(実施例1)pH6.5、25℃の3.5
質量%NaCl水溶液を原水として用い、5.49MP
a加圧、濃縮水流量90L/分の条件で評価したとき
に、食塩の阻止率99.7%、透過水量15m3/日の
性能を示すポリアミドスキン層を有するRO膜エレメン
ト(直径201mm、長さ1016mm)を、海水淡水
化の膜分離装置の圧力容器内に直列に6本装填した。そ
の後、RO膜エレメントによって淡水化された海水中の
総蒸発残留物(以下、「TDS」という)濃度150m
g/Lの水を、遊離塩素20mg/L、臭化ナトリウム
20mg/L、pH6.0になるように調製し、この溶
液を、操作圧力1.5MPaで30分間通水して本発明
のRO膜処理を行った。
Example 1 pH 6.5, 3.5 at 25 ° C.
Using a mass% NaCl aqueous solution as raw water, 5.49MP
a RO membrane element (diameter 201 mm, length 201 mm) having a rejection rate of salt of 99.7% and a permeated water amount of 15 m 3 / day when evaluated under conditions of pressurization and concentrated water flow rate of 90 L / min 1016 mm) were loaded in series in a pressure vessel of a seawater desalination membrane separator. Then, the total evaporation residue (hereinafter referred to as "TDS") concentration in seawater desalinated by the RO membrane element was 150 m.
g / L of water was prepared so that the content of free chlorine was 20 mg / L, sodium bromide was 20 mg / L, and the pH was 6.0, and this solution was passed under an operating pressure of 1.5 MPa for 30 minutes to obtain the RO of the present invention. A membrane treatment was performed.

【0052】この処理されたRO膜エレメントについ
て、ESCAにより、その構成元素を調べたところ、臭
素原子(Br)とアミノ基の窒素原子(N)の割合(B
r/N)は、0.27であった。
When the constituent elements of this treated RO membrane element were examined by ESCA, the ratio of the bromine atom (Br) to the nitrogen atom (N) of the amino group (B
The r / N) was 0.27.

【0053】前記処理されたRO膜エレメントに、供給
液として海水(TDS濃度3.5質量%、ホウ素4.7
mg/L、pH6.8、温度26℃)を通水し、透過水
量90m3/日、回収率(供給水量に対して得られる透
過水量の割合)40%の条件で運転を行った。その結
果、得られた透過水の水質は、TDS100mg/L、
ホウ素濃度は0.4mg/Lであった。
Seawater (TDS concentration 3.5% by mass, boron 4.7%) was supplied to the treated RO membrane element as a supply liquid.
(mg / L, pH 6.8, temperature 26 ° C.), water was passed through, and operation was performed under the conditions of a permeated water amount of 90 m 3 / day and a recovery rate (ratio of the permeated water amount to the supplied water amount) of 40%. As a result, the quality of the permeated water obtained was 100 mg / L of TDS,
The boron concentration was 0.4 mg / L.

【0054】(比較例1)pH6.5、25℃の3.5
質量%NaCl水溶液を原水として、5.49MPa加
圧、濃縮水流量を90L/分の条件で食塩の阻止率が9
9.7%、透過水量15m3/日の性能のポリアミドス
キン層を有するRO膜エレメント(直径201mm、長
さ1016mm)を、海水淡水化の膜分離装置の圧力容
器内に直列に6本装填した。
Comparative Example 1 pH 6.5, 3.5 at 25 ° C.
When the mass% NaCl aqueous solution is used as raw water, the salt rejection rate is 9 under the conditions of 5.49 MPa pressurization and concentrated water flow rate of 90 L / min.
Six RO membrane elements (diameter 201 mm, length 1016 mm) having a polyamide skin layer having a performance of 9.7% and a permeated water amount of 15 m 3 / day were loaded in series in a pressure vessel of a seawater desalination membrane separation device. .

【0055】その後は実施例1のRO膜処理を行わず
に、供給液として海水(TDS濃度3.5質量%、ホウ
素4.7mg/L、pH6.8、温度26℃)を通水
し、透過水量90m3/日、回収率(供給水量に対して
得られる透過水量の割合)40%の条件で運転を行っ
た。その結果、得られた透過水の水質は、TDS150
mg/L、ホウ素濃度は0.7mg/Lであった。
Thereafter, seawater (TDS concentration 3.5% by mass, boron 4.7 mg / L, pH 6.8, temperature 26 ° C.) was passed as a feed liquid without performing the RO membrane treatment of Example 1. The operation was performed under the conditions of a permeated water amount of 90 m 3 / day and a recovery rate (ratio of the permeated water amount obtained to the supplied water amount) of 40%. As a result, the quality of the permeate obtained was TDS150.
The mg / L and boron concentration were 0.7 mg / L.

【0056】(実施例2)海水(TDS濃度3.5質量
%、ホウ素4.7mg/L、pH6.8、温度26℃)
を通水し、淡水化の目的で稼働している膜分離装置(透
過水量70m3/日、回収率40%、ROエレメント5
本直列装填)において、RO膜の経時的な自然性能変化
および化学薬品洗浄でのRO膜の膨潤による脱塩率の低
下が生じたRO膜エレメントにおいて、RO膜エレメン
トによって淡水化されたTDS濃度300mg/Lの水
を、遊離塩素20mg/L、臭化ナトリウム20mg/
L、pH6.0になるように調製し、操作圧力1.5M
Paで30分通水して本発明のRO膜処理を行った。
Example 2 Seawater (TDS concentration 3.5% by mass, boron 4.7 mg / L, pH 6.8, temperature 26 ° C.)
Membrane separation device that passes water and is operating for the purpose of desalination (permeate volume 70 m 3 / day, recovery rate 40%, RO element 5
In this series loading), in the RO membrane element in which the natural performance change of the RO membrane with time and the decrease in desalination rate due to the swelling of the RO membrane due to chemical cleaning occurred, the TDS concentration of 300 mg desalinated by the RO membrane element / L water, free chlorine 20 mg / L, sodium bromide 20 mg /
L, pH 6.0, operating pressure 1.5M
The RO membrane treatment of the present invention was performed by passing water at Pa for 30 minutes.

【0057】この処理されたRO膜エレメントについ
て、ESCAにより、その構成元素を調べたところ、臭
素原子(Br)とアミノ基の窒素原子(N)の割合(B
r/N)は、0.15であった。
When the constituent elements of this treated RO membrane element were examined by ESCA, the ratio of the bromine atom (Br) to the nitrogen atom (N) of the amino group (B
The r / N) was 0.15.

【0058】処理後、元の運転条件で海水淡水化を再開
し、得られた透過水の分析を行ったところ、TDS25
0mg/L、ホウ素濃度は0.9mg/Lであった。な
お、処理前の透過水の水質はTDS300mg/L、ホ
ウ素濃度は1.3mg/Lであったため、本発明のRO
膜処理により、RO透過水の水質向上が確認された。
After the treatment, the seawater desalination was restarted under the original operating conditions, and the obtained permeate was analyzed.
The concentration was 0 mg / L and the boron concentration was 0.9 mg / L. The water quality of the permeate before treatment was TDS 300 mg / L and the boron concentration was 1.3 mg / L.
It was confirmed that the membrane treatment improved the water quality of the RO permeate.

【0059】以上の結果から、本発明の処理が施された
逆浸透膜エレメントは、食塩等のイオン状物質のみなら
ず、中性領域で解離しないホウ素等について、極めて高
い阻止率を有することがわかる。
From the above results, the reverse osmosis membrane element subjected to the treatment of the present invention has an extremely high rejection rate not only for ionic substances such as salt but also for boron and the like which are not dissociated in the neutral region. Recognize.

【0060】[0060]

【発明の効果】以上説明したとおり、本発明の逆浸透膜
エレメントの処理方法は、逆浸透膜エレメント当たりに
要する処理時間を短縮できるとともに、遊離塩素水溶液
によって化学的な処理を行うため、従来のポリマー水溶
液の吸着処理や目詰め処理に比べて、処理剤の脱離によ
る逆浸透膜性能の低下が少ない。そのため、膜分離装置
において逆浸透膜エレメントの性能向上手段として用い
ることができるほか、運転後の膜分離装置において性能
回復手段として用いることもできる。
As described above, the method for treating a reverse osmosis membrane element of the present invention can shorten the treatment time required for each reverse osmosis membrane element, and since the chemical treatment is carried out by the free chlorine aqueous solution, Compared to adsorption treatment and clogging treatment of polymer aqueous solution, the deterioration of reverse osmosis membrane performance due to desorption of the treatment agent is less. Therefore, it can be used not only as a performance improving means for the reverse osmosis membrane element in the membrane separation device but also as a performance recovery means in the membrane separation device after operation.

【0061】また前記処理が施された逆浸透膜エレメン
トは、脱塩性能、水透過性およびイオン状物質の分離性
能に優れるとともに、非電解質有機物および中性領域で
は非解離の物質も高い阻止率で分離できる。特に、海水
の脱塩においては海水中の総蒸発残留物(TDS)を除
去できることはもちろん、中性領域で解離していないた
め除去しにくいホウ素を高い阻止率で除去できる。
The treated reverse osmosis membrane element is excellent in desalination performance, water permeability and separation performance of ionic substances, and also has a high rejection rate of non-electrolyte organic substances and non-dissociated substances in the neutral region. Can be separated by. In particular, in desalination of seawater, not only the total evaporation residue (TDS) in seawater can be removed, but also boron, which is difficult to remove because it is not dissociated in the neutral region, can be removed with a high rejection rate.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500277526 ハイドロノーティクス HYDRANAUTICS アメリカ合衆国 カリフォルニア州 92054 オーシャンサイド、ジョーンズ ロード 401 401 Jones Road Ocean side,California 92054 The United States of America (72)発明者 安藤 雅明 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 渡辺 輝隆 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 廣瀬 雅彦 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 蜂須賀 久雄 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 マーク・ウイルフ アメリカ合衆国カリフォルニア州92054オ ーシャンサイド、ジョーンズロード401 ハイドロノーティクス内 (72)発明者 クレイグ・バーテルス アメリカ合衆国カリフォルニア州92054オ ーシャンサイド、ジョーンズロード401 ハイドロノーティクス内 (72)発明者 キース・アンデス アメリカ合衆国カリフォルニア州92054オ ーシャンサイド、ジョーンズロード401 ハイドロノーティクス内 Fターム(参考) 4D006 GA03 MB06 MC54X MC71X NA54 NA64 PB03 PB08 PC02 PC21    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 500277526             Hydronautics             HYDRANAUTICS             United States California             92054 Oceanside, Jones             Road 401             401 Jones Road Ocean             side, California 92054               The United States             of America (72) Inventor Masaaki Ando             1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto             Electric Works Co., Ltd. (72) Inventor Terutaka Watanabe             1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto             Electric Works Co., Ltd. (72) Inventor Masahiko Hirose             1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto             Electric Works Co., Ltd. (72) Inventor Hisao Hachisuka             1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto             Electric Works Co., Ltd. (72) Inventor Mark Wilf             United States California 92054             -Shanside, Jones Road 401             Within Hydronautics (72) Inventor Craig Bartels             United States California 92054             -Shanside, Jones Road 401             Within Hydronautics (72) Inventor Keith Andes             United States California 92054             -Shanside, Jones Road 401             Within Hydronautics F-term (reference) 4D006 GA03 MB06 MC54X MC71X                       NA54 NA64 PB03 PB08 PC02                       PC21

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ポリアミドスキン層を有する逆浸透膜エ
レメントを搭載した膜分離装置において、逆浸透膜エレ
メントを膜分離装置内の圧力容器に充填した後、前記逆
浸透膜エレメントに臭素を含む遊離塩素水溶液を接触さ
せることを特徴とする逆浸透膜エレメントの処理方法。
1. A membrane separator equipped with a reverse osmosis membrane element having a polyamide skin layer, wherein the reverse osmosis membrane element is filled in a pressure vessel inside the membrane separator, and then the reverse osmosis membrane element contains free chlorine containing bromine. A method for treating a reverse osmosis membrane element, which comprises contacting an aqueous solution.
【請求項2】 前記遊離塩素水溶液の遊離塩素濃度が、
1〜100mg/リットル(L)である請求項1記載の
逆浸透膜エレメントの処理方法。
2. The free chlorine concentration of the free chlorine aqueous solution is
The method for treating a reverse osmosis membrane element according to claim 1, wherein the treatment amount is 1 to 100 mg / liter (L).
【請求項3】 前記遊離塩素水溶液中の臭素濃度が、
0.5〜100mg/Lである請求項1または2記載の
逆浸透膜エレメントの処理方法。
3. The bromine concentration in the free chlorine aqueous solution is
The method for treating a reverse osmosis membrane element according to claim 1 or 2, wherein the treatment amount is 0.5 to 100 mg / L.
【請求項4】 前記遊離塩素水溶液のpHが、4〜11
の範囲である請求項1〜3のいずれか一項に記載の逆浸
透膜エレメントの処理方法。
4. The pH of the free chlorine aqueous solution is 4-11.
The method for treating a reverse osmosis membrane element according to claim 1, wherein the reverse osmosis membrane element is in the range.
【請求項5】 前記遊離塩素水溶液が、逆浸透膜エレメ
ントによる脱塩水である請求項1〜4のいずれか一項に
記載の逆浸透膜エレメントの処理方法。
5. The method for treating a reverse osmosis membrane element according to claim 1, wherein the free chlorine aqueous solution is demineralized water by a reverse osmosis membrane element.
【請求項6】 前記接触が、加圧下で行われる請求項1
〜5のいずれか一項に記載の逆浸透膜エレメントの処理
方法。
6. The method of claim 1, wherein the contacting is under pressure.
6. The method for treating a reverse osmosis membrane element according to any one of items 1 to 5.
【請求項7】 前記圧力が、0.1〜20MPaの範囲
である請求項6記載の逆浸透膜エレメントの処理方法。
7. The method for treating a reverse osmosis membrane element according to claim 6, wherein the pressure is in the range of 0.1 to 20 MPa.
【請求項8】 前記ポリアミドスキン層が、2つ以上の
反応性アミノ基を有する芳香族化合物と、2つ以上の反
応性酸ハライド基を有する多官能性酸ハライド化合物と
を反応させて形成されたポリアミドスキン層である請求
項1〜7のいずれか一項に記載の逆浸透膜エレメントの
処理方法。
8. The polyamide skin layer is formed by reacting an aromatic compound having two or more reactive amino groups with a polyfunctional acid halide compound having two or more reactive acid halide groups. The method for treating a reverse osmosis membrane element according to any one of claims 1 to 7, which is a polyamide skin layer.
【請求項9】 請求項1〜8のいずれか一項に記載の処
理方法で処理した逆浸透膜エレメントを組込んでなる逆
浸透膜モジュール。
9. A reverse osmosis membrane module comprising a reverse osmosis membrane element treated by the treatment method according to any one of claims 1 to 8.
JP2001287573A 2001-09-20 2001-09-20 Treatment method for reverse osmosis membrane element and reverse osmosis membrane module Withdrawn JP2003088730A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001287573A JP2003088730A (en) 2001-09-20 2001-09-20 Treatment method for reverse osmosis membrane element and reverse osmosis membrane module
EP02021216A EP1295631B1 (en) 2001-09-20 2002-09-18 Method of recovering performance of a reverse osmosis membrane element
US10/245,713 US6821430B2 (en) 2001-09-20 2002-09-18 Method of treating reverse osmosis membrane element, and reverse osmosis membrane module
ES02021216T ES2278851T3 (en) 2001-09-20 2002-09-18 METHOD FOR RECOVERING THE PERFORMANCE OF A MEMBRANE ELEMENT BY REVERSE OSMOSIS.
IL15180802A IL151808A0 (en) 2001-09-20 2002-09-19 Method of treating reverse osmosis membrane element, and reverse osmosis membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287573A JP2003088730A (en) 2001-09-20 2001-09-20 Treatment method for reverse osmosis membrane element and reverse osmosis membrane module

Publications (1)

Publication Number Publication Date
JP2003088730A true JP2003088730A (en) 2003-03-25

Family

ID=19110359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287573A Withdrawn JP2003088730A (en) 2001-09-20 2001-09-20 Treatment method for reverse osmosis membrane element and reverse osmosis membrane module

Country Status (5)

Country Link
US (1) US6821430B2 (en)
EP (1) EP1295631B1 (en)
JP (1) JP2003088730A (en)
ES (1) ES2278851T3 (en)
IL (1) IL151808A0 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043684A1 (en) 2004-10-18 2006-04-27 Kurita Water Industries Ltd. Blocking ratio enhancing agent for permeable membrane, method of blocking ratio enhancement, permeable membrane and method of water treatment
US7058322B2 (en) 2003-03-27 2006-06-06 Canon Kabushiki Kaisha Transfer bias control method for image forming apparatus using electrophotographic process
WO2007114308A1 (en) 2006-03-29 2007-10-11 Kurita Water Industries Ltd. Rejection improver for nanofiltration membranes or reverse osmosis membranes, method for improving rejection, nanofiltration membranes or reverse osmosis membranes, and method and equipment for water treatment
JP2012205985A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Method and apparatus for treating wastewater using membrane separation
JP2016155067A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
JP2016155074A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Operational method for separation membrane, modification method for separation membrane, and separation membrane
JP2018030074A (en) * 2016-08-23 2018-03-01 オルガノ株式会社 Polyamide-based reverse osmosis membrane, and method for producing polyamide-based reverse osmosis membrane
KR20190026864A (en) 2016-08-23 2019-03-13 오르가노 코포레이션 METHOD AND APPARATUS FOR TREATING LOW MOLECULAR organic matter
JP2020527196A (en) * 2017-07-21 2020-09-03 ラリー リーン How to recover lithium from acid solution

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE521576T1 (en) * 2002-01-22 2011-09-15 Toray Industries METHOD FOR PRODUCING FRESH WATER AND FRESH WATER PRODUCER
US20030230531A1 (en) * 2002-06-13 2003-12-18 Hydranautics And Nitto Denko Corporation Method for reducing boron concentration in high salinity liquid
CN100436335C (en) * 2002-06-13 2008-11-26 美国海德能公司 Methods for reducing boron concentration in high salinity liquid
JP4484635B2 (en) * 2004-09-02 2010-06-16 日東電工株式会社 Spiral type reverse osmosis membrane element and manufacturing method thereof
US7491334B2 (en) * 2004-09-29 2009-02-17 North Pacific Research, Llc Method of treating reverse osmosis membranes for boron rejection enhancement
JP2006102624A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Reverse osmosis membrane and its manufacturing method
KR100784356B1 (en) 2006-06-21 2007-12-13 추광호 The cleansing method of wastewater
US7744761B2 (en) 2007-06-28 2010-06-29 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US8567612B2 (en) 2008-04-15 2013-10-29 Nanoh2O, Inc. Hybrid TFC RO membranes with nitrogen additives
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US8147735B2 (en) * 2008-07-09 2012-04-03 Eltron Research & Development, Inc. Semipermeable polymers and method for producing same
KR101025750B1 (en) 2008-08-18 2011-04-04 웅진케미칼 주식회사 Method of manufacturing reveres osmosis membrane and polyamide composite membrane showing high boron rejection manufactured thereby
WO2010035807A1 (en) * 2008-09-26 2010-04-01 日東電工株式会社 Composite semi-permeable membrane and method for producing same
JP5925409B2 (en) * 2008-10-23 2016-05-25 日東電工株式会社 Method for producing thermosetting resin porous sheet, thermosetting resin porous sheet, and composite semipermeable membrane using the same
EP2382032A1 (en) * 2009-01-29 2011-11-02 Ben-Gurion University Of The Negev Research And Development Authority A method for modifying composite membranes for liquid separations
US20110049055A1 (en) * 2009-08-31 2011-03-03 General Electric Company Reverse osmosis composite membranes for boron removal
DE112010003846T5 (en) * 2009-09-29 2012-12-06 Kurita Water Industries Ltd. Method for improving the repulsion of a permeable membrane and permeable membrane
US8857629B2 (en) 2010-07-15 2014-10-14 International Business Machines Corporation Composite membrane with multi-layered active layer
US8357300B2 (en) 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
US9216385B2 (en) 2010-10-04 2015-12-22 Saudi Arabian Oil Company Application of rejection enhancing agents (REAs) that do not have cloud point limitations on desalination membranes
WO2012064939A2 (en) 2010-11-10 2012-05-18 Nanoh2O, Inc. Improved hybrid tfc ro membranes with non-metallic additives
US9022227B2 (en) 2011-03-21 2015-05-05 International Business Machines Corporation Composite membranes and methods of preparation thereof
US9561474B2 (en) 2012-06-07 2017-02-07 International Business Machines Corporation Composite membrane with multi-layered active layer
RU2545280C1 (en) * 2013-12-19 2015-03-27 Общество С Ограниченной Ответственностью "Акварекон" Method of removing deposits and biocontaminants from membrane elements
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
JP7120523B2 (en) * 2018-01-18 2022-08-17 エルジー・ケム・リミテッド Method for producing water treatment separation membrane and water treatment separation membrane produced thereby

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551331A (en) * 1969-09-22 1970-12-29 Du Pont Reverse osmosis separations using a treated polyamide membrane
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4761234A (en) * 1985-08-05 1988-08-02 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
US4792404A (en) * 1988-03-28 1988-12-20 Allied-Signal Inc. Desalination of saline water
US4872984A (en) 1988-09-28 1989-10-10 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
JPH0728590Y2 (en) * 1988-09-29 1995-06-28 パイオニア株式会社 Optical information recording carrier
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US5152901A (en) * 1990-09-14 1992-10-06 Ionics, Incorporated Polyamine-polyamide composite nanofiltration membrane for water softening
JPH0810595A (en) * 1994-06-29 1996-01-16 Nitto Denko Corp Composite reverse osmosis membrane
JP3489922B2 (en) 1994-12-22 2004-01-26 日東電工株式会社 Method for producing highly permeable composite reverse osmosis membrane
US6171497B1 (en) * 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
JPH10309588A (en) 1997-05-08 1998-11-24 Kurita Water Ind Ltd Water treatment, water treating device and pure water producing device
JP3648947B2 (en) 1997-10-07 2005-05-18 日東電工株式会社 Reverse osmosis membrane element regeneration method and reverse osmosis membrane module
US6464873B1 (en) 1999-06-15 2002-10-15 Hydranautics Interfacially polymerized, bipiperidine-polyamide membranes for reverse osmosis and/or nanofiltration and process for making the same
JP4289757B2 (en) 2000-03-23 2009-07-01 日東電工株式会社 Method for producing composite reverse osmosis membrane
US6805796B2 (en) * 2001-02-13 2004-10-19 Nitto Denko Corporation Water treatment apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058322B2 (en) 2003-03-27 2006-06-06 Canon Kabushiki Kaisha Transfer bias control method for image forming apparatus using electrophotographic process
US7257340B2 (en) 2003-03-27 2007-08-14 Canon Kabushiki Kaisha Image forming apparatus featuring a controller for switching a first transfer bias to a second smaller transfer bias while the print material is passing through a transfer nip portion
WO2006043684A1 (en) 2004-10-18 2006-04-27 Kurita Water Industries Ltd. Blocking ratio enhancing agent for permeable membrane, method of blocking ratio enhancement, permeable membrane and method of water treatment
EP2243543A1 (en) 2004-10-18 2010-10-27 Kurita Water Industries Ltd. Agent for increasing rejection with a permeable membrane, process for increasing the rejection, permeable membrane and process for water treatment
US8025159B2 (en) 2004-10-18 2011-09-27 Kurita Water Industries Ltd. Agent for increasing rejection with a permeable membrane, process for increasing the rejection, permeable membrane and process for water treatment
WO2007114308A1 (en) 2006-03-29 2007-10-11 Kurita Water Industries Ltd. Rejection improver for nanofiltration membranes or reverse osmosis membranes, method for improving rejection, nanofiltration membranes or reverse osmosis membranes, and method and equipment for water treatment
JP2012205985A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Method and apparatus for treating wastewater using membrane separation
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
JP2016155067A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
JP2016155074A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Operational method for separation membrane, modification method for separation membrane, and separation membrane
KR20170102351A (en) 2015-02-24 2017-09-08 오르가노 코포레이션 A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
CN107635652A (en) * 2015-02-24 2018-01-26 奥加诺株式会社 The method of modifying of reverse osmosis membrane, reverse osmosis membrane, the operation method of the processing method of boron water and seperation film
KR101990231B1 (en) * 2015-02-24 2019-06-17 오르가노 코포레이션 A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
TWI702081B (en) * 2015-02-24 2020-08-21 日商奧璐佳瑙股份有限公司 Method of modifying reverse osmosis membrane, reverse osmosis membrane, method of processing boron-containing water, and method of operating separation membrane
CN107635652B (en) * 2015-02-24 2021-08-24 奥加诺株式会社 Method for modifying reverse osmosis membrane, method for treating boron-containing water, and method for operating separation membrane
JP2018030074A (en) * 2016-08-23 2018-03-01 オルガノ株式会社 Polyamide-based reverse osmosis membrane, and method for producing polyamide-based reverse osmosis membrane
KR20190026864A (en) 2016-08-23 2019-03-13 오르가노 코포레이션 METHOD AND APPARATUS FOR TREATING LOW MOLECULAR organic matter
JP2020527196A (en) * 2017-07-21 2020-09-03 ラリー リーン How to recover lithium from acid solution

Also Published As

Publication number Publication date
US20030066805A1 (en) 2003-04-10
IL151808A0 (en) 2003-04-10
EP1295631A3 (en) 2003-05-07
US6821430B2 (en) 2004-11-23
EP1295631A2 (en) 2003-03-26
EP1295631B1 (en) 2007-02-21
ES2278851T3 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP2003088730A (en) Treatment method for reverse osmosis membrane element and reverse osmosis membrane module
JP4289757B2 (en) Method for producing composite reverse osmosis membrane
US4830885A (en) Chlorine-resistant semipermeable membranes
JP3681214B2 (en) High permeability composite reverse osmosis membrane
US20060169634A1 (en) Reverse osmosis membrane and method for producing the same
JPH1119493A (en) Reverse osmotic membrane module and treatment of sea water
JP5772083B2 (en) Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
JP4247881B2 (en) Composite semipermeable membrane, method for producing the same, and water treatment method using the same
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
JP2000334280A (en) Production of multiple reverse osmosis membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP4177231B2 (en) Liquid separation membrane and method for producing the same
JP5050335B2 (en) Manufacturing method of composite semipermeable membrane
JPH11347385A (en) Composite semipermeable membrane and production thereof
JP2000237559A (en) Production of high permeability composite reverse osmosis membrane
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
KR102645285B1 (en) Reverse osmosis membrane for operating by middle range pressure, and manufacturing method for the same
JP2009220023A (en) Method for manufacturing composite semi-permeable membrane
JPH0910566A (en) Semipermeable composite membrane
JP2003200027A (en) Method for manufacturing composite semipermeable membrane
JP2023177791A (en) Method for producing ultrapure water
JPH09276673A (en) Highly permeable composite reverse osmosis membrane
JP2005152818A (en) Liquid separation membrane and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202