JP2018047406A - Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method - Google Patents

Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method Download PDF

Info

Publication number
JP2018047406A
JP2018047406A JP2016183082A JP2016183082A JP2018047406A JP 2018047406 A JP2018047406 A JP 2018047406A JP 2016183082 A JP2016183082 A JP 2016183082A JP 2016183082 A JP2016183082 A JP 2016183082A JP 2018047406 A JP2018047406 A JP 2018047406A
Authority
JP
Japan
Prior art keywords
membrane
reverse osmosis
osmosis membrane
water
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016183082A
Other languages
Japanese (ja)
Inventor
孝博 川勝
Takahiro Kawakatsu
孝博 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016183082A priority Critical patent/JP2018047406A/en
Priority to PCT/JP2017/033644 priority patent/WO2018056242A1/en
Publication of JP2018047406A publication Critical patent/JP2018047406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blocking rate improver of a RO membrane capable of improving a blocking rate, especially a boron removal rate, without lowering greatly a permeation flux; and to provide a blocking rate improvement method using the blocking rate improver.SOLUTION: A blocking rate improver of a reverse osmosis membrane contains pyrogallol and/or a pyrogallol derivative having a molecular weight below 500. As the pyrogallol derivative, gallic ester having a molecular weight below 300 is especially preferable. In a blocking rate improvement method of the reverse osmosis membrane, the reverse osmosis membrane is processed by the blocking rate improver of the reverse osmosis membrane.SELECTED DRAWING: Figure 1

Description

本発明は逆浸透膜(RO)膜、特に芳香族ポリアミド系RO膜の阻止率を効果的に向上させることができる阻止率向上剤に係り、詳しくは、RO膜の透過水が飲料水、生活水として使用されることに鑑み、透過水量を著しく低下させることなく、高い脱塩率を確保するとともに、ホウ素の除去率を向上させることに留意した、RO膜の阻止率向上剤に関する。本発明はまた、この逆浸透膜の阻止率向上剤を用いた逆浸透膜の阻止率向上処理方法と、阻止率向上処理された逆浸透膜を用いる水処理方法に関する。   The present invention relates to a blocking rate improver that can effectively improve the blocking rate of a reverse osmosis membrane (RO) membrane, particularly an aromatic polyamide-based RO membrane. In view of being used as water, the present invention relates to a RO membrane rejection rate improver, which ensures high desalination rate and improves boron removal rate without significantly reducing the amount of permeate. The present invention also relates to a reverse osmosis membrane rejection rate improving method using the reverse osmosis membrane rejection rate improving agent and a water treatment method using the reverse osmosis membrane subjected to the rejection rate improving process.

現在、全世界的な水供給の不足を補うために、海水・かん水の淡水化、水回収が、RO膜システムを用いて行われている。海水淡水化は、中東や離島など、河川水や湖水、あるいは地下水が得られない地域で採用されているが、海水には5〜10mg/Lのホウ素が含まれており、WHO飲料水水質ガイドライン第4版では、ホウ素濃度2.4mg/L以下にすることが定められている。ホウ素基準は同第3版では0.5mg/L以下であった。日本国内の水道水基準では、ホウ素濃度1mg/L以下である。   Currently, desalination of seawater and brackish water and water recovery are performed using RO membrane systems in order to make up for the shortage of water supply worldwide. Seawater desalination is used in areas where river water, lake water, or groundwater is not available, such as the Middle East and remote islands, but seawater contains 5-10 mg / L of boron, and WHO drinking water quality guidelines The fourth edition stipulates that the boron concentration be 2.4 mg / L or less. The boron standard was 0.5 mg / L or less in the third edition. According to domestic tap water standards, the boron concentration is 1 mg / L or less.

海水中のホウ素は主としてホウ酸の形態で存在しているが、中性域ではほとんど乖離しておらず、分子量も62と小さいため、RO膜で除去することが困難である。このため、RO膜を2段直列に設け、1段目のRO膜でホウ素濃度1〜2mg/L程度まで低減した後に、pHを上げて2段目のRO膜でホウ素をさらに低減するといった処理がなされている。この2段目のRO膜給水のpHを上げることは、処理コストとスケール発生リスクの増大につながる。   Boron in sea water exists mainly in the form of boric acid, but it is hardly dissociated in the neutral region and its molecular weight is as small as 62, so it is difficult to remove with RO membrane. For this reason, the RO membrane is provided in two stages in series, and after the boron concentration is reduced to about 1 to 2 mg / L with the first RO membrane, the pH is increased and boron is further reduced with the second RO membrane. Has been made. Increasing the pH of the second stage RO membrane water supply leads to an increase in processing costs and scale generation risk.

このようなことから、海水淡水化RO膜においては、脱塩率の向上もさることながら、ホウ素除去率の向上が求められている。
超純水製造プロセスにおいても、RO膜の脱塩率やホウ素除去率が向上すれば、RO膜の後段のイオン交換樹脂や電気再生式純水装置などの負荷を下げ、処理コストを削減することができる。
For these reasons, seawater desalination RO membranes are required to improve the boron removal rate as well as the desalination rate.
Even in the ultrapure water production process, if the desalting rate and boron removal rate of the RO membrane are improved, the load on the ion exchange resin and the electric regenerative pure water device downstream of the RO membrane will be reduced, and the processing cost will be reduced. Can do.

一方で、RO膜システムにおいては、バイオファウリング抑制のため、前処理工程において、原水(RO膜の被処理水)に塩素(次亜塩素酸ソーダなど)や過酸化水素などの酸化剤の添加が行われている。
しかし、これらの酸化剤は強力な酸化分解作用があるため、これらの酸化剤が添加された後、還元処理が不十分な状態で原水がRO膜に供給されると、RO膜が劣化することが知られている。
また、原水中の酸化剤を分解させるために、重亜硫酸ソーダなどの還元剤を原水に添加してRO膜に供給する場合も多いが、重亜硫酸ソーダが過剰に添加されている還元環境下では、原水中にCu、Coなどの金属が共存するとRO膜が劣化して阻止率が低下することも知られている(特許文献1、非特許文献1)。
On the other hand, in the RO membrane system, in order to suppress biofouling, addition of oxidants such as chlorine (sodium hypochlorite) and hydrogen peroxide to raw water (water to be treated for RO membrane) in the pretreatment process Has been done.
However, since these oxidants have a strong oxidative decomposition action, if these oxidants are added and the raw water is supplied to the RO membrane with insufficient reduction treatment, the RO membrane will deteriorate. It has been known.
In addition, in order to decompose the oxidizing agent in the raw water, a reducing agent such as sodium bisulfite is often added to the raw water and supplied to the RO membrane, but in a reducing environment where sodium bisulfite is excessively added. It is also known that when metals such as Cu and Co coexist in the raw water, the RO membrane deteriorates and the rejection rate decreases (Patent Document 1, Non-Patent Document 1).

従来、RO膜の阻止率向上方法として、以下のようなものが提案されている。   Conventionally, the following methods have been proposed as methods for improving the RO membrane rejection rate.

特許文献2:アニオン又はカチオンの高分子化合物を表面に付着させることでRO膜の阻止率を向上させる方法。この方法は、脱塩率を向上させることができるが、ホウ素のように荷電性の低い溶質の除去率を向上させることは難しい。   Patent Document 2: A method of improving the RO membrane rejection by attaching an anionic or cationic polymer compound to the surface. This method can improve the desalting rate, but it is difficult to improve the removal rate of solutes with low chargeability such as boron.

特許文献3:劣化して透過流束が増加した、アニオン荷電を有するナノろ過膜や逆浸透膜に対し、ノニオン界面活性剤を膜面に接触、付着させることで、その透過流束を適正範囲(使用開始時の+20〜−20%の範囲)まで低減させて、膜汚染や透過水質の悪化を防止する方法。ここで使用されるノニオン界面活性剤は膜汚染物質として知られており、劣化していないRO膜に適用すると透過流束を大きく低下させるリスクがある。   Patent Document 3: Nonionic surfactant is brought into contact with and attached to a nanofiltration membrane or reverse osmosis membrane having anion charge, whose permeation flux has increased due to deterioration. A method of reducing membrane contamination and permeated water quality deterioration by reducing it to the range of +20 to -20% at the start of use. The nonionic surfactant used here is known as a membrane contaminant, and there is a risk of greatly reducing the permeation flux when applied to an undegraded RO membrane.

特許文献4:ポリアルキレングリコール鎖を有する化合物を表面に付着させることでRO膜の阻止率を向上させる方法。この方法は脱塩率を向上させることはできるが、ホウ素の除去率を向上させることは困難である。   Patent Document 4: A method of improving the RO membrane rejection by attaching a compound having a polyalkylene glycol chain to the surface. Although this method can improve the desalination rate, it is difficult to improve the boron removal rate.

非特許文献2:タンニン酸などを劣化膜に付着させて脱塩率を改善させる方法。この方法による阻止率の向上効果は大きいとは言えず、例えば、劣化したRO膜であるES20(日東電工社製)、SUL−G20F(東レ社製)の透過水電気伝導度は、処理前後でそれぞれ、82%→88%、92%→94%であり、透過水の溶質濃度を1/2にするまでに阻止率を高めることはできない。   Non-Patent Document 2: A method of improving the desalination rate by attaching tannic acid or the like to a deteriorated film. It cannot be said that the improvement effect of the rejection rate by this method is large. For example, the permeated water conductivity of ES20 (manufactured by Nitto Denko) and SUL-G20F (manufactured by Toray Industries), which are deteriorated RO membranes, are measured before and after the treatment. They are 82% → 88% and 92% → 94%, respectively, and the rejection rate cannot be increased until the solute concentration of the permeated water is halved.

非特許文献3:タンニン酸にポリビニルメチルエーテル(PVME)を添加してRO膜の阻止率を向上させる方法。この方法は脱塩率を向上させることはできるが、ホウ素除去率向上についての検討はなされていない。   Non-Patent Document 3: A method of improving the RO membrane rejection by adding polyvinyl methyl ether (PVME) to tannic acid. Although this method can improve the desalination rate, no study has been made on improving the boron removal rate.

特開平7−308671号公報JP-A-7-308671 特開2006−110520号公報JP 2006-110520 A 特開2008−86945号公報JP 2008-86945 A 特開2007−289922号公報JP 2007-289922 A

Fujiwara et al.,Desalination,Vol.96 (1994),431-439Fujiwara et al., Desalination, Vol.96 (1994), 431-439 佐藤、田村、化学工学論文集、Vol.34(2008),493-498Sato, Tamura, Chemical Engineering, Vol.34 (2008), 493-498 S.T.Mitrouli,A.J.Karabelas,N.P.Isaias,D.C. Sioutopoulos,and A.S.Al Rammah,Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance,IDA Journal I Second Quarter 2010, p22-34S.T.Mitrouli, A.J.Karabelas, N.P.Isaias, D.C.Sioutopoulos, and A.S.Al Rammah, Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance, IDA Journal I Second Quarter 2010, p22-34

上記従来技術では、以下のような課題がある。
(1) 脱塩率の回復、向上が主体であり、ホウ素除去率の向上に関しては検討されていない。
(2) 阻止率向上効果が小さい。
(3) 透過流束の低下が大きい。
The above prior art has the following problems.
(1) The recovery and improvement of desalination rate is the main, and improvement of boron removal rate has not been studied.
(2) The effect of improving the rejection rate is small.
(3) The permeation flux is greatly reduced.

本発明はこれらの課題を解決するものであり、透過流束を大きく低下させることなく、阻止率、特にホウ素除去率を向上させることができるRO膜の阻止率向上剤と、この阻止率向上剤を用いた阻止率向上方法を提供することを目的とする。   The present invention solves these problems, and an RO membrane rejection rate improver that can improve the rejection rate, particularly the boron removal rate, without significantly reducing the permeation flux, and this rejection rate improver. An object of the present invention is to provide a method for improving the rejection rate using the.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ピロガロール或いは低分子量のピロガロール誘導体が、上記課題を解決し得ることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that pyrogallol or a low molecular weight pyrogallol derivative can solve the above problems, and have completed the present invention.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1]ピロガロール及び/又は分子量500未満のピロガロール誘導体を含むことを特徴とする逆浸透膜の阻止率向上剤。 [1] A reverse osmosis membrane rejection rate improver comprising pyrogallol and / or a pyrogallol derivative having a molecular weight of less than 500.

[2]前記ピロガロール誘導体を少なくとも含み、該ピロガロール誘導体の分子量が300未満である[1]に記載の逆浸透膜の阻止率向上剤。 [2] The reverse osmosis membrane rejection rate improver according to [1], comprising at least the pyrogallol derivative, wherein the pyrogallol derivative has a molecular weight of less than 300.

[3]前記ピロガロール誘導体を少なくとも含み、該ピロガロール誘導体が没食子酸エステルである[1]又は[2]に記載の逆浸透膜の阻止率向上剤。 [3] The reverse osmosis membrane rejection rate improver according to [1] or [2], which contains at least the pyrogallol derivative, and the pyrogallol derivative is a gallic acid ester.

[4]前記逆浸透膜がポリアミド系逆浸透膜である[1]ないし[3]のいずれかに記載の逆浸透膜の阻止率向上剤。 [4] The reverse osmosis membrane rejection rate improver according to any one of [1] to [3], wherein the reverse osmosis membrane is a polyamide-based reverse osmosis membrane.

[5]前記逆浸透膜が、海水淡水化用逆浸透膜である[1]ないし[4]のいずれかに記載の逆浸透膜の阻止率向上剤。 [5] The reverse osmosis membrane rejection improving agent according to any one of [1] to [4], wherein the reverse osmosis membrane is a reverse osmosis membrane for seawater desalination.

[6][1]ないし[5]のいずれかに記載の逆浸透膜の阻止率向上剤により逆浸透膜を処理することを特徴とする逆浸透膜の阻止率向上方法。 [6] A reverse osmosis membrane rejection rate improving method comprising treating a reverse osmosis membrane with the reverse osmosis membrane rejection rate improving agent according to any one of [1] to [5].

[7][6]に記載の阻止率向上方法によって処理された逆浸透膜を用いることを特徴とする水処理方法。 [7] A water treatment method characterized by using a reverse osmosis membrane treated by the inhibition rate improving method according to [6].

本発明のRO膜の阻止率向上剤によれば、透過流束を大きく低下させることなく、阻止率、特にホウ素除去率を向上させることができる。
本発明によれば、RO膜の阻止率、特にホウ素除去率を向上させることができることにより、工業的に以下のような効果を得ることができる。
即ち、従来、海水の淡水化で飲料水を製造する際に、多段ROを組んで2段目のRO供給水のpHを上げるなどのプロセスが必要とされていたが、RO膜のホウ素除去率の向上により、このプロセスを低コストなものに軽減することができる。また、超純水製造プロセスにおいても、RO膜の阻止率の向上で、RO膜の後段のイオン交換樹脂や電気再生式純水装置などの負荷を下げ、処理コストを削減することができる。
According to the RO membrane rejection rate improver of the present invention, the rejection rate, particularly the boron removal rate, can be improved without greatly reducing the permeation flux.
According to the present invention, the following effects can be industrially obtained by improving the RO membrane rejection rate, particularly the boron removal rate.
That is, conventionally, when producing drinking water by desalination of seawater, a process such as assembling a multi-stage RO to raise the pH of the second stage RO supply water has been required. This process can be reduced to a lower cost. Also in the ultrapure water production process, the RO membrane rejection rate can be improved, reducing the load on the ion exchange resin and the electric regenerative pure water device in the subsequent stage of the RO membrane, thereby reducing the processing cost.

試験例で用いた平膜試験装置を示す模式図である。It is a schematic diagram which shows the flat film test apparatus used by the test example.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[メカニズム]
本発明者が本発明に想到した検討の過程は以下の通りである。
[mechanism]
The examination process that the inventor has conceived of the present invention is as follows.

(1) 本発明者は、ホウ素のような荷電反発を適用できない非荷電性低分子の除去効果を高めるためには、RO膜の緻密層の間隙に低分子物質を吸着させて、この間隙を小さくする必要があると考えた。
(2) 非特許文献2,3の通り、タンニン酸には脱塩率向上効果があることが知られており、RO膜と親和性が高い物質であると考えられる。しかし、タンニン酸は分子量500以上の高分子量であるため、RO膜の緻密層の間隙に吸着し難い。この結果、ホウ素のような非荷電性の低分子の除去率を向上させることは難しい。
(3) そこで、低分子の吸着物質として、タンニン酸を構成する低分子を用いることにより、RO膜への親和性の高い低分子物質が膜の緻密層の間隙に吸着して、この間隙を小さくすることで、ホウ素のような非荷電性低分子の除去効果を高めることができるという仮説を立てた。
(4) この仮説に基づき、本発明者は、膜への親和性を高めているタンニン酸の構成要素として、ベンゼン環にヒドロキシ基が3個付加したピロガロール骨格に着目し、ピロガロールとその誘導体をRO膜に吸着させることで、脱塩率を向上させる効果があること、更には脱塩率のみならず、ホウ素除去率も向上させることができることを見出した。
(1) In order to enhance the removal effect of uncharged low molecules to which charge repulsion such as boron cannot be applied, the present inventor adsorbs low molecular substances in the gaps of the dense layer of the RO membrane, and opens the gaps. I thought it was necessary to make it smaller.
(2) As described in Non-Patent Documents 2 and 3, tannic acid is known to have an effect of improving the desalination rate, and is considered to be a substance having a high affinity with the RO membrane. However, since tannic acid has a high molecular weight of 500 or more, it is difficult to adsorb in the gap between the dense layers of the RO membrane. As a result, it is difficult to improve the removal rate of uncharged small molecules such as boron.
(3) Therefore, by using the low molecular weight constituting the tannic acid as the low molecular weight adsorbing material, the low molecular weight material with high affinity to the RO membrane is adsorbed in the gap of the dense layer of the membrane, It was hypothesized that the effect of removing small non-charged molecules such as boron can be increased by reducing the size.
(4) Based on this hypothesis, the present inventor focused on the pyrogallol skeleton in which three hydroxy groups were added to the benzene ring as a component of tannic acid that has increased affinity for the membrane. It has been found that by adsorbing to the RO membrane, there is an effect of improving the desalting rate, and further, not only the desalting rate but also the boron removal rate can be improved.

タンニン酸の種類(加水分解型、縮合型)の構造式とそれを構成するビロガロール構造を以下に示す。   The structural formulas of the types of tannic acid (hydrolyzed type and condensed type) and the bilgarol structure constituting it are shown below.

Figure 2018047406
Figure 2018047406

本発明で用いるピロガロールと代表的なピロガロール誘導体の構造式を以下に示す。ピロガロール誘導体としては、以下に示す没食子酸プロピルのプロピル基がそれぞれメチル基、エチル基、ブチル基、オクチル基、ラウリル基に置きかわった没食子酸メチル(MW:184)、没食子酸エチル(MW:198)、没食子酸ブチル(MW:226)、没食子酸オクチル(MW:282)、没食子酸ラウリル(MW:338)などの没食子酸アルキルエステルも挙げられる。   Structural formulas of pyrogallol and typical pyrogallol derivatives used in the present invention are shown below. Examples of pyrogallol derivatives include methyl gallate (MW: 184) and ethyl gallate (MW: 198) in which the propyl group of propyl gallate shown below is replaced with a methyl group, an ethyl group, a butyl group, an octyl group, and a lauryl group, respectively. ), Butyl gallate (MW: 226), octyl gallate (MW: 282), gallic acid alkyl esters such as lauryl gallate (MW: 338).

Figure 2018047406
Figure 2018047406

なお、以下に構造式を示すベンゼン環にヒドロキシ基が2個付加したカテコールやカテコール誘導体も、RO膜への親和性の高い低分子量有機化合物であり、阻止率向上効果を得ることはできるが、ピロガロール及びその誘導体に比べるとその効果は低い。   In addition, catechol and catechol derivatives in which two hydroxy groups are added to the benzene ring represented by the following structural formula are also low molecular weight organic compounds having a high affinity for RO membranes, and an improvement in blocking rate can be obtained. The effect is low compared to pyrogallol and its derivatives.

Figure 2018047406
Figure 2018047406

本発明による阻止率向上及びホウ素除去率向上のメカニズムは以下の通りである。
(1) タンニン酸には脱塩率向上効果があり、膜への親和性も高い。
(2) タンニン酸を構成するピロガロールにはヒドロキシ基が3個付加しており、これが膜への親和性を高めている。
(3) タンニン酸は分子量500以上の物質であるため、膜の緻密層の間隙に吸着し難いが、ピロガロールやピロガロールの誘導体には分子量が500未満の物質が存在し、これらを膜に吸着させることで、膜の高分子間隙を埋めることができる。
(4) その結果、脱塩率のみならず、ホウ素の除去率を向上させることができる。
The mechanism for improving the rejection rate and the boron removal rate according to the present invention is as follows.
(1) Tannic acid has an effect of improving the desalination rate and has a high affinity for the membrane.
(2) Three hydroxy groups are added to pyrogallol constituting tannic acid, which increases the affinity for the membrane.
(3) Since tannic acid is a substance having a molecular weight of 500 or more, it is difficult to adsorb in the gap between the dense layers of the film. Thus, the polymer gap in the film can be filled.
(4) As a result, not only the desalting rate but also the boron removal rate can be improved.

[阻止率向上剤]
本発明のRO膜の阻止率向上剤は、ピロガロール(分子量:126)及び/又は分子量500未満のピロガロール誘導体を含むことを特徴とするものである。
[Rejection rate improver]
The RO membrane rejection rate improver of the present invention is characterized by containing pyrogallol (molecular weight: 126) and / or a pyrogallol derivative having a molecular weight of less than 500.

分子量500未満のピロガロール誘導体としては、特に制限はないが、前述の没食子酸(分子量:170)、没食子酸メチル(分子量:184)、没食子酸エチル(分子量:198)、没食子酸プロピル(分子量:212)、没食子酸ブチル(分子量:226)、没食子酸オクチル(分子量:282)、没食子酸ラウリル(分子量:338)などの没食子酸アルキルエステル(アルキル基の炭素数は1〜12が好ましい)、エピガロカテキン(分子量:306)、没食子酸エピガロカテキン(分子量:458)、3,4,5−トリメトキシ安息香酸メチル(分子量:226)などが挙げられるが、これらのうち、特にRO膜に対する親和性、脱塩率向上効果、ホウ素除去率向上効果の面から、ピロガロール又は分子量300未満のピロガロール誘導体が好ましく、特に、没食子酸エステルが好ましい。   The pyrogallol derivative having a molecular weight of less than 500 is not particularly limited, but the aforementioned gallic acid (molecular weight: 170), methyl gallate (molecular weight: 184), ethyl gallate (molecular weight: 198), propyl gallate (molecular weight: 212). ), Butyl gallate (molecular weight: 226), octyl gallate (molecular weight: 282), gallic acid alkyl esters such as lauryl gallate (molecular weight: 338) (the carbon number of the alkyl group is preferably 1-12), epigallo Catechin (molecular weight: 306), epigallocatechin gallate (molecular weight: 458), methyl 3,4,5-trimethoxybenzoate (molecular weight: 226) and the like, among these, particularly affinity for RO membranes, From the standpoint of improving the desalination rate and improving the boron removal rate, pyrogallol or a pyrogallow with a molecular weight of less than 300 Derivatives are preferred, in particular, gallic acid esters are preferred.

これらのピロガロール、ピロガロール誘導体は1種のみを用いてもよく、2種以上を混合して用いてもよい。   These pyrogallol and pyrogallol derivatives may be used alone or in combination of two or more.

[阻止率向上方法]
本発明のRO膜の阻止率向上方法は、本発明の阻止率向上剤を用いてRO膜の阻止率向上処理を行うものであり、具体的にRO膜に本発明の阻止率向上剤の水溶液を通水することにより、劣化したRO膜の脱塩率を向上させると共に、ホウ素除去率を向上させる方法である。以下、RO膜の阻止率向上処理のためにRO膜に通水する阻止率向上剤の水溶液を「阻止率向上処理水」と称す。
[Prevention rate improvement method]
The RO membrane rejection rate improving method of the present invention is to perform the RO membrane rejection rate improving treatment using the rejection rate improving agent of the present invention. Specifically, the RO membrane aqueous solution of the rejection rate improving agent of the present invention is applied to the RO membrane. This is a method of improving the desalination rate of the deteriorated RO membrane and improving the boron removal rate by passing water. Hereinafter, the aqueous solution of the blocking rate improver that passes through the RO membrane for the RO membrane blocking rate improving process is referred to as “blocking rate improving treated water”.

本発明の阻止率向上方法において、阻止率向上処理水中の阻止率向上剤の有効成分である前述のピロガロール及び/又はピロガロール誘導体の濃度は、0.01〜100mg/Lであることが好ましく、0.1〜10mg/Lであることがより好ましい。阻止率向上処理水中の有効成分の濃度が上記下限よりも低いと、十分な阻止率向上効果を得ることができず、上記上限よりも高いと透過流束の低下が大きくなり、処理コストも増大する。   In the rejection rate improving method of the present invention, the concentration of the aforementioned pyrogallol and / or pyrogallol derivative, which is an active ingredient of the rejection rate improving agent in the rejection rate improving treated water, is preferably 0.01 to 100 mg / L, 0 More preferably, it is 1-10 mg / L. If the concentration of the active ingredient in the treatment rate improvement treated water is lower than the lower limit, a sufficient improvement effect of the rejection rate cannot be obtained. If the concentration is higher than the upper limit, the permeation flux decreases greatly, and the treatment cost also increases. To do.

また、阻止率向上処理水のpHは、5〜10程度であることが、阻止率向上剤の吸着性の観点から好ましい。   Moreover, it is preferable from a viewpoint of the adsorptivity of a rejection rate improving agent that pH of the rejection rate improvement process water is about 5-10.

また、阻止率向上処理水には、トレーサーとして、食塩(NaCl)等の無機電解質やイソプロピルアルコールやグルコース等の中性有機物、ポリマレイン酸などの低分子ポリマーなどを添加してもよく、これにより、RO膜の透過水への食塩やグルコースの透過の程度を分析して、処理効果を確認することができる。   In addition, to the rejection rate improving treated water, an inorganic electrolyte such as sodium chloride (NaCl), a neutral organic substance such as isopropyl alcohol and glucose, a low molecular polymer such as polymaleic acid, and the like may be added as a tracer. The treatment effect can be confirmed by analyzing the degree of permeation of salt and glucose into the permeated water of the RO membrane.

阻止率向上処理水をRO膜に通水するときの給水圧力は、過度に高いと膜間隙への吸着が進み過ぎ、過度に低いと膜間隙への吸着が進まないことから、当該RO膜の通常運転圧力の20〜150%、特に50〜130%とすることが好ましい。RO膜の膜が超低圧膜の場合、装置の入口圧力は0.1〜1.0MPaであることが好ましい。RO膜の膜が低圧膜の場合、装置の入口圧力は0.1〜2.0MPaであることが好ましい。RO膜の膜が海水淡水化膜の場合、装置の入口圧力は0.1〜7.0MPaであることが好ましい。   If the water supply pressure when the treated water with improved rejection rate is passed through the RO membrane is excessively high, the adsorption to the membrane gap proceeds too much, and if it is too low, the adsorption to the membrane gap does not advance. It is preferably 20 to 150%, particularly 50 to 130% of the normal operating pressure. When the RO membrane is an ultra-low pressure membrane, the inlet pressure of the apparatus is preferably 0.1 to 1.0 MPa. When the RO membrane is a low-pressure membrane, the inlet pressure of the apparatus is preferably 0.1 to 2.0 MPa. When the RO membrane is a seawater desalination membrane, the inlet pressure of the apparatus is preferably 0.1 to 7.0 MPa.

阻止率向上処理時のRO膜透過水の線速度は圧力、水温、膜の形状等に関わるが、透過流束0.1〜5m/(m・d)であることが好ましい。その理由は給水圧力と同様、過度に高いと吸着が進み過ぎ、過度に低いと膜間隙への接触効率が悪化するためである。 The linear velocity of RO membrane permeated water during the rejection improvement process is related to pressure, water temperature, membrane shape, and the like, but is preferably a permeation flux of 0.1 to 5 m 3 / (m 2 · d). The reason is that, like the feed water pressure, if the pressure is excessively high, the adsorption proceeds too much, and if the pressure is excessively low, the contact efficiency to the membrane gap deteriorates.

また、阻止率向上処理時の阻止率向上処理水の水温は、常温、例えば10〜35℃程度が好ましい。水温が低すぎると透過水量が低下し、接触効率が悪化する。阻止率向上処理水の温度が高すぎると膜素材が変性するおそれがある。   Moreover, the water temperature of the rejection improvement processing water at the time of rejection improvement processing is normal temperature, for example, about 10-35 degreeC is preferable. If the water temperature is too low, the amount of permeated water is lowered and the contact efficiency is deteriorated. If the temperature of the water for improving the rejection rate is too high, the membrane material may be denatured.

阻止率向上処理水を通水する時間としては、RO膜中を有効成分であるピロガロール及び/又はピロガロール誘導体が十分に透過する時間とすることが好ましい。RO膜装置を定常運転していないときに阻止率向上処理水を通水する場合、0.5〜500時間程度、特に1〜150時間程度通水することが好ましい。通水時間が過度に短いと、有効成分の定着性が十分得られないまま処理を終了させることになり、付着した有効成分が剥離してしまうことがある。   It is preferable that the time for passing the treated water for improving the rejection rate is a time for which the pyrogallol and / or the pyrogallol derivative, which is an active ingredient, sufficiently permeate through the RO membrane. When the RO membrane apparatus is not operated in a steady state, it is preferable to pass water for about 0.5 to 500 hours, particularly about 1 to 150 hours, when the treated water with improved rejection rate is passed. If the water passage time is excessively short, the treatment is terminated without sufficiently fixing the active ingredient, and the attached active ingredient may be peeled off.

阻止率向上処理は、RO膜装置の定常運転時に行われてもよく、例えば阻止率向上処理剤から調製した水溶液をRO膜装置の定常運転時にRO給水に添加することにより行われてもよい。RO給水に阻止率向上処理剤の水溶液を添加する時間は、0.5〜500時間程度が好適であるが、阻止率向上処理剤の水溶液をRO給水に常時添加してもよい。   The rejection rate improvement process may be performed during the steady operation of the RO membrane device, for example, by adding an aqueous solution prepared from the rejection rate improvement treatment agent to the RO water supply during the steady operation of the RO membrane device. The time for adding the aqueous solution of the rejection improving agent to the RO water supply is preferably about 0.5 to 500 hours, but the aqueous solution of the rejection improving agent may be constantly added to the RO water supply.

RO膜装置を長時間運転することにより、膜汚染が生じて透過流束が低下している場合は、膜洗浄を行った後に阻止率向上処理を行ってもよい。   When the RO membrane device is operated for a long time and the membrane contamination occurs and the permeation flux is reduced, the rejection rate improving process may be performed after the membrane cleaning.

この場合に用いる膜洗浄の薬剤としては、酸洗浄では、塩酸、硝酸、硫酸などの鉱酸、クエン酸、シュウ酸といった有機酸を挙げることができる。アルカリ洗浄では、水酸化ナトリウム、水酸化カリウムなどを挙げることができる。一般的に、酸洗浄ではpH2付近とし、アルカリ洗浄ではpH12付近とする。   Examples of the membrane cleaning agent used in this case include mineral acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as citric acid and oxalic acid. Examples of the alkali cleaning include sodium hydroxide and potassium hydroxide. In general, the pH is about 2 for acid cleaning and about 12 for alkali cleaning.

[RO膜]
本発明において阻止率向上処理の処理対象となるRO膜の膜構造としては、非対称膜、複合膜などの高分子膜などを挙げることができる。RO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系素材などを挙げることができる。これらの中で、芳香族系ポリアミド素材のRO膜であると本発明の阻止率向上剤との親和性が高いため、本発明の阻止率向上剤及び阻止率向上方法を特に好適に適用することができる。
[RO membrane]
In the present invention, examples of the membrane structure of the RO membrane to be subjected to the rejection improvement processing include polymer membranes such as asymmetric membranes and composite membranes. Examples of the RO membrane material include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate. Among these, the RO membrane made of an aromatic polyamide material has high affinity with the blocking rate improver of the present invention, and therefore the blocking rate improver and blocking rate improving method of the present invention are particularly preferably applied. Can do.

RO膜モジュールの形式に特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。   There is no restriction | limiting in particular in the form of RO membrane module, For example, a tubular membrane module, a plane membrane module, a spiral membrane module, a hollow fiber membrane module etc. can be mentioned.

なお、本発明は、新品のRO膜に適用してもよく、使用により阻止率が低下したRO膜に適用してもよい。   In addition, this invention may be applied to a new RO membrane, and may be applied to an RO membrane having a reduced rejection rate due to use.

[水処理方法]
本発明の水処理方法は、本発明の阻止率向上方法により阻止率向上処理されたRO膜を用いるものであって、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の回収・再利用のための水処理、あるいは海水・かん水の淡水化、工業用水や市水からの超純水製造、その他の分野の水処理に有効に適用される。
[Water treatment method]
The water treatment method of the present invention uses the RO membrane that has been subjected to the rejection rate improvement treatment by the rejection rate improvement method of the present invention, and is highly discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields. Effectively applied to water treatment for recovery and reuse of wastewater containing TOC or low-concentration TOC, desalination of seawater and brine, ultrapure water production from industrial water and city water, and water treatment in other fields .

特に、本発明によれば、RO膜の脱塩率のみならず、ホウ素除去率をも向上させることができることから、本発明の水処理方法は、ホウ素除去が重要な海水淡水化プロセスに有効に適用される。   In particular, according to the present invention, not only the desalination rate of the RO membrane but also the boron removal rate can be improved, so the water treatment method of the present invention is effective for seawater desalination processes where boron removal is important. Applied.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

以下の試験例において、試験装置としては、図1に示す平膜試験装置を用いた。
この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で被処理水を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。濃縮水取り出し配管13には圧力計6と開閉バルブ7が設けられている。
In the following test examples, the flat membrane test apparatus shown in FIG. 1 was used as the test apparatus.
This flat membrane test apparatus is provided with a flat membrane cell 2 at an intermediate position in the height direction of a cylindrical container 1 having a bottom and a lid, and the inside of the container is divided into a raw water chamber 1A and a permeated water chamber 1B, and the container 1 is divided into a stirrer. 3, water to be treated is supplied to the raw water chamber 1 </ b> A via the pipe 11 by the pump 4, and the stirrer 5 in the container 1 is rotated to stir the raw water chamber 1 </ b> A so that the permeated water passes through the permeated water. While taking out from the chamber 1B through the pipe 12, the concentrated water is taken out from the raw water chamber 1A through the pipe 13. The concentrated water outlet pipe 13 is provided with a pressure gauge 6 and an opening / closing valve 7.

[試験例I]
以下のRO膜と図1の平膜試験装置を用い、以下の運転条件で供給水(1)を通水後、供給水(2)を通水した(供給水(2)の試験水の通水時間は4.5時間)。
[Test Example I]
Using the following RO membrane and the flat membrane test apparatus shown in FIG. 1, the feed water (1) was passed under the following operating conditions, and then the feed water (2) was passed (the test water of the feed water (2) was passed. Water time is 4.5 hours).

RO膜:日東電工社製 芳香族ポリアミド系超低圧RO膜「ES20」
供給水(1)(ブランク):純水にホウ素濃度が5mg/Lとなるようにホウ酸(キシダ化学)を添加して、pH6.5とした水溶液
供給水(2)(試験水):ブランクに10mg/Lの添加薬剤を添加して、pH6.5とした水溶液
運転条件:透過流束1m/(m・d)、回収率80%、温度24℃±2℃
RO membrane: Aromatic polyamide ultra-low pressure RO membrane "ES20" manufactured by Nitto Denko Corporation
Feed water (1) (blank): An aqueous solution in which boric acid (Kishida Chemical) was added to pure water so that the boron concentration was 5 mg / L to pH 6.5. Feed water (2) (test water): blank A 10 mg / L additive was added to the aqueous solution to adjust the pH to 6.5. Operating conditions: Permeation flux 1 m 3 / (m 2 · d), recovery rate 80%, temperature 24 ° C. ± 2 ° C.

上記の通水試験から、ホウ素除去率、ホウ素透過率の減少率、透過流束比を以下の式(1)〜(4)で求めた。
ホウ素透過率=透過水中のホウ素濃度/濃縮水中のホウ素濃度 …(1)
ホウ素除去率=1−ホウ素透過率 …(2)
ホウ素透過率の減少率=1−試験水のホウ素透過率/ブランクのホウ素透過率…(3)
透過流束比=ブランクの運転圧力/試験水の運転圧力 …(4)
From the above water flow test, the boron removal rate, the decrease rate of the boron permeability, and the permeation flux ratio were determined by the following formulas (1) to (4).
Boron permeability = boron concentration in permeated water / boron concentration in concentrated water (1)
Boron removal rate = 1-boron permeability (2)
Decrease rate of boron permeability = 1-boron permeability of test water / boron permeability of blank (3)
Permeation flux ratio = blank operating pressure / test water operating pressure (4)

<添加薬剤>
各例における添加薬剤としては、以下のものを用いた。
比較例I−1:カテコール(分子量110、キシダ化学社製)
比較例I−2:クロロゲン酸(分子量354、東京化成工業社製)
実施例I−1:ピロガロール(分子量126、和光純薬工業社製)
実施例I−2:没食子酸プロピル(分子量212、キシダ化学社製)
実施例I−3:没食子酸エチル(分子量198、東京化成工業社製)
実施例I−4:没食子酸メチル(分子量184、東京化成工業社製)
実施例I−5:3,4,5−トリメトキシ安息香酸メチル(分子量226、和光純薬工業社製)
実施例I−6:没食子酸エピガロカテキン(分子量458、和光純薬工業社製)
<Additives>
The following were used as the additive in each case.
Comparative Example I-1: Catechol (Molecular weight 110, manufactured by Kishida Chemical Co., Ltd.)
Comparative Example I-2: Chlorogenic acid (molecular weight 354, manufactured by Tokyo Chemical Industry Co., Ltd.)
Example I-1: pyrogallol (molecular weight 126, manufactured by Wako Pure Chemical Industries, Ltd.)
Example I-2: Propyl gallate (molecular weight 212, manufactured by Kishida Chemical Co., Ltd.)
Example I-3: Ethyl gallate (molecular weight 198, manufactured by Tokyo Chemical Industry Co., Ltd.)
Example I-4: Methyl gallate (molecular weight 184, manufactured by Tokyo Chemical Industry Co., Ltd.)
Example I-5: Methyl 3,4,5-trimethoxybenzoate (molecular weight 226, manufactured by Wako Pure Chemical Industries, Ltd.)
Example I-6: Epigallocatechin gallate (molecular weight 458, manufactured by Wako Pure Chemical Industries, Ltd.)

表1に試験結果を示す。
表1より明らかなように、実施例では、ホウ素透過率の減少率が0.1を超えている。一方で、透過流束比は0.8以上を維持できている。
Table 1 shows the test results.
As is apparent from Table 1, in the examples, the decrease rate of the boron permeability exceeds 0.1. On the other hand, the permeation flux ratio can maintain 0.8 or more.

Figure 2018047406
Figure 2018047406

[試験例II]
以下のRO膜と図1の平膜試験装置を用い、以下の運転条件で供給水(1)を通水後、供給水(2)を通水した(供給水(2)の試験水の通水時間は1時間)。
[Test Example II]
Using the following RO membrane and the flat membrane test apparatus shown in FIG. 1, the feed water (1) was passed under the following operating conditions, and then the feed water (2) was passed (the test water of the feed water (2) was passed. Water time is 1 hour).

RO膜:東レ社製 芳香族ポリアミド系海水淡水化RO膜「TM820V」
供給水(1)(ブランク):純水にホウ素濃度が5mg/Lとなるようにホウ酸を添加すると共に、32g/LのNaCl(キシダ化学)を添加して、pH8とした水溶液
供給水(2)(試験水):ブランクに10mg/Lの添加薬剤を添加して、pH8とした水溶液
運転条件:操作圧力5.5MPa、温度24℃±2℃
RO membrane: Toray Industries aromatic polyamide seawater desalination RO membrane "TM820V"
Feed water (1) (blank): An aqueous solution to which pH is 8 by adding boric acid to pure water so that the boron concentration is 5 mg / L and adding 32 g / L NaCl (Kishida Chemical). 2) (Test water): Aqueous solution in which 10 mg / L of added drug was added to the blank to adjust the pH to 8 Operating conditions: Operating pressure 5.5 MPa, temperature 24 ° C. ± 2 ° C.

上記の通水試験から、ホウ素除去率、ホウ素透過率の減少率を、試験例Iと同様に式(1)〜(3)から求めた。透過流束比は以下の式(5)で求めた。
透過流束比=試験水の透過流束/ブランクの透過流束 …(5)
In the same manner as in Test Example I, the boron removal rate and the decrease rate of the boron permeability were determined from the above formulas (1) to (3). The permeation flux ratio was determined by the following equation (5).
Permeation flux ratio = test water permeation flux / blank permeation flux (5)

<添加薬剤>
各例における添加薬剤としては、以下のものを用いた。
比較例II−1:カテキン(分子量110、Sigma−Aldrich社製)
比較例II−2:五倍子タンニン(分子量500以上、富士化学工業社製)
比較例II−3:ミモザタンニン(分子量500以上、川村通商社製)
実施例II−1:没食子酸プロピル(分子量212、キシダ化学社製)
<Additives>
The following were used as the additive in each case.
Comparative Example II-1: Catechin (molecular weight 110, manufactured by Sigma-Aldrich)
Comparative Example II-2: Ploidy tannin (molecular weight of 500 or more, manufactured by Fuji Chemical Industry Co., Ltd.)
Comparative Example II-3: Mimosatanine (molecular weight of 500 or more, manufactured by Kawamura Tsusho)
Example II-1: Propyl gallate (molecular weight 212, manufactured by Kishida Chemical Co., Ltd.)

表2に試験結果を示す。
表2より明らかなように、実施例ではホウ素透過率の減少率が0.2を超えている。一方で、透過流束比も0.95以上を維持できている。
Table 2 shows the test results.
As is clear from Table 2, in the examples, the decrease rate of the boron permeability exceeds 0.2. On the other hand, the permeation flux ratio can also be maintained at 0.95 or more.

Figure 2018047406
Figure 2018047406

[試験例III]
以下のRO膜と図1の平膜試験装置を用い、以下の運転条件で供給水(1)を通水後、供給水(2)を通水した(供給水(2)の試験水の通水時間は2時間)。
[Test Example III]
Using the following RO membrane and the flat membrane test apparatus shown in FIG. 1, the feed water (1) was passed under the following operating conditions, and then the feed water (2) was passed (the test water of the feed water (2) was passed. Water time is 2 hours).

RO膜:日東電工社製 芳香族ポリアミド系海水淡水化RO膜「SWC5−MAX」
供給水(1)(ブランク):純水にホウ素濃度が5mg/Lとなるようにホウ酸を添加すると共に、32g/LのNaCl(キシダ化学)を添加して、pH8とした水溶液
供給水(2)(試験水):ブランクに2mg/Lの添加薬剤を添加して、pH8とした水溶液
運転条件:操作圧力5.5MPa、温度24℃±2℃
RO membrane: Aromatic polyamide-based seawater desalination RO membrane “SWC5-MAX” manufactured by Nitto Denko Corporation
Feed water (1) (blank): An aqueous solution to which pH is 8 by adding boric acid to pure water so that the boron concentration is 5 mg / L and adding 32 g / L NaCl (Kishida Chemical). 2) (Test water): Aqueous solution in which 2 mg / L of added drug was added to the blank to adjust the pH to 8 Operating conditions: Operating pressure 5.5 MPa, temperature 24 ° C. ± 2 ° C.

上記の通水試験から、ホウ素除去率、透過率の減少率を、試験例Iと同様に式(1)〜(3)から求めた。透過流束比は、試験例IIと同様に式(5)から求めた。また、NaClの除去率、透過率の減少率を以下の式(6)〜(8)で求めた。
NaCl透過率=透過水中のNaCl濃度/濃縮水中のNaCl濃度 …(6)
NaCl除去率=1−NaCl透過率 …(7)
NaCl透過率の減少率=1−試験水のNaCl透過率/ブランクのNaCl透過率
…(8)
From the above water flow test, the boron removal rate and the reduction rate of the transmittance were obtained from the formulas (1) to (3) in the same manner as in Test Example I. The permeation flux ratio was determined from Equation (5) in the same manner as in Test Example II. Moreover, the removal rate of NaCl and the decrease rate of the transmittance were obtained by the following formulas (6) to (8).
NaCl permeability = NaCl concentration in permeated water / NaCl concentration in concentrated water (6)
NaCl removal rate = 1-NaCl permeability (7)
Decrease rate of NaCl permeability = 1-NaCl permeability of test water / NaCl permeability of blank
... (8)

<添加薬剤>
各例における添加薬剤としては、以下のものを用いた。
実施例III−1:没食子酸プロピル(分子量212、キシダ化学社製)
実施例III−2:没食子酸ブチル(分子量226、和光純薬工業社製)
<Additives>
The following were used as the additive in each case.
Example III-1: Propyl gallate (molecular weight 212, manufactured by Kishida Chemical Co., Ltd.)
Example III-2: Butyl gallate (molecular weight 226, manufactured by Wako Pure Chemical Industries, Ltd.)

表3に試験結果を示す。
表3から明らかなように、没食子酸プロピル又は没食子酸ブチルの2mg/Lの添加でも、ホウ素とNaClの除去率は向上しており、透過流束の減少も僅かである。
Table 3 shows the test results.
As can be seen from Table 3, even when 2 mg / L of propyl gallate or butyl gallate was added, the removal rate of boron and NaCl was improved, and the permeation flux decreased slightly.

Figure 2018047406
Figure 2018047406

1 容器
1A 原水室
1B 透過水室
2 平膜セル
3 スターラー
1 container 1A raw water chamber 1B permeate water chamber 2 flat membrane cell 3 stirrer

Claims (7)

ピロガロール及び/又は分子量500未満のピロガロール誘導体を含むことを特徴とする逆浸透膜の阻止率向上剤。   A reverse osmosis membrane blocking rate improver comprising pyrogallol and / or a pyrogallol derivative having a molecular weight of less than 500. 前記ピロガロール誘導体を少なくとも含み、該ピロガロール誘導体の分子量が300未満である請求項1に記載の逆浸透膜の阻止率向上剤。   The reverse osmosis membrane blocking rate improver according to claim 1, comprising at least the pyrogallol derivative, wherein the pyrogallol derivative has a molecular weight of less than 300. 前記ピロガロール誘導体を少なくとも含み、該ピロガロール誘導体が没食子酸エステルである請求項1又は2に記載の逆浸透膜の阻止率向上剤。   The inhibitor of a reverse osmosis membrane according to claim 1 or 2, wherein the pyrogallol derivative contains at least the pyrogallol derivative, and the pyrogallol derivative is a gallic acid ester. 前記逆浸透膜がポリアミド系逆浸透膜である請求項1ないし3のいずれか1項に記載の逆浸透膜の阻止率向上剤。   The reverse osmosis membrane blocking rate improver according to any one of claims 1 to 3, wherein the reverse osmosis membrane is a polyamide-based reverse osmosis membrane. 前記逆浸透膜が、海水淡水化用逆浸透膜である請求項1ないし4のいずれか1項に記載の逆浸透膜の阻止率向上剤。   The reverse osmosis membrane blocking rate improver according to any one of claims 1 to 4, wherein the reverse osmosis membrane is a reverse osmosis membrane for seawater desalination. 請求項1ないし5のいずれか1項に記載の逆浸透膜の阻止率向上剤により逆浸透膜を処理することを特徴とする逆浸透膜の阻止率向上方法。   A reverse osmosis membrane rejection rate improving method comprising treating a reverse osmosis membrane with the reverse osmosis membrane rejection rate improving agent according to any one of claims 1 to 5. 請求項6に記載の阻止率向上方法によって処理された逆浸透膜を用いることを特徴とする水処理方法。   A water treatment method using a reverse osmosis membrane treated by the inhibition rate improving method according to claim 6.
JP2016183082A 2016-09-20 2016-09-20 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method Pending JP2018047406A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016183082A JP2018047406A (en) 2016-09-20 2016-09-20 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method
PCT/JP2017/033644 WO2018056242A1 (en) 2016-09-20 2017-09-19 Reverse osmosis membrane rejection rate-improving agent and rejection rate-improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183082A JP2018047406A (en) 2016-09-20 2016-09-20 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method

Publications (1)

Publication Number Publication Date
JP2018047406A true JP2018047406A (en) 2018-03-29

Family

ID=61689974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183082A Pending JP2018047406A (en) 2016-09-20 2016-09-20 Blocking rate improver of reverse osmosis membrane, and blocking rate improvement method

Country Status (2)

Country Link
JP (1) JP2018047406A (en)
WO (1) WO2018056242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005399B2 (en) 2019-10-24 2024-06-11 Mitsubishi Heavy Industries, Ltd. Desalination performance restoration agent for cellulose acetate membrane and desalination performance restoration method for cellulose acetate membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220040643A1 (en) * 2020-08-04 2022-02-10 NL Chemical Technology, Inc. Modification of membrane surfaces with amino acid polymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069558A1 (en) * 2005-12-12 2007-06-21 Organo Corporation Process and apparatus for modifying separation membrane and separation membranes modified by the process
WO2016084905A1 (en) * 2014-11-27 2016-06-02 東レ株式会社 Water production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520357A4 (en) * 2009-12-28 2015-07-15 Kuraray Co Multilayered charge-mosaic membrane and manufacturing method therefor
JP5772083B2 (en) * 2011-03-09 2015-09-02 栗田工業株式会社 Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
JP2015097990A (en) * 2013-11-19 2015-05-28 栗田工業株式会社 Rejection enhancing method of reverse osmosis membrane, reverse osmosis membrane and water treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069558A1 (en) * 2005-12-12 2007-06-21 Organo Corporation Process and apparatus for modifying separation membrane and separation membranes modified by the process
WO2016084905A1 (en) * 2014-11-27 2016-06-02 東レ株式会社 Water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005399B2 (en) 2019-10-24 2024-06-11 Mitsubishi Heavy Industries, Ltd. Desalination performance restoration agent for cellulose acetate membrane and desalination performance restoration method for cellulose acetate membrane

Also Published As

Publication number Publication date
WO2018056242A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
CN102553452B (en) Membrane cleaning agent for cleaning reverse osmosis membrane and application method
JP5633517B2 (en) Method for improving rejection of permeable membrane and permeable membrane
JP5914973B2 (en) Method for improving rejection rate of permeable membrane and treatment agent for improving rejection rate
AU2012226983B2 (en) Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
TWI590865B (en) Leaching membrane detergent and washing method
JP6364751B2 (en) Cleaning agent and cleaning method for aromatic polyamide-based reverse osmosis membrane
JP2016128142A (en) Rejection rate improving method of semipermeable membrane
JP5772083B2 (en) Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane
AU2016299518B2 (en) Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
WO2018056242A1 (en) Reverse osmosis membrane rejection rate-improving agent and rejection rate-improving method
JP5828294B2 (en) Reverse osmosis membrane rejection rate improver, rejection rate improvement method, and reverse osmosis membrane
JP2008086945A (en) Method for recovering performance of permselective membrane
JP6090376B2 (en) Cleaning agent for polyamide reverse osmosis membrane for water treatment, cleaning liquid, and cleaning method
JP2007111606A (en) Reforming method and apparatus for separation membrane and separation membrane reformed by the method
JP5929296B2 (en) Reverse osmosis membrane rejection improvement method
JP2015016448A (en) Rejection rate improving method of composite semipermeable membrane
WO2016002758A1 (en) Detergent and cleaning fluid for cellulose-acetate-based reverse osmosis membrane
JP2014050783A (en) Check ratio improvement method of reverse osmotic membrane

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180612