JPS61129004A - Treatment of water containing silicic acid - Google Patents

Treatment of water containing silicic acid

Info

Publication number
JPS61129004A
JPS61129004A JP24852284A JP24852284A JPS61129004A JP S61129004 A JPS61129004 A JP S61129004A JP 24852284 A JP24852284 A JP 24852284A JP 24852284 A JP24852284 A JP 24852284A JP S61129004 A JPS61129004 A JP S61129004A
Authority
JP
Japan
Prior art keywords
silicic acid
polyfunctional
amino compound
polyvinyl alcohol
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24852284A
Other languages
Japanese (ja)
Other versions
JPH0640946B2 (en
Inventor
Yoshiyasu Kamiyama
神山 義康
Keisuke Nakagome
中込 敬祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP24852284A priority Critical patent/JPH0640946B2/en
Publication of JPS61129004A publication Critical patent/JPS61129004A/en
Publication of JPH0640946B2 publication Critical patent/JPH0640946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform the reverse osmosis treatment of raw water containing silicic acid generating no contamination of a membrane due to silicic acid, by using a composite semi-permeable membrane having an ultra-thin membrane layer formed by crosslinking a polyfunctional amino compound having two or more of secondary amino groups in one molecule thereof by a crosslinking agent. CONSTITUTION:A polyfunctional amino compound having two or more of secondary amino groups in one molecule thereof or a solution prepared by mixing polyvinyl alcohol with said amino compound is applied to a porous base material having minute pores with a pore size of 10-100Angstrom formed to the surface thereof to impregnate said base material. the concn. of said amino compound is 0.05-10wt% and, when polyvinyl alcohol is used, said polyvinyl alcohol is used in an amount of 0.2-5 times of the amino compound. A polyfunctional crosslinking agent is contacted with the treated base material and the whole is heated at 80-180 deg.C to form an ultra-thin membrane layer with a thickness of 50-800Angstrom . The concn. of the crosslinking agent is pref. 0.05-10wt%.

Description

【発明の詳細な説明】 く産’J/4上の利用分野〉 本発明は、ケイ酸を含有する原水、例えば地下水、河川
水、海水、水道水、各種プロセス水、排水等から、水回
収あるいは有価物回収をする方・法に関するものであり
、特に電子工業における超純水製造工程や医療分野等に
おける純水製造工程に利用できるものである。
[Detailed Description of the Invention] Fields of Application of the Product'J/4> The present invention is applicable to water recovery from raw water containing silicic acid, such as groundwater, river water, seawater, tap water, various process waters, wastewater, etc. Alternatively, it relates to a method for recovering valuable materials, and is particularly applicable to ultrapure water production processes in the electronics industry and pure water production processes in the medical field.

〈従来技術及びその問題点〉 近年、電子工業における超純水製造や医療分野等の純水
製造に代表されるように、原水を逆浸透膜法により分離
処理する方法が用いられている。
<Prior art and its problems> In recent years, a method of separating raw water using a reverse osmosis membrane method has been used, as typified by the production of ultrapure water in the electronics industry and the production of pure water in the medical field.

例えば、超純水製造工程においては、一般に凝集沈殿処
理、活性炭濾過処理等の前処理をした原水を、まず逆浸
透処理して減塩された一次純水を得、かかる−次純水を
イオン交換、ボリツシャー、限外を過等で処理すること
によって超純水を得る方法が実用化されている。上記逆
浸透処理においては、原水の濃縮倍率を大きくする程、
一定の供給原水から多量の透過水を得ることができ、経
済的に有利である。まだ同様に7農縮物を回収する場合
も、高15縮とする程有利である。
For example, in the ultrapure water production process, raw water that has undergone pretreatment such as coagulation sedimentation treatment or activated carbon filtration treatment is first subjected to reverse osmosis treatment to obtain reduced-salt primary pure water, and then this secondary pure water is ionized. Methods of obtaining ultrapure water by treatment with exchange, boritzer, ultrafiltration, etc. have been put into practical use. In the above reverse osmosis treatment, the higher the concentration ratio of raw water, the more
A large amount of permeate water can be obtained from a given raw water supply, which is economically advantageous. Similarly, when collecting 7 agricultural shrinkage products, the higher the 15 shrinkage is, the more advantageous it is.

しかしながら上記原水中にはケイ酸が含有されており、
かかる原水を従来の例えば酢酸セルロース製のケイ酸除
去率の比較的高い逆浸透膜を用いて処理する場合、濃縮
倍率を大きくすると、比較的溶解度の小さいケイ酸が濃
縮液側、特に膜面近傍で析出(シリカスケール)して膜
を汚染させ、膜性能が低下して原水を高い回収率で処理
できないという問題がある。例えば、ケイ酸を4j)p
pm含有するかん木の処理においては、通常濃縮倍率は
2.5倍(回収率60%)程度が最大である。
However, the raw water above contains silicic acid,
When such raw water is treated using a conventional reverse osmosis membrane made of cellulose acetate, which has a relatively high silicic acid removal rate, when the concentration ratio is increased, silicic acid with relatively low solubility is transferred to the concentrate side, especially near the membrane surface. There is a problem in that silica deposits (silica scale) and contaminates the membrane, reducing membrane performance and making it impossible to treat raw water with a high recovery rate. For example, silicic acid 4j)p
In the treatment of shrubs containing PM, the maximum concentration ratio is usually about 2.5 times (60% recovery rate).

したがってケイ酸含有量の多い原水を高回収率で処理し
ようとすると、上述の膜汚染を生じさせないために、原
水を前段で脱ケイ酸処理することが必要である。かかる
脱ケイ酸処理方法としては、水酸化マグネシウム、鉄塩
、アルミニウム塩等ヲ用いる凝集沈殿法、イオン交換法
等があるが、凝集沈殿法はケイ酸の除去率が低くかつ多
量のスラッジが発生し、またイオン交換法は他の陰イオ
ンも同時に除去するためイオン交換樹脂に多量の負荷が
かかるため経済的に不利である。一方、ケイ酸のみを選
択的に除去できるイオン交換樹脂もあるが、それを用い
ることはコスト高となり、経済性に欠けるという欠点を
有している。特に通常の超純水製造工程では、逆浸透処
理の後段にイオン交換処理が必要であるため、逆浸透処
理の前段にイオン交換処理を行なうことは経済的に非常
に不利である。
Therefore, if raw water with a high silicic acid content is to be treated with a high recovery rate, it is necessary to perform a desilicating treatment on the raw water in the first stage in order to prevent the above-mentioned membrane contamination. Such desilicating methods include the coagulation-precipitation method and ion exchange method using magnesium hydroxide, iron salts, aluminum salts, etc. However, the coagulation-precipitation method has a low removal rate of silicic acid and generates a large amount of sludge. However, the ion exchange method is economically disadvantageous because other anions are also removed at the same time, which places a large load on the ion exchange resin. On the other hand, although there are ion exchange resins that can selectively remove only silicic acid, their use has the disadvantage of being expensive and uneconomical. In particular, in a normal ultrapure water production process, ion exchange treatment is required after reverse osmosis treatment, so it is economically very disadvantageous to perform ion exchange treatment before reverse osmosis treatment.

〈問題点の解決手段〉 本発明はかかる従来技術の欠点を解決するためにな゛さ
れたものであって、ケイ酸を含有する原水を特定の複合
半透膜を用いて逆浸透処理することによって、ケイ酸に
よる膜汚染がなく高回収率で処理できる方法を提供する
ことを目的とする。
<Means for Solving the Problems> The present invention has been made to solve the drawbacks of the prior art, and involves reverse osmosis treatment of raw water containing silicic acid using a specific composite semipermeable membrane. The purpose of the present invention is to provide a method that can be processed at a high recovery rate without membrane contamination due to silicic acid.

即ち本発明は、第2級アミノ基を1分子中に2個以上有
する多官能性アミノ化合物を多官能性架橋剤にて架橋し
た超薄膜層が、多孔性基材上に一体的に設けられている
複合半透膜を用いて、ケイ酸を含有する原水を逆浸透処
理することを特徴とするケイ酸含有水の処理方法に関す
るものである。
That is, in the present invention, an ultra-thin film layer in which a polyfunctional amino compound having two or more secondary amino groups in one molecule is crosslinked with a polyfunctional crosslinking agent is integrally provided on a porous base material. The present invention relates to a method for treating silicic acid-containing water, characterized in that raw water containing silicic acid is subjected to reverse osmosis treatment using a composite semipermeable membrane containing silicic acid.

さらに本発明の他の態様は、第2級アミノ基を1分子中
に2個以上有する多官能性アミノ化合物とポリビニルア
ルコールとを多官能性架橋剤にて架橋した超薄膜層が、
該超薄膜層を一体的に支持する内部層としての水不溶性
ポリビニルアルコールからなる多孔質層を介して、多孔
性基材上K 一体的に設けられている複合半透膜を用い
て、ケイ酸を含有する原水を逆浸透処理することを特徴
とするケイ酸含有水の処理方法に関するものである。
Furthermore, another aspect of the present invention is an ultra-thin film layer in which a polyfunctional amino compound having two or more secondary amino groups in one molecule and polyvinyl alcohol are crosslinked with a polyfunctional crosslinking agent.
Silicic acid is coated on the porous substrate via a porous layer made of water-insoluble polyvinyl alcohol as an inner layer that integrally supports the ultra-thin film layer. The present invention relates to a method for treating silicic acid-containing water, which comprises subjecting raw water containing silicic acid to reverse osmosis treatment.

本発明においてケイ酸を含有する原水とは、モする水溶
液であって、その含有量は通常5i02換算値として表
わされる。
In the present invention, the raw water containing silicic acid is an aqueous solution containing silicic acid, and its content is usually expressed as a 5i02 equivalent value.

本発明において用いる第一の複合半透膜は、第2級アミ
ノ基を1分子中に2個以上有する多官能性アミノ化合物
を多官能性架橋剤にて架橋した超薄膜層が、多孔性基材
上に一体的に設けられている複合半透膜(以下、複合半
透膜Aという)である。
The first composite semipermeable membrane used in the present invention has an ultra-thin film layer in which a polyfunctional amino compound having two or more secondary amino groups in one molecule is crosslinked with a polyfunctional crosslinking agent. This is a composite semipermeable membrane (hereinafter referred to as composite semipermeable membrane A) that is integrally provided on the material.

さらに本発明において用いる第二の複合半透膜は、第2
級アミノ基を1分子中に2個以上有する多官能性アミノ
化合物とポリビニルアルコールとを多官能性架橋剤にて
架橋した超薄膜層が、該超薄膜層を一体的に支持する内
部層としての水不溶性ポリビニルアルコールからなる多
孔質層を介して、多孔性基材上に一体的に設けられてい
る複合半透膜(以下、複合半透膜Bという)である。
Furthermore, the second composite semipermeable membrane used in the present invention has a second
An ultra-thin film layer formed by cross-linking a polyfunctional amino compound having two or more amino groups in one molecule and polyvinyl alcohol with a polyfunctional cross-linking agent serves as an inner layer that integrally supports the ultra-thin film layer. This is a composite semipermeable membrane (hereinafter referred to as composite semipermeable membrane B) that is integrally provided on a porous base material via a porous layer made of water-insoluble polyvinyl alcohol.

上記複合半透膜Aは、多官能性アミノ化合物を含む溶液
(以下、溶液という)を多孔性基材に塗布又は含浸させ
た後、多官能性架橋剤に接触させ、次いで加熱すること
により製造することができる。
The above-mentioned composite semipermeable membrane A is produced by applying or impregnating a porous base material with a solution containing a polyfunctional amino compound (hereinafter referred to as a solution), bringing it into contact with a polyfunctional crosslinking agent, and then heating. can do.

かかる多官能性アミノ化合物は、第2級アミノ基を1分
子中に2個以上有するものであって、その具体例として
は、N、N’−;yメチルエチレンジアミン、N、N’
−ジメチルプロパンジアミン、N 、 N’−ジメチル
−m−フェニレンジアミン、N 、 N’−ジメチル−
p−フェニレンジアミン、2.6−ジ゛メチルアミノピ
リジン、N 、 N’−ジピペラジルメタン、1.8−
(N、N’−ジピペラジ・ル)オクタン、N 、 N’
−ジピペリジル、N 、 N’ −ジ(3、3’−ジメ
チルピペリジル)、4,4′−ジビペリジルメタン、1
.2(4,4’−ジビベリジル)エタン、1,3−(4
,4’−ジピペリジル)プロパン、ピペラジン、2−メ
チルビペラジン、2.5−ジメチルピペラジン、ホモピ
ペラジ/(ヘキナヒドロジアゼビン)等を挙げることが
できる。
Such polyfunctional amino compounds have two or more secondary amino groups in one molecule, and specific examples thereof include N, N'-;y methylethylenediamine, N, N'
-dimethylpropanediamine, N,N'-dimethyl-m-phenylenediamine, N,N'-dimethyl-
p-phenylenediamine, 2,6-dimethylaminopyridine, N,N'-dipiperazylmethane, 1.8-
(N, N'-dipiperazine) octane, N, N'
-dipiperidyl, N, N'-di(3,3'-dimethylpiperidyl), 4,4'-dibiperidylmethane, 1
.. 2(4,4'-dibiveridyl)ethane, 1,3-(4
, 4'-dipiperidyl)propane, piperazine, 2-methylbiperazine, 2,5-dimethylpiperazine, homopiperazi/(hequinahydrodiazebin), and the like.

溶液をつくるための溶剤としては、水が好ましく用いら
れ、この溶液は多官能性アミノ化合物を0.05〜10
重量%、好ましくは0.1〜5重景%となるように調整
される。
Water is preferably used as the solvent for preparing the solution, and this solution contains 0.05 to 10% of the polyfunctional amino compound.
It is adjusted to % by weight, preferably 0.1 to 5% by weight.

またこの溶液は多孔性基材に塗布、含浸させる際の表面
張力を減少させるために界面活性剤を含有していてもよ
く、さらに架橋剤による架橋時に塩酸等が副生ずるよう
な場合には、その副生物を捕捉するために塩基性物質、
例えば水酸化ナトリウム、アンモニア、リン酸ナトリウ
ム等を含有シていてもよい。
In addition, this solution may contain a surfactant to reduce the surface tension when applying and impregnating the porous substrate, and if hydrochloric acid or the like is produced as a by-product during crosslinking with a crosslinking agent, basic substances, to capture its byproducts;
For example, it may contain sodium hydroxide, ammonia, sodium phosphate, etc.

また多孔性基材としては、ポリスルホン、ポリ塩化ビニ
ル、ポリカーボネート、酢酸セルロース、硝酸セルロー
ス等の疎水性重合体からなる多孔質体であれば、フィル
ム状、シート状、管状及び中空糸状等の任意の形態にて
用いることができる。
In addition, the porous base material may be any porous material such as film, sheet, tube, or hollow fiber, as long as it is made of a hydrophobic polymer such as polysulfone, polyvinyl chloride, polycarbonate, cellulose acetate, or cellulose nitrate. It can be used in any form.

特に表面に直径約10〜100Aの微孔を有し、この微
孔が内部に向かって徐々にその径を増す非対称構造を有
すると共に、純水−水量が少なくとも10−’ 9 /
c+J・秒・気圧であり、好ましくは10−4〜10”
−’P/−・秒・気圧である限外濾過膜が好適である。
In particular, the surface has micropores with a diameter of about 10 to 100 A, and the micropores have an asymmetric structure in which the diameter gradually increases toward the inside, and the amount of pure water is at least 10-' 9 /
c+J・sec・atmospheric pressure, preferably 10−4 to 10”
An ultrafiltration membrane having a pressure of −'P/−·sec·atmospheric pressure is suitable.

このような多孔性基材への前記溶液の塗布又は含浸量は
、固形分換算で0.05〜59 / n: 、好ましく
は0.1〜17/λであり、必要に応じて溶液を多孔性
基材に塗布又は含浸後、風乾やドレイン等の操作により
上記範囲の量になるように調整することができる。
The amount of the solution to be applied or impregnated into such a porous substrate is 0.05 to 59/n:, preferably 0.1 to 17/n in terms of solid content, and if necessary, the solution is applied to the porous base material. After being applied or impregnated onto a plastic substrate, the amount can be adjusted to fall within the above range by air drying, draining, etc.

本発明において用いる多官能性架橋剤は、第2級アミノ
基と反応し得る官能基、例えば、酸ハライド基、ハロゲ
ンスルホニル基、N−ハロホルミル基、へロホルメート
基、酸無水物基等の1種又は2種以上を1分子中に2個
以上有する化合物であって、具体例として塩化インフタ
ロイル、塩化テレフタロイル、トリノンン酸クロライド
、トリメリド酸クロライド、ヘミメリト酸クロライド、
ピロメリト酸二無水物、2,6−ジクロロホルミルピリ
ジン、3,5−ジクロロホルミルベンゼンスルホニルク
ロライド、N、N’−ジクロロホルミルピペラジン等を
挙げることができる。特に、本発明においては、架橋剤
としてトリメンン酸クロライド、トリメリド酸クロライ
ド、ヘミメリト酸クロライドのようなベンゼントリカル
ボン酸クロライドを用いることが好ましい。
The polyfunctional crosslinking agent used in the present invention is one type of functional group that can react with a secondary amino group, such as an acid halide group, a halogensulfonyl group, an N-haloformyl group, a heroformate group, or an acid anhydride group. or a compound having two or more of two or more types in one molecule, specific examples of which include inphthaloyl chloride, terephthaloyl chloride, trinonyl chloride, trimellitic acid chloride, hemimelitic acid chloride,
Examples include pyromellitic dianhydride, 2,6-dichloroformylpyridine, 3,5-dichloroformylbenzenesulfonyl chloride, and N,N'-dichloroformylpiperazine. Particularly, in the present invention, it is preferable to use benzenetricarboxylic acid chloride such as trimenoic acid chloride, trimellitic acid chloride, hemimelitic acid chloride as the crosslinking agent.

上記の多官能性架橋剤を、溶液を塗布又は含浸した多孔
性基材に接触させるには、通常溶液と混和しない有機溶
剤に架橋剤を溶解してなる架橋剤溶液を多孔性基材の溶
液塗布層上に塗布するか、あるいは架橋剤溶液中に上記
基材を浸漬すればよい。上記有機溶剤としては、ペンタ
ン、ヘキサン、ヘプタン、シクロヘキサン、石油エーテ
ル等の炭化水素系溶剤、トリクロロトリフルオロエタン
等のハロゲン化炭化水素溶剤が好ましく用いられる。
In order to bring the above-mentioned polyfunctional crosslinking agent into contact with a porous substrate coated with or impregnated with a solution, a crosslinking agent solution prepared by dissolving the crosslinking agent in an organic solvent that is not miscible with the solution is added to the solution of the porous substrate. It may be applied onto the coating layer or the substrate may be immersed in a crosslinking agent solution. As the organic solvent, hydrocarbon solvents such as pentane, hexane, heptane, cyclohexane, and petroleum ether, and halogenated hydrocarbon solvents such as trichlorotrifluoroethane are preferably used.

また架橋剤溶液における架橋剤の濃度は、通常0.05
〜10重量%、好ましくは0.1〜5重量%とするのが
よい。
The concentration of the crosslinking agent in the crosslinking agent solution is usually 0.05
The content is preferably 10 to 10% by weight, preferably 0.1 to 5% by weight.

このようにして溶液を塗布又は含浸した多孔性基材に上
記架橋剤溶液を接触させた後、80〜180℃、好まし
くは100−150℃の温度で加熱することによって、
多孔性基材上の溶液塗布層の表面層においてアミノ化合
物の架橋反応が行なわれ、かくして基材上に半透性を有
する緻密な超薄膜層が表面層として形成され、本発明で
用いる複合半透膜Aが得られる。この緻密な超薄膜層の
厚さは、溶液中におけるアミノ化合物の濃度、架橋剤と
の接触時間、その後の加熱温度や時間等によって異なる
が、通常50〜800A、好ましくは100〜500A
である。
After bringing the crosslinking agent solution into contact with the porous substrate coated or impregnated with the solution in this way, by heating at a temperature of 80 to 180 °C, preferably 100 to 150 °C,
A cross-linking reaction of the amino compound takes place in the surface layer of the solution-coated layer on the porous substrate, thus forming a semi-permeable, dense, ultra-thin film layer on the substrate, and forming the composite semi-conductor used in the present invention. A permeable membrane A is obtained. The thickness of this dense ultra-thin film layer varies depending on the concentration of the amino compound in the solution, the contact time with the crosslinking agent, the subsequent heating temperature and time, etc., but is usually 50 to 800 A, preferably 100 to 500 A.
It is.

また本発明の他の態様で用いる複合半透膜Bは、前述の
多官能性アミノ化合物とポリビニルアルコールとを含む
溶液(、以下、溶液Bという)を、前述と回様の方法で
多孔性基材に塗布又は含浸させた後、多官能性架橋剤に
接触させ、次いで加熱することにより製造することがで
をる。上記溶液Bは、ポリビニルアルコール100車量
部についてアミノ化合物10〜5ooii部、好ましく
は20〜300重量部含有し、且つ、ポリビニルアルコ
ールとアミノ化合物との合計量の濃度が0.05〜10
上箭%、好まし′くは0.1〜5重量%となるように調
製される。
Composite semipermeable membrane B used in another aspect of the present invention is prepared by adding a solution containing the above-mentioned polyfunctional amino compound and polyvinyl alcohol (hereinafter referred to as solution B) to a porous group using the same method as above. It can be produced by coating or impregnating a material, contacting it with a polyfunctional crosslinking agent, and then heating. The above solution B contains 10 to 5 ooii parts, preferably 20 to 300 parts by weight, of an amino compound per 100 parts by weight of polyvinyl alcohol, and the concentration of the total amount of polyvinyl alcohol and amino compound is 0.05 to 10 parts by weight.
The content is adjusted to 1% by weight, preferably 0.1 to 5% by weight.

かかる方法により、多孔性基材上の溶液塗布層の表面層
においてアミノ化合物及びポリビニルアルコールの架橋
反応が行なわれ、かくして基材上に半透性を有する緻密
な超薄膜層が表面層として形成される。一方圧薄膜層と
多孔性基材の間の溶液塗布層内部の架橋反応に関与しな
かった未反応ポリビニルアルコールは加熱によシ水不溶
性化すると共に1アミノ化合物が揮散するため、内部層
は微小な空孔を多数有する水不溶性のポリビニルアルコ
ールからなる多孔質層が、上記超薄膜層を一体的に支持
するように形成され、本発明で用いる複合半透膜Bが得
られる。
By this method, a crosslinking reaction between the amino compound and polyvinyl alcohol is carried out in the surface layer of the solution coating layer on the porous substrate, and a semipermeable, dense, ultra-thin film layer is thus formed on the substrate as the surface layer. Ru. On the other hand, the unreacted polyvinyl alcohol that did not participate in the crosslinking reaction inside the solution-coated layer between the thin film layer and the porous base material becomes water-insoluble by heating, and the mono-amino compound evaporates, so that the inner layer becomes microscopic. A porous layer made of water-insoluble polyvinyl alcohol having a large number of pores is formed so as to integrally support the ultra-thin membrane layer, thereby obtaining the composite semipermeable membrane B used in the present invention.

このように形成してなる複合半透膜A及びBは、ケイ酸
に対する除去率と、ナトリウム、カルシウム、マグネシ
ウムイオン等のカチオンや塩素、硫酸イオン等のアニオ
ンに対する除去率の差が大きく高い選択分離性を有する
ものである。本発明においては、例えば20騨/−の圧
力下で逆浸透処理した際、ケイ酸の除去率が50%以下
、好ましくは30%以下であり、かつ上記イオンの除去
率が50%以上、好ましくは80%以上、さらに好まし
くは90%以上という逆浸透性能を有するものが用いら
れる。
The composite semipermeable membranes A and B formed in this manner have a large difference in the removal rate for silicic acid and the removal rate for cations such as sodium, calcium, and magnesium ions, and anions such as chlorine and sulfate ions, and are capable of high selective separation. It is something that has a nature. In the present invention, the removal rate of silicic acid is 50% or less, preferably 30% or less, and the removal rate of the ions is 50% or more, preferably A material having a reverse osmosis performance of 80% or more, more preferably 90% or more is used.

゛ よって本発明で用いる複合半透膜は、上記の如く優
れた選択分離性を有するため、かかる複合半透膜を用い
てケイ酸を含有する原水を逆浸透処理すること(より、
前記カチオンやアニオンを実質的に除去し、ケイ酸を透
過させることができる。
Therefore, since the composite semipermeable membrane used in the present invention has excellent selective separation properties as described above, raw water containing silicic acid can be subjected to reverse osmosis treatment using such a composite semipermeable membrane (from
The cations and anions can be substantially removed and silicic acid can be permeated.

しだがってケイ酸析出による膜汚染によって膜性能が低
下するのを防ぐことができ、原水を高回収率で処理する
ことができる。
Therefore, it is possible to prevent membrane performance from deteriorating due to membrane contamination due to silicic acid precipitation, and raw water can be treated with a high recovery rate.

〈発明の効果〉 以上に述べた如く本発明の方法によれば、ケイ酸を含有
する原水を逆浸透処理する際に、特定の複合半透膜を用
いるため、ケイ酸析出による膜汚染が発生せず、膜性能
の低下を防ぐことができる。
<Effects of the Invention> As described above, according to the method of the present invention, since a specific composite semipermeable membrane is used when raw water containing silicic acid is subjected to reverse osmosis treatment, membrane contamination due to silicic acid precipitation occurs. Therefore, deterioration of membrane performance can be prevented.

特に本発明の方法を超純水製造工程中の一次純水製造ラ
インに適用すれば、前段の脱ケイ酸処理工程を省略する
ことができるため、極めて経済的に有利である。
In particular, if the method of the present invention is applied to a primary pure water production line in the ultrapure water production process, it is extremely economically advantageous because the preceding desilication treatment process can be omitted.

〈実施例〉 以下に本発明を実施例により具体的に説明する。<Example> The present invention will be specifically explained below using examples.

製造例A ポリスルホンからなる非対称構造を有する多孔性基材(
純水透水量1.02 X 10−2グ/cA・秒・気圧
)上に1重量%のピペラジン及び1重量%の水酸化す)
 +7ウムを含有する水溶液を均一に塗布した後、トリ
メンン酸クロライドの1重量%n−ヘキサン溶液に25
°Cの温度で1分間浸漬した。この基材を引き上げて3
0秒間風乾した後、110 °Cの温度で10分間加熱
して、複合半透膜Aを得た。
Production Example A Porous base material with an asymmetric structure made of polysulfone (
1% by weight of piperazine and 1% by weight of hydroxide)
After uniformly applying an aqueous solution containing +7 um, a solution of 25% by weight of trimenoic acid chloride in n-hexane
Soaked for 1 minute at a temperature of °C. Pull up this base material 3
After air drying for 0 seconds, the composite semipermeable membrane A was obtained by heating at a temperature of 110° C. for 10 minutes.

製造例B ポリスルホンからなる非対称構造を有する多孔性基材(
純水透水量1.05 X 10−2F/−・秒・気圧)
上にポリビニルアルコール0.25ffi−Jt%、ピ
ペラジン0.25重量%及び水酸化ナトリウム0.5重
量%を含有する水溶液を均一に塗布した後、トリメシン
酸りσライドの0.5重量%n−ヘキサン溶液に25°
Cの温度で1分間浸漬した。この基材を引き上げて膜面
に付着しているヘキサノを揮散させた後、110°Cの
温度で10分間加熱して、複合半透膜Bを得た。
Production Example B Porous base material with an asymmetric structure made of polysulfone (
Pure water permeability 1.05 x 10-2F/- seconds, atmospheric pressure)
After uniformly applying an aqueous solution containing 0.25ffi-Jt% of polyvinyl alcohol, 0.25% by weight of piperazine and 0.5% by weight of sodium hydroxide, 0.5% by weight of trimesic acid σ-ride was applied on the top. 25° in hexane solution
It was immersed for 1 minute at a temperature of C. This base material was pulled up to volatilize hexano adhering to the membrane surface, and then heated at a temperature of 110° C. for 10 minutes to obtain composite semipermeable membrane B.

評価例 下記の溶質を2000ppm含有する水溶液、及びケイ
酸ナトリウムを1100pp含有する水溶液を、製造例
で得られた複合半透膜A及びBを用いて、20 Ki9
/cIlの圧力下で逆浸透処理した際の溶質の除去率を
第1表に示す。
Evaluation Example An aqueous solution containing 2000 ppm of the following solutes and an aqueous solution containing 1100 ppm of sodium silicate were heated to 20 Ki9 using composite semipermeable membranes A and B obtained in the production example.
Table 1 shows the solute removal rate during reverse osmosis treatment under a pressure of /cIl.

第1表 この第1表から上記の複合半透膜は、種々の溶質とケイ
酸との除去率の差が大きく、本発明に好適に用い得るこ
とが理解される、 実施例 ケイ酸’tj 度50 ppm %TDS濃IQ’ 1
200 ppm  を°  含有する原水を、製造例で
得られた複合半透膜A及びBを用いて、20に9/−の
圧力下で逆浸透処理した結果を下記の第2表に示す。こ
の結果から明らかな如く、濃縮液中のケイ酸a度は、こ
の状態での飽和ケイ酸濃度以下であるため、ケイ酸が析
出していないことが確認できた。さらに透過液を高回収
率で回収することができた。
Table 1 From this Table 1, it is understood that the composite semipermeable membrane described above has a large difference in removal rate between various solutes and silicic acid, and can be suitably used in the present invention. Degree 50 ppm %TDS concentration IQ' 1
Raw water containing 200 ppm was subjected to reverse osmosis treatment under a pressure of 20 to 9/- using the composite semipermeable membranes A and B obtained in the production example, and the results are shown in Table 2 below. As is clear from this result, since the degree of silicic acid in the concentrated liquid was below the saturated silicic acid concentration in this state, it was confirmed that silicic acid was not precipitated. Furthermore, the permeate could be recovered at a high recovery rate.

比較例 実施例と同じ性状の原水を、酢酸セルロース製の逆浸透
膜(ケイ酸除去率90%)を用いて、実施例と同様に処
理した結果を第2表に併せて示す。
Comparative Example Raw water having the same properties as in the example was treated in the same manner as in the example using a reverse osmosis membrane made of cellulose acetate (silicic acid removal rate: 90%). The results are also shown in Table 2.

Claims (2)

【特許請求の範囲】[Claims] (1)第2級アミノ基を1分子中に2個以上有する多官
能性アミノ化合物を多官能性架橋剤にて架橋した超薄膜
層が、多孔性基材上に一体的に設けられている複合半透
膜を用いて、ケイ酸を含有する原水を逆浸透処理するこ
とを特徴とするケイ酸含有水の処理方法。
(1) An ultra-thin film layer made by crosslinking a polyfunctional amino compound having two or more secondary amino groups in one molecule with a polyfunctional crosslinking agent is integrally provided on a porous base material. A method for treating silicic acid-containing water, which comprises subjecting silicic acid-containing raw water to reverse osmosis treatment using a composite semipermeable membrane.
(2)第2級アミノ基を1分子中に2個以上有する多官
能性アミノ化合物とポリビニルアルコールとを多官能性
架橋剤にて架橋した超薄膜層が、該超薄膜層を一体的に
支持する内部層としての水不溶性ポリビニルアルコール
からなる多孔質層を介して、多孔性基材上に一体的に設
けられている複合半透膜を用いて、ケイ酸を含有する原
水を逆浸透処理することを特徴とするケイ酸含有水の処
理方法。
(2) An ultra-thin film layer formed by crosslinking a polyfunctional amino compound having two or more secondary amino groups in one molecule and polyvinyl alcohol with a polyfunctional cross-linking agent integrally supports the ultra-thin film layer. Raw water containing silicic acid is subjected to reverse osmosis treatment using a composite semipermeable membrane that is integrally provided on a porous substrate through a porous layer made of water-insoluble polyvinyl alcohol as an inner layer. A method for treating silicic acid-containing water.
JP24852284A 1984-11-24 1984-11-24 Method for treating silicic acid-containing water Expired - Lifetime JPH0640946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24852284A JPH0640946B2 (en) 1984-11-24 1984-11-24 Method for treating silicic acid-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24852284A JPH0640946B2 (en) 1984-11-24 1984-11-24 Method for treating silicic acid-containing water

Publications (2)

Publication Number Publication Date
JPS61129004A true JPS61129004A (en) 1986-06-17
JPH0640946B2 JPH0640946B2 (en) 1994-06-01

Family

ID=17179434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24852284A Expired - Lifetime JPH0640946B2 (en) 1984-11-24 1984-11-24 Method for treating silicic acid-containing water

Country Status (1)

Country Link
JP (1) JPH0640946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024410A (en) * 2014-10-06 2015-02-05 株式会社東芝 Desalination treatment membrane, desalination treatment method, and desalination treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024410A (en) * 2014-10-06 2015-02-05 株式会社東芝 Desalination treatment membrane, desalination treatment method, and desalination treatment apparatus

Also Published As

Publication number Publication date
JPH0640946B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JP3954651B2 (en) Method for increasing flux of polyamide membrane
US3808305A (en) Crosslinked,interpolymer fixed-charge membranes
KR101787122B1 (en) Reverse osmosis composite membrane for boron removal
US4012324A (en) Crosslinked, interpolymer fixed-charge membranes
US5658460A (en) Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying
JP5895838B2 (en) Separation membrane element and method for producing composite semipermeable membrane
US5744039A (en) Composite semipermeable membrane and production method thereof
US6833073B2 (en) Composite nanofiltration and reverse osmosis membranes and method for producing the same
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
WO2006038409A1 (en) Process for producing semipermeable composite membrane
JPH0825539A (en) Production of composite semipermeable membrane
JPH05192660A (en) Method for treating outflowing liquid
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
KR101954913B1 (en) Method for recovering multivalent metal ion from leaching solution containing sulfuric acid in which metal ions are leached, and composite membrane therefor
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
JPS61129004A (en) Treatment of water containing silicic acid
JPS61281138A (en) Composite membrane selectively transmitting water from ethanol/water mixture and its production
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
KR20170055021A (en) Method for recovering multivalent metal ion from leaching solution containing sulfuric acid in which metal ions are leached, and composite membrane therefor
JP7120523B2 (en) Method for producing water treatment separation membrane and water treatment separation membrane produced thereby
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
JPS60204601A (en) Separation of aqueous solution of inorganic acid
KR20050074166A (en) Producing method of nanofilteration composite membrane having high flow rate
KR102280869B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR101825632B1 (en) Preparation Method of High Flux Polyamide composite Membrane