JPS6226603B2 - - Google Patents

Info

Publication number
JPS6226603B2
JPS6226603B2 JP54158809A JP15880979A JPS6226603B2 JP S6226603 B2 JPS6226603 B2 JP S6226603B2 JP 54158809 A JP54158809 A JP 54158809A JP 15880979 A JP15880979 A JP 15880979A JP S6226603 B2 JPS6226603 B2 JP S6226603B2
Authority
JP
Japan
Prior art keywords
pulse
pulses
pri
interval
pulse train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158809A
Other languages
Japanese (ja)
Other versions
JPS5680925A (en
Inventor
Kenichi Nishiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15880979A priority Critical patent/JPS5680925A/en
Publication of JPS5680925A publication Critical patent/JPS5680925A/en
Publication of JPS6226603B2 publication Critical patent/JPS6226603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/153Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant

Description

【発明の詳細な説明】 この発明は、複数のパルス列の混在した到来パ
ルスから、パルス列の数とそれらのパルス繰返し
間隔を検出するパルス列検出方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse train detection method for detecting the number of pulse trains and their pulse repetition intervals from incoming pulses in which a plurality of pulse trains coexist.

従来のこの種の検出法は、到来パルスの中から
2パルスを選んで、それらがあるパルス列の隣り
合う2パルスであるとみなしてパルス列を外挿
し、到来パルスの中に合致するものがあるかどう
か判定して、もしなければ別の2パルスを選んで
同じことを繰り返すというような試行錯誤にもと
ずくものであつた。
This type of conventional detection method selects two pulses from among the arriving pulses, considers them to be two adjacent pulses of a certain pulse train, extrapolates the pulse train, and determines whether there is a match among the arriving pulses. It was based on a process of trial and error, in which the user had to judge whether the pulse was available or not, and if it was not available, select another two pulses and repeat the same process.

第1図に、この従来方式による検出例を示す。
図において、aは繰返し間隔の異なる5つのパル
ス列が重畳された到来パルスである。この列では
選ぶべき2パルスとして、1個目と2個目、1個
目と3個目、1個目と4個目、…を順次とつてゆ
くようにしてある。まず1個目と2個目のパルス
を選んで外挿を行うとbのようになるが、これら
と合致するものがaにはないから次のステツプに
進み、Cのように1個目と3個目のパルスで外挿
を行う。以下同様に続けてゆき、fに至つてはじ
めてaに含まれるパルス列を1つ見つけることが
できる。次は、見つけたパルス列に属するパルス
を除外して、前と同様の手順で別のパルス列を見
つける。その最初のステツプをgに示す。このよ
うなことを繰り返して、到来パルスに含まれるす
べてのパルス列を検出する。
FIG. 1 shows an example of detection using this conventional method.
In the figure, a represents an incoming pulse in which five pulse trains with different repetition intervals are superimposed. In this column, the two pulses to be selected are sequentially selected: the first and second pulses, the first and third pulses, the first and fourth pulses, and so on. First, if you select the first and second pulses and extrapolate them, you will get something like b, but since there is nothing in a that matches these, proceed to the next step and select the first and second pulses like C. Extrapolation is performed on the third pulse. The process continues in the same manner, and only when f is reached can one pulse train included in a be found. Next, exclude the pulses belonging to the found pulse train and find another pulse train using the same procedure as before. The first step is shown in g. By repeating this process, all pulse trains included in the arriving pulses are detected.

従来の検出方式は、以上のように構成されてい
るので、パルス列の隣り合う2個のパルスに出合
うまで2パルス選択の試行錯誤を続けることが必
要であり、雑音パルスが混入していたり、パルス
抜けが生じていたりすると、むやみに時間がかか
るという欠点があつた。
Since the conventional detection method is configured as described above, it is necessary to continue trial and error in selecting two pulses until two adjacent pulses in the pulse train are encountered. The drawback was that if there were omissions, it would take an unnecessarily long time.

この発明は、上記のような従来の検出方式の欠
点を除去するためになされたもので、パルス間隔
を分類して、ある処理を加えることにより、到来
パルスに含まれるパルス列の数とそれらのパルス
繰返し間隔が一挙に検出できる方法を提供するこ
とを目的としている。
This invention was made to eliminate the drawbacks of the conventional detection method as described above, and by classifying pulse intervals and adding certain processing, the number of pulse trains included in an incoming pulse and the number of pulses contained in those pulses can be determined. The purpose is to provide a method that can detect repetition intervals all at once.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

ここで、本発明は自己相関函数を利用した函数
によつPRIの識別を行うようにしたものであるの
で、まずその基本原理について説明する。
Here, since the present invention identifies PRI using a function using an autocorrelation function, the basic principle will be explained first.

パルス列の到着時刻をt1,t2,…,tNとし、パ
ルス列のインパルスの和として、 で表わすと、このパルス列の自己相関函数c
(τ)は、 となる。そしてこのc(τ)を縦軸に、τを横軸
にとり、τ軸を細分して各細分区間上で積分する
と、各単一パルス列のPRIに対応する位置にパル
スの個数分だけの高さのピークが表われ、これに
より各PRIの推定を行うことができる。但し、こ
の方法ではそれ以外にPRIの整数倍の位置にもほ
ぼ同じ高さのピークができてしまうため、この
PRIの整数倍の位置にできるピーク、即ち「分数
調波」を抑圧するために、本発明ではさらにパル
ス列g,tに対して次式で定義されるような変換
を施こすようにしている。
Let the arrival times of the pulse train be t 1 , t 2 , ..., t N , and the sum of the impulses of the pulse train is: The autocorrelation function c of this pulse train is expressed as
(τ) is becomes. Then, by taking this c(τ) on the vertical axis and τ on the horizontal axis, and subdividing the τ axis and integrating over each subdivision section, the height corresponding to the number of pulses is placed at the position corresponding to the PRI of each single pulse train. A peak appears, which allows estimation of each PRI. However, with this method, peaks of approximately the same height are also created at positions that are integral multiples of PRI, so this
In order to suppress peaks that occur at positions that are integral multiples of PRI, ie, "fractional harmonics," the present invention further performs a transformation defined by the following equation on the pulse trains g and t.

これは、上記自己相関函数の右辺の各項に位相
因子exp[−2πitn/(tn−tm)]を掛けたもの
であり、この因子が自己相関函数において表われ
た分数調波をほぼ完全に抑圧し、さらにピーク以
外のレベルをも低く押し下げる働きをし、この結
果PRIだけがピークとして抽出されることとな
る。
This is obtained by multiplying each term on the right side of the above autocorrelation function by the phase factor exp[-2πitn/(tn-tm)], and this factor almost completely eliminates the fractional harmonics appearing in the autocorrelation function. It also works to suppress levels other than the peak, and as a result, only the PRI is extracted as a peak.

以下、この基本原理に基いてなされた実施例を
図について説明する。第2図において、入力端1
からは到来パルスの到着時刻の測定データt1
t2,…,tNが入力する。ここでは、パルスのパ
ラメータとして到着時刻だけしか考えないから、
以後、パルスと到着時刻とは同一視することにす
る。これらの入力信号は、まず、パルス繰返し間
隔(pRI)フイルタ2,2,…,2Kにかけ
られるが、おのおののPRIフイルタには第3図a
に示すようなPRI軸の細分区間〔τk-1、τk)(但
し区間〔τk-1、τk)はτk-1τ<τkを表わ
す)が対応していて、第3図bに示すようにパル
スtnに対して、それに先だつてtn−τk<t
n−τk-1で表わされる区間にパルスが存在する
ときにのみパルスtnを通過させる。また、tn
τk<ttn−τk-1に存在するパルスtnとの差
n−toをも同時に出力する。従つて、PRIフイ
ルタ2,2,…,2Kの機能は、パルス間隔
n−to、(m=2,3,…,N,n=m−1,
m−2,…,1)の集合を、あらかじめ設定して
あるPRIの細分区間〔τ,τ)、〔τ,τ
),…,〔τk-1,τk)のいずれに属するか判定
することと同一である。PRIフイルタ2,2
,…,2Kを通過した信号は、除算回路3
,…,3Kで除算 tn/(tn−to) がなされ、次いで、複素三角函数演算回路4
,…,4Kで、 exp〔2πitn/(tn−to)〕 の計算が行われ、最後に累積回路5,5
…,5Kで加算 が行われる。パルス列の数とそれらのPRIは、累
積回路5,5,…,5Kの出力の絶対値|DK
|を比較することにより検出する。
Examples based on this basic principle will be described below with reference to the drawings. In Figure 2, input terminal 1
From the measurement data t 1 of the arrival time of the incoming pulse,
t 2 , ..., t N are input. Here, we only consider the arrival time as a pulse parameter, so
From now on, the pulse and the arrival time will be treated as the same. These input signals are first applied to pulse repetition interval (pRI) filters 2 1 , 2 2 , ..., 2 K , each of which has a
The subdivisions [τ k-1 , τ k ) of the PRI axis as shown in (however, the interval [τ k-1 , τ k ) represents τ k-1 τ<τ k ] correspond, and the third As shown in Figure b, for pulse t n , prior to it t n −τ k <t
The pulse t n is passed only when the pulse exists in the interval expressed by t nk-1 . Also, t n
The difference t n -t o from the pulse t n existing at τ k <tt nk-1 is also output at the same time. Therefore, the function of the PRI filters 2 1 , 2 2 , ..., 2 K is the pulse interval t n -t o , (m=2, 3, ..., N, n=m-1,
m-2, ..., 1) is divided into preset PRI subdivision intervals [τ 0 , τ 1 ), [τ 1 , τ
2 ), ..., [τ k-1 , τ k )]. PRI filter 2 1 , 2
The signal that has passed through 2 ,..., 2K is sent to the divider circuit 31 ,
The division t n /(t n -t o ) is performed by 3 2 ,..., 3 K , and then the complex trigonometric function calculation circuit 4 1 ,
4 2 ,..., 4 K , exp[2πit n /(t n -t o )] is calculated, and finally the accumulation circuits 5 1 , 5 2 ,
..., 5K addition will be held. The number of pulse trains and their PRI are the absolute values of the outputs of the accumulator circuits 5 1 , 5 2 , ..., 5 K |D K
It is detected by comparing |.

次に、この検出方法の作用について説明する。
いま、第4図aに示すような到来パルスの中に、
第4図bに示すような、PRIがrに等しく個数が
Pであるパルス列to1,to2,…,topが含まれ
ているとする。rがPRI軸の細分区間のうちでK
番目のものに属しているとすれば、すなわちτk-
r<τkであるとすれば、累積回路5kからの
出力は を含んでいるはずである。累積回路5kからの出
力にはこれ以外にも、たまたまパルス間隔がτk-
n−to<τkとなるために混入してくるもの
の可能性もあるが、複素三角函数演算回路4k
より、その偏角がばらついて累積回路5kの出力
への寄与分は少ない。従つて、累積回路5kの出
力は殆ど、(2)に等しく、この絶対値は |DK|=P−1 となる。PRIがrに等しいパルス列はまた、PRI
がkr(ただしk=2,3,…)に等しいパルス
列の重ねあわせとしてみることもできるが、この
場合は、複素三角函数の偏角が、2π/kごとの
等間隔で分布するために、累積回路5kの出力
は、それらが互いに打ち消しあつて0に近い値を
取る。一方PRI軸の細分区間〔τk-1,τk)に該
当するパルス列が存在しなければ、PRIフイルタ
を通過するものが少ないということと、複数三角
函数の偏角がばらつくということの2つの理由
で、累積回路5kからの出力はやはり0に近い値
を取る。従つて、累積回路5kからの出力が大き
な値を取れば、それはPRIが〔τk-1,τk)に属
するパルス列が存在するためであると判定でき
る。第5図に、この実施例による検出例を示す。
図のなかでaは第1図のaと同じものでPRIの異
なる5つのパルス列の重畳された到来パルスであ
る。この到来パルスに対して第2図に示した実施
例での累積回路5,5,…,5kの出力の絶
対値を取つて描いた図がbである。このbのグラ
フからわかるように、パルス列が5つであること
と、それらのPRIの値が検出できる。
Next, the operation of this detection method will be explained.
Now, in the arriving pulse as shown in Figure 4a,
Assume that pulse trains t o1 , t o2 , . . . , t op are included, as shown in FIG. r is K among the subdivisions of the PRI axis
i.e., τ k-
1 If r<τ k , the output from the accumulator circuit 5 k is It should contain. In addition to this, the output from the accumulator circuit 5 k happens to have a pulse interval of τ k-
1 t n −t ok , so there is a possibility that something gets mixed in. However, due to the complex trigonometric function calculation circuit 4 k , its argument varies and its contribution to the output of the accumulator circuit 5 k is few. Therefore, the output of the accumulator circuit 5 k is almost equal to (2), and its absolute value is |D K |=P-1. A pulse train with PRI equal to r also has PRI
It can also be seen as a superposition of pulse trains where is equal to kr (k = 2, 3, ...), but in this case, since the argument of the complex trigonometric function is distributed at equal intervals of 2π/k, The outputs of the accumulator circuit 5 k cancel each other out and take a value close to 0. On the other hand, if there is no pulse train corresponding to the subdivision interval [τ k-1 , τ k ) of the PRI axis, there will be two problems: fewer pulses will pass through the PRI filter, and the argument angles of multiple trigonometric functions will vary. For this reason, the output from the accumulator circuit 5k also takes a value close to zero. Therefore, if the output from the accumulator circuit 5 k takes a large value, it can be determined that this is because a pulse train whose PRI belongs to [τ k-1 , τ k ) exists. FIG. 5 shows an example of detection by this embodiment.
In the figure, a is the same as a in FIG. 1, and is an incoming pulse in which five pulse trains with different PRIs are superimposed. A diagram b is a diagram drawn by taking the absolute values of the outputs of the accumulator circuits 5 1 , 5 2 , . . . , 5 k in the embodiment shown in FIG. 2 for this arriving pulse. As can be seen from the graph b, there are five pulse trains and their PRI values can be detected.

なお、上記実施例では除算回路3,3
…,3kでは除算tn/(tn−to)を行うものを
示したが、そのかわりに、除算to/(tn−t
o)、あるいは除算2tn/(τk-1+τk)又は2to
(τk-1+τk)を行つても、殆んど同じ値が得ら
れるので、同等の効果が期待される。
Note that in the above embodiment, the division circuits 3 1 , 3 2 ,
..., 3k shows a method that performs division t n /(t n -t o ), but instead, division t o /(t n -t
o ), or division 2t n / (τ k-1 + τ k ) or 2t o /
Even if (τ k-1k ) is performed, almost the same value is obtained, so the same effect is expected.

以上のように、この発明によれば、検出方式を
パルス列の数とそれらのPRIが複素三角函数の和
の絶対値比較により検出できるように構成したの
で、複数のPRIが同時に検出でき、また、雑音パ
ルスやパルス抜けがある場合にも比較的短時間で
検出できる効果がある。
As described above, according to the present invention, the detection method is configured such that the number of pulse trains and their PRIs can be detected by comparing the absolute values of the sums of complex trigonometric functions, so that multiple PRIs can be detected simultaneously. This has the effect of being able to detect noise pulses or missing pulses in a relatively short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a―gは従来の検出方式による検出例を
示す図、第2図はこの発明の一実施例のブロツク
図、第3図はこの実施例を説明するための図、第
4図はこの発明の作用を説明するための図、第5
図はこの実施例による検出例を示す図である。 1:入力端、2,2,…,2K:PRI フ
イルタ、3,3,…,3K:除算回路、4
,4,…,4K:複素三角函数演算回路、5
,5,…,5K:累積回路。
Figures 1a to 1g are diagrams showing detection examples using conventional detection methods, Figure 2 is a block diagram of an embodiment of the present invention, Figure 3 is a diagram for explaining this embodiment, and Figure 4 is a diagram showing an example of detection using a conventional detection method. Figure 5 for explaining the operation of this invention
The figure shows an example of detection according to this embodiment. 1: Input terminal, 2 1 , 2 2 ,..., 2 K : PRI filter, 3 1 , 3 2 ,..., 3 K : Division circuit, 4
1 , 4 2 ,..., 4 K : Complex trigonometric function calculation circuit, 5
1 , 5 2 ,..., 5 K : Accumulator circuit.

Claims (1)

【特許請求の範囲】 1 複数のパルス列の混在した到来パルスの到着
時刻t1,t2,…tNの測定データより、パルス間隔
n−to(但しm=2,3,…,N、n=1,
2,…,m−1)を算出し、 それらが予め設定したパルス繰返し間隔の細分
区間〔τ,τ),〔τ,τ),…,〔τk-
,τk)(但し、〔τk-1,τk)は区間τk-1≦τ
<τkを表わす)のいずれに属するかを判定し、 これらの各細分区間におけるデータに対して下
記(1)式の複素三角函数の加算式の値を演算し、 これにより得られた各細分区間の絶対値から上
記複数のパルス列の数と該各パルス列のパルス繰
返し間隔とを出力することを特徴とするパルス列
検出方法。 但し、θは2πtn/(tn−to),2πto
(tn−to),4πtn/(τk-1+τk),又は4π
o/(τk-1+τk)の何れかである。
[Claims] 1. From the measurement data of the arrival times t 1 , t 2 , ... t N of arriving pulses in which a plurality of pulse trains are mixed, the pulse interval t n -t o (where m = 2, 3, ..., N , n=1,
2,..., m-1), and these are subdivided intervals of the preset pulse repetition interval [τ 0 , τ 1 ), [τ 1 , τ 2 ),..., [τ k-
1 , τ k ) ([τ k-1 , τ k ) is the interval τ k-1 ≦τ
k ), and calculate the value of the addition formula of the complex trigonometric function in equation (1) below for the data in each of these subdivision intervals, and each subdivision obtained by this A pulse train detection method characterized by outputting the number of the plurality of pulse trains and the pulse repetition interval of each pulse train from the absolute value of the interval. However, θ is 2πt n /(t n −t o ), 2πt o /
(t n −t o ), 4πt n /(τ k-1k ), or 4π
It is either t o /(τ k-1 + τ k ).
JP15880979A 1979-12-04 1979-12-04 Pulse detection system Granted JPS5680925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15880979A JPS5680925A (en) 1979-12-04 1979-12-04 Pulse detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15880979A JPS5680925A (en) 1979-12-04 1979-12-04 Pulse detection system

Publications (2)

Publication Number Publication Date
JPS5680925A JPS5680925A (en) 1981-07-02
JPS6226603B2 true JPS6226603B2 (en) 1987-06-10

Family

ID=15679824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15880979A Granted JPS5680925A (en) 1979-12-04 1979-12-04 Pulse detection system

Country Status (1)

Country Link
JP (1) JPS5680925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189514A (en) * 2006-01-13 2007-07-26 Mitsubishi Electric Corp Signal analyzing device
JP2013156115A (en) * 2012-01-30 2013-08-15 Mitsubishi Electric Corp Signal processing apparatus, pri estimation apparatus and pri estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060239A (en) * 2007-08-30 2009-03-19 Mitsubishi Electric Corp Signal analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219991A (en) * 1975-08-07 1977-02-15 Fujitsu Ltd Pulse line frequency selection circuit
JPS54130865A (en) * 1978-03-31 1979-10-11 Fujitsu Ltd Pulse train separation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219991A (en) * 1975-08-07 1977-02-15 Fujitsu Ltd Pulse line frequency selection circuit
JPS54130865A (en) * 1978-03-31 1979-10-11 Fujitsu Ltd Pulse train separation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189514A (en) * 2006-01-13 2007-07-26 Mitsubishi Electric Corp Signal analyzing device
JP2013156115A (en) * 2012-01-30 2013-08-15 Mitsubishi Electric Corp Signal processing apparatus, pri estimation apparatus and pri estimation method

Also Published As

Publication number Publication date
JPS5680925A (en) 1981-07-02

Similar Documents

Publication Publication Date Title
JP2620492B2 (en) Pulse transit time distance measuring method and apparatus
JP6279931B2 (en) Radar device, guidance device, and radar signal processing method
JP6448827B2 (en) Radar device, guidance device, and radar signal processing method
JPH0693890B2 (en) Ultrasonic diagnostic equipment
JPH0389174A (en) Electronic measuring apparatus and estimation of frequency
US7630432B2 (en) Method for analysing the channel impulse response of a transmission channel
JPS6226603B2 (en)
JP4847466B2 (en) Apparatus and method for determining arrival time of a reception sequence
SE464434B (en) RADAR RECEIVER DEVICE WITH A MULTIPLE RECEIVER CHANNELS
JP3676283B2 (en) Pulse train detection device and pulse train detection method
US4760398A (en) Methods and apparatus for determining the differential sideband power of radar signals
JP3000823B2 (en) Ultrasound Doppler blood flow meter
JPS5863861A (en) Method and device for measuring flow through ultrasonic pulse doppler method
JPH0632448B2 (en) Y / C separation circuit
JP2574820B2 (en) Ultrasonic Palace Doppler Measurement System
JP2979001B2 (en) Apparatus for calculating spectral line amplitude of output signal of ring interferometer
US4651153A (en) Low complexity digital processor for MX security radar
JPS5875321A (en) Detector of pulse train
JP2714067B2 (en) Pulse Doppler measurement device
JP2714042B2 (en) Pulse Doppler measurement device
JP2513784B2 (en) Radar device
JPH04197248A (en) Pulse dopper measuring instrument
RU2609438C1 (en) Coherent pulsed radio signals phase meter
SU995042A1 (en) Adaptive rank finder
JP2666869B2 (en) Ghost measurement method