JP2666869B2 - Ghost measurement method - Google Patents

Ghost measurement method

Info

Publication number
JP2666869B2
JP2666869B2 JP3201535A JP20153591A JP2666869B2 JP 2666869 B2 JP2666869 B2 JP 2666869B2 JP 3201535 A JP3201535 A JP 3201535A JP 20153591 A JP20153591 A JP 20153591A JP 2666869 B2 JP2666869 B2 JP 2666869B2
Authority
JP
Japan
Prior art keywords
signal
ghost
delay time
phase
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3201535A
Other languages
Japanese (ja)
Other versions
JPH07184236A (en
Inventor
紀旦 小宮
Original Assignee
郵政省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵政省通信総合研究所長 filed Critical 郵政省通信総合研究所長
Priority to JP3201535A priority Critical patent/JP2666869B2/en
Publication of JPH07184236A publication Critical patent/JPH07184236A/en
Application granted granted Critical
Publication of JP2666869B2 publication Critical patent/JP2666869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はテレビジョンのゴース
ト測定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of television ghosts.

【0002】[0002]

【従来の技術】GCR信号を用いる従来のゴースト測定
には位相が含まれていない。
2. Description of the Related Art Conventional ghost measurements using GCR signals do not include phase.

【0003】[0003]

【発明が解決しようとする課題】GCR信号を用いたゴ
ーストの位相測定の方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring a ghost phase using a GCR signal.

【0004】[0004]

【課題を解決するための手段】直交2軸同期検波手段に
よってGCR信号の同相成分信号と直交成分信号を求
め、それぞれ差分をとって同相差分信号と直交差分信号
を求める。前記同相差分信号を実数成分とし、前記直交
差分信号を虚数成分とする複素信号を求める。前記複素
信号の絶対値の遅延プロフィールにおいて、孤立したゴ
ーストを抽出するのに十分でかつできる限り短い時間窓
を設定し、その時間窓内において前記絶対値の最大値を
与える遅延時間を求める。その最大値が予め設定した雑
音レベル以上であるときその遅延時間でゴーストが存在
するとし、その遅延時間での前記複素信号の位相をゴー
ストの位相とする。前記時間窓をGCR信号がゴースト
検出に有効な時間範囲に動かして、ゴーストを検出し同
様に位相を求める。
The in-phase and quadrature component signals of the GCR signal are obtained by the quadrature two-axis synchronous detection means, and the differences are obtained to obtain the in-phase difference signal and the quadrature difference signal. A complex signal having the in-phase difference signal as a real component and the quadrature difference signal as an imaginary component is obtained. In the delay profile of the absolute value of the complex signal, isolated GORE
A time window that is sufficient and as short as possible to extract the
Is set, and the maximum value of the absolute value is set within the time window.
Find the delay time to be given. The maximum value is set to a preset value.
Ghost exists at the delay time when the sound level is higher than the sound level
Then, the phase of the complex signal at the delay time is
The strike phase. GCR signal ghosts through the time window
Move to a valid time range to detect ghosts and
In the same way.

【0005】前記絶対値の遅延プロフィールを、移動平
均等によって平滑した遅延プロフィールを求める。この
平滑した遅延プロフィールによって、ゴーストに対応し
た遅延時間区間の前記最大絶対値を与える遅延時間を求
め、そこでの前記複素信号の位相を前記ゴーストの位相
とする。
A delay profile is obtained by smoothing the absolute value delay profile by a moving average or the like. The delay time that gives the maximum absolute value in the delay time section corresponding to the ghost is obtained from the smoothed delay profile, and the phase of the complex signal there is defined as the phase of the ghost.

【0006】通常、前記GCR信号は、色副搬送波の4
倍のサンプリング周波数(14.3MHz)でサンプリ
ングされたサンプル値で扱われる。この場合に前記複素
信号の絶対値が最大になる遅延時間は、ゴーストの遅延
時間がサンプリング周期の整数倍であるときを除いて正
確なゴーストの遅延時間を表さない。したがって14.
3MHzのサンプリング周波数で得た前記遅延時間近傍
(最大絶対値を与えるサンプル時刻と次に大きな値を与
えるサンプル時刻の間)の前記複素信号の補間を行な
い、前記最大絶対値の遅延時間をより細かく求める。
[0006] Usually, the GCR signal consists of four color subcarriers.
It is handled by the sample value sampled at the double sampling frequency (14.3 MHz). In this case, the delay time at which the absolute value of the complex signal becomes maximum does not represent an accurate ghost delay time except when the ghost delay time is an integral multiple of the sampling period. Therefore, 14.
The complex signal in the vicinity of the delay time (between the sample time giving the maximum absolute value and the sample time giving the next largest value) obtained at the sampling frequency of 3 MHz is interpolated to further reduce the delay time of the maximum absolute value. Ask.

【0007】[0007]

【作用】直交2軸同期検波したGCR信号の差分信号に
おいて、孤立した一つのゴーストに対する同相成分信号
p(t)、直交成分信号q(t)は次式となる。(t)
が明らかな場合は、式が煩雑になるのさけるために省略
することがある。
The in-phase component signal p (t) and the quadrature component signal q (t) for one isolated ghost in the differential signal of the GCR signal subjected to quadrature two-axis synchronous detection are as follows. (T)
May be omitted to avoid complicating the equation.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 p(t)を実数成分、q(t)を虚数成分とする複素信
号x(t)を定義する。
(Equation 2) A complex signal x (t) having p (t) as a real component and q (t) as an imaginary component is defined.

【0010】[0010]

【数3】 複素信号x(t)の絶対値a(t)、位相b(t)は次
式となる。
(Equation 3) The absolute value a (t) and the phase b (t) of the complex signal x (t) are as follows.

【0011】[0011]

【数4】 (Equation 4)

【0012】[0012]

【数5】 (Equation 5)

【0013】図1に単一ゴーストの各部信号波形を示
す。横軸は時間t、縦軸は信号の大きさであり、(1)
は同相成分信号p(t)、(2)は直交成分信号q
(t)、(3)は絶対値a(t)、(4)は位相b
(t)、(5)は平滑した絶対値a(t)である。中央
の垂線はゴーストの遅延時間τを示している。希望波到
達時刻を時刻基準にとると、絶対値a(t)は、位相に
よらず、t=τにおいて信号の時間広がりの範囲で最大
値を取り,h(t=τ)=0であるので、g(0)で正
規化すれば数4、5式は次式となる。
FIG. 1 shows a signal waveform of each part of a single ghost. The horizontal axis is time t, the vertical axis is the signal magnitude, and (1)
Is the in-phase component signal p (t), and (2) is the quadrature component signal q
(T) and (3) are absolute values a (t), and (4) is the phase b.
(T) and (5) are smoothed absolute values a (t). The vertical line in the center indicates the ghost delay time τ. Taking the arrival time of the desired wave as a time reference, the absolute value a (t) takes the maximum value within the time spread range of the signal at t = τ, regardless of the phase, and h (t = τ) = 0. Therefore, if normalized by g (0), the equations (4) and (5) become the following equations.

【0014】[0014]

【数6】 (Equation 6)

【0015】[0015]

【数7】 (Equation 7)

【0016】すなわち、絶対値最大遅延時間がゴースト
の遅延時間τを与え、その遅延時間での絶対値、位相が
それぞれゴーストの比強度r、位相φを与える。
That is, the absolute value maximum delay time gives the ghost delay time τ, and the absolute value and phase at that delay time give the ghost specific intensity r and phase φ, respectively.

【0017】図1(3)に示す絶対値a(t)のゴース
ト周辺の遅延プロフィールは、GCR差分信号自身のエ
ネルギーが集中する信号広がりLのなかで、極大値が3
つ存在する。ゴーストの真の遅延時間は信号広がりLの
中で絶対値の最大値を与える遅延時間である。絶対値を
移動平均によって平滑した波形amが図1(5)であ
り、最大値を挟む2つの谷が消滅している。この事から
平滑した絶対値の信号広がりLのなかで極大値が最大値
となり、極大位置探査の手法によって、最大位置が求ま
る。
The delay profile around the ghost of the absolute value a (t) shown in FIG. 1 (3) has a maximum value of 3 in the signal spread L in which the energy of the GCR difference signal itself is concentrated.
Exist. The true delay time of the ghost is a delay time giving the maximum value of the absolute value in the signal spread L. A waveform am in which the absolute value is smoothed by the moving average is shown in FIG. 1 (5), and two valleys sandwiching the maximum value have disappeared. From this, the maximum value becomes the maximum value in the smoothed signal spread L of the absolute value, and the maximum position is obtained by the method of searching for the maximum position.

【0018】実際の測定ではp、qはサンプル値であ
り、ゴーストの遅延時間がサンプリング周期の整数倍、
あるいはそれに近い時を除いて、a(t)の補間によっ
て精密に絶対値最大の遅延時間を求めないとh(t=
τ)≠0となって位相測定誤差になる。例えばサンプリ
ング周波数14.3MHzでは、1サンプル期間内で生
じる位相誤差の最悪値は±90度(比強度の測定誤差は
1.3dB)となるので、1サンプル周期を9以上分割
したサンプル点の補間をすることによって測定誤差を1
0度以内に収めることができる。
In the actual measurement, p and q are sample values, and the ghost delay time is an integral multiple of the sampling period.
Alternatively, except when the delay time is close to that, h (t =
τ) ≠ 0, resulting in a phase measurement error. For example, at a sampling frequency of 14.3 MHz, the worst value of the phase error generated within one sample period is ± 90 degrees (the measurement error of the specific intensity is 1.3 dB), so interpolation of sample points obtained by dividing one sample period by 9 or more is performed. The measurement error by 1
It can fit within 0 degrees.

【0019】[0019]

【実施例】図2は、本発明方法を適用するゴースト測定
の実施例のブロック図であって、1はアンテナ、2は直
交2軸同期検波機能を持ったテレビジョン受像機、Pは
同相成分信号、Qは直交成分信号、3はP用GCR信号
抽出・差分器、4はQ用GCR信号抽出・差分器、pは
GCR差分信号の同相成分信号、qはGCR差分信号の
直交成分信号、5はゴースト・パラメータを求める信号
処理部で、GCR差分信号p、qから複素信号、その絶
対値、最大絶対値を与える遅延時間、比強度、位相を求
める。
FIG. 2 is a block diagram of an embodiment of a ghost measurement to which the method of the present invention is applied, wherein 1 is an antenna, 2 is a television receiver having a quadrature two-axis synchronous detection function, and P is an in-phase component. Signal, Q is a quadrature component signal, 3 is a GCR signal extractor / differentiator for P, 4 is a GCR signal extractor / differentiator for Q, p is an in-phase component signal of a GCR differential signal, q is a quadrature component signal of a GCR differential signal, Reference numeral 5 denotes a signal processing unit for obtaining a ghost parameter, which obtains a complex signal, its absolute value, a delay time for giving a maximum absolute value, a specific intensity, and a phase from the GCR difference signals p and q.

【0020】テレビジョン電波をアンテナ1で受け、直
交2軸同期検波機能を持つテレビジョン受像機2で同相
成分信号Pと直交成分信号Qを得る。ここでP,Qは1
4.3MHzでサンプリングされているとする。また信
号対雑音比を改善するために同期加算を行うとよい。そ
れらの信号P、QからGCR信号抽出・差分器3,4に
よって、8フィールドシーケンスのGCR信号ラインか
らGCR信号を抽出し、差分して、図1に示す同相GC
R差分信号pと直交GCR差分信号qをそれぞれ求め
る。
A television wave is received by an antenna 1, and an in-phase component signal P and a quadrature component signal Q are obtained by a television receiver 2 having a quadrature two-axis synchronous detection function. Where P and Q are 1
It is assumed that sampling is performed at 4.3 MHz. In addition, synchronous addition may be performed to improve the signal-to-noise ratio. GCR signals are extracted from the GCR signal lines of the 8-field sequence by the GCR signal extraction / differentiators 3 and 4 from the signals P and Q, and the GCR signals are subtracted.
An R difference signal p and an orthogonal GCR difference signal q are obtained respectively.

【0021】信号処理部5は差分信号p、qをそれぞれ
実数成分と虚数成分とする複素信号xを用いて、絶対値
の遅延プロフィールを求める。絶対値があらかじめ設定
したレベルN、例えば測定系の雑音レベルを越える遅延
時間区間がゴーストUの存在を示す。その遅延時間区間
で絶対値の最大値を与えるサンプル時刻と次に大きい絶
対値のサンプル時刻の間を、例えばサンプリング定理を
用いて補間する。位相測定誤差を10度程度におさえる
のであればサンプリング周期を9分割以上の点で複素信
号xを補間し、絶対値aを求める。補間された絶対値が
最大になる遅延時間における複素信号の位相をゴースト
の位相とする。絶対値最大値遅延時間を求める際には、
図1(3)に示すようにaの対称性を利用したり、位相
φを求める際には、位相の遅延時間の直線的変化を利用
すると、雑音による測定誤差を減らすことできる。
The signal processing unit 5 obtains a delay profile of an absolute value by using a complex signal x having the real signals and the imaginary components of the differential signals p and q, respectively. A delay time section whose absolute value exceeds a preset level N, for example, a noise level of the measurement system, indicates the presence of the ghost U. Interpolation is made between the sample time giving the maximum absolute value and the sample time with the next largest absolute value in the delay time section using, for example, the sampling theorem. If the phase measurement error is suppressed to about 10 degrees, the absolute value a is obtained by interpolating the complex signal x at a point where the sampling period is divided into nine or more. The phase of the complex signal at the delay time at which the interpolated absolute value becomes the maximum is defined as the ghost phase. When calculating the absolute maximum delay time,
Or using the symmetry of a as shown in FIG. 1 (3), when obtaining the phase φ is, the use of linear change in the phase delay time can reduce the measurement error due to noise.

【0022】図3は絶対値の遅延プロフィールの実測例
である。遅延時間0近傍は希望信号D自体の持つ信号広
がりによって覆われている。17μs遅延時間に約−2
0dBのゴーストUがある。本発明の方法によれば位相
は−140度であった。孤立した複数のゴーストがある
場合には、絶対値の遅延プロフィールからそれぞれのゴ
ーストを分離し、個々のゴーストに関して、上記の方法
で位相を求めればよい。例えば図3において、Dの右側
に近接してレベルNを越える、いくつかの遅延時間区間
があるが、レベルNを変えてゴースト領域を分離し、そ
れぞれについて絶対値最大遅延時間を求め、位相を求め
ればよい。
FIG. 3 is an actual measurement example of the absolute value delay profile. The vicinity of the delay time 0 is covered by the signal spread of the desired signal D itself. Approximately -2 to 17 μs delay time
There is a ghost U of 0 dB. According to the method of the present invention, the phase was -140 degrees. When there are a plurality of isolated ghosts, each ghost may be separated from the delay profile of the absolute value, and the phase of each ghost may be obtained by the above method. For example, in FIG. 3, there are several delay time sections that exceed level N in the vicinity of the right side of D, and ghost areas are separated by changing level N, the absolute value maximum delay time is obtained for each, and the phase is changed. Just ask.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、G
CR差分信号の同相成分信号と直交成分信号とをそれぞ
れ実数成分と虚数成分とする複素信号を用いて、その絶
対値の最大値を与える遅延時間を補間によって精密に求
め、その遅延時間での複素信号の位相を求めることによ
って、ゴーストの位相測定が可能になった。これによっ
てゴーストの遅延時間も正確に測定できる。
As described above, according to the present invention, G
Using a complex signal having a real component and an imaginary component of the in-phase component signal and the quadrature component signal of the CR difference signal, a delay time that gives the maximum value of the absolute value is accurately obtained by interpolation, and the complex time at the delay time is calculated. By determining the phase of the signal, the ghost phase can be measured. As a result, the ghost delay time can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を説明するための単一のゴースト
の各種波形である。
FIG. 1 shows various waveforms of a single ghost for explaining the method of the present invention.

【図2】本発明の方法を説明するためのゴースト測定装
置のブロック図である。
FIG. 2 is a block diagram of a ghost measuring device for explaining the method of the present invention.

【図3】本発明の方法を説明するためのゴーストの遅延
プロフィール図である。
FIG. 3 is a ghost delay profile diagram for explaining the method of the present invention.

【符号の説明】[Explanation of symbols]

p 同相検波信号 q 直交検波信号 g GCR差分信号の同相成分 gc GCR差分信号の同相成分信号のゴースト位相に
よる余弦 gs GCR差分信号の同相成分信号のゴースト位相に
よる正弦 h GCR差分信号の直交成分 hc GCR差分信号の直交成分信号のゴースト位相に
よる余弦 hs GCR差分信号の直交成分信号のゴースト位相に
よる正弦 L GCR差分信号のエネルギーが集中する時間範囲 am 平滑された絶対値 1 アンテナ 2 直交2軸同期検波機能を持つテレビジョン受像機 P 同相成分信号 Q 直交成分信号 3 同相成分信号用GCR信号抽出・差分器 4 直交成分信号用GCR信号抽出・差分器 5 信号処理部 D 希望波 U 測定対象のゴースト N ゴーストを探すためにあらかじめ設定したレベル
p In-phase detection signal q Quadrature detection signal g In-phase component of GCR difference signal gc Cosine by ghost phase of in-phase component signal of GCR difference signal gs Sine by ghost phase of in-phase component signal of GCR difference signal h Quadrature component of GCR difference signal hc GCR Cosine of ghost phase of orthogonal component signal of differential signal hs Sine of ghost phase of orthogonal component signal of GCR differential signal L Time range in which energy of GCR differential signal is concentrated am Smoothed absolute value 1 Antenna 2 Quadrature two-axis synchronous detection function Television receiver having in-phase P In-phase component signal Q Quadrature component signal 3 GCR signal extraction / differentiator for in-phase component signal 4 GCR signal extraction / differentiator for quadrature component signal 5 Signal processing unit D Desired wave U Ghost to be measured N Ghost Preset level to look for

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直交2軸同期検波手段によって得たGC
R信号の同相成分信号と直交成分信号のそれぞれの差分
信号である同相差分信号と直交差分信号を実数成分と虚
数成分とする複素信号の絶対値を遅延時間との関係にお
いて示す遅延プロフィールにおいて、 前記絶対値が、雑音レベルより高く設定したレベルを越
えるゴースト存在部分の遅延時間区間のなかで最大値を
与える遅延時間をゴーストの遅延時間とし、 その遅延時間での前記複素信号の位相をゴーストの位相
とする ことを特徴とするゴースト測定方法。
1. A GC obtained by orthogonal two-axis synchronous detection means.
The absolute value of a complex signal having a real component and an imaginary component of the in-phase difference signal and the quadrature difference signal, which are the difference signals of the in-phase component signal and the quadrature component signal of the R signal, is represented by the relationship between the delay time.
In the delay profile shown, the absolute value exceeds a set level higher than the noise level.
The maximum value in the delay time section of the ghost existence part
The given delay time is a ghost delay time, and the phase of the complex signal at the delay time is the ghost phase.
A ghost measurement method, characterized in that:
【請求項2】 請求項1における絶対値の遅延プロフィ
ールにおいて、平滑した遅延プロフィールを用いること
を特徴とする請求項1のゴースト測定方法
2. The ghost measurement method according to claim 1, wherein a smoothed delay profile is used in the absolute value delay profile.
【請求項3】 請求項1,2の複素信号の絶対値の最大
値を与える遅延時間を精密に求めるために、前記複素信
号の遅延時間軸上での補間を行うことを特徴とする請求
項1,2記載のゴースト測定方法
3. The method according to claim 1, wherein the complex signal is interpolated on the delay time axis in order to accurately determine the delay time that gives the maximum value of the absolute value of the complex signal. The ghost measurement method described in 1 or 2.
JP3201535A 1991-05-13 1991-05-13 Ghost measurement method Expired - Lifetime JP2666869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201535A JP2666869B2 (en) 1991-05-13 1991-05-13 Ghost measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201535A JP2666869B2 (en) 1991-05-13 1991-05-13 Ghost measurement method

Publications (2)

Publication Number Publication Date
JPH07184236A JPH07184236A (en) 1995-07-21
JP2666869B2 true JP2666869B2 (en) 1997-10-22

Family

ID=16442663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201535A Expired - Lifetime JP2666869B2 (en) 1991-05-13 1991-05-13 Ghost measurement method

Country Status (1)

Country Link
JP (1) JP2666869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452325A (en) * 2022-08-31 2022-12-09 歌尔股份有限公司 Optical module ghost detection method, detection device and medium

Also Published As

Publication number Publication date
JPH07184236A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
US5874916A (en) Frequency selective TDOA/FDOA cross-correlation
US5075619A (en) Method and apparatus for measuring the frequency of a spectral line
CN104764407B (en) A kind of fine measuring method of thickness of cable sheath
US6646601B2 (en) Direction finding method
US4686457A (en) Method for measuring a signal's frequency components
CN112098970A (en) Speed ambiguity resolving algorithm for traffic microwave detection and related equipment
CN110554378A (en) Single-channel Doppler radar radial motion direction identification method and device
JP2666869B2 (en) Ghost measurement method
US6577968B2 (en) Method of estimating signal frequency
CN110855382A (en) Method and device for detecting human body activity data based on CSI (channel State information), and electronic equipment
CN108718223B (en) Blind spectrum sensing method for non-cooperative signals
JP4827330B2 (en) Radar wave measuring method and apparatus
CN109358324B (en) Target detection method based on ground monitoring radar spectrum data
US7092456B2 (en) Process for synchronization
CN114442034A (en) Positioning method and device based on hyperbolic TDOA and computer readable storage medium
JPH05188145A (en) Method and apparatus for extracting phase error caused by atmosphere in backward scattering signal of interference-type image radar system mounted on carrier out of raw radar data
JP2003502678A (en) Analysis method of correlation in phase domain
JPH0341796B2 (en)
JP2692718B2 (en) Simple ghost measurement method
CN107783097B (en) Target pairing and data processing platform
Mohammed et al. Novel Signal Processing Techniques for Detecting and Minimizing Skywave Interference in Loran‐C Receivers
JPH0693017B2 (en) Passive ranging system
JPH06242228A (en) Radar apparatus
WO2001025816A1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
CN110187346B (en) Foundation SAR gross error detection method under complex working conditions

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term