JPS62265555A - Local structure analyzing device - Google Patents

Local structure analyzing device

Info

Publication number
JPS62265555A
JPS62265555A JP61107617A JP10761786A JPS62265555A JP S62265555 A JPS62265555 A JP S62265555A JP 61107617 A JP61107617 A JP 61107617A JP 10761786 A JP10761786 A JP 10761786A JP S62265555 A JPS62265555 A JP S62265555A
Authority
JP
Japan
Prior art keywords
sample
ray
wavelength
exafs
varied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107617A
Other languages
Japanese (ja)
Inventor
Shigeru Yasuami
安阿弥 繁
Seizo Doi
清三 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61107617A priority Critical patent/JPS62265555A/en
Publication of JPS62265555A publication Critical patent/JPS62265555A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure EXAFS in an optional extremely small area by converging and using in-phase light from a Fresnel ring plate as the incident X ray of an EXAFS method. CONSTITUTION:A white X-ray beam 1 is made homogeneous by a mono- chromator and converged by the Fresnel ring plate 4 on a specific position in the surface and depth directions of a sample 5 to be inspected. A solid-state detector 6 is placed opposite the incidence surface of the sample and a fluorescent X ray from an aimed atom is measured by a multichannel analyzer 7 and recorded on a recorder 8. Then, the oscillation item of a spectrum is processed by Fourier transformation to find the kind, number, distance, etc., of atoms around the aimed atom. When the wavelength of the beam 3 is varied, the sample position is moved relatively to the Fresnel ring plate [distance (x) is varied] to hold an irradiation position constant while the wavelength is varied.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、蛍光X線若しくは、オージェ電子髪検出す
ることにより微細領域における所定の構成元素のまわり
の局所構造を解析することのできるE X A F S
 (Extended Xrt+y Absorpti
on FineStructura)法による局所構造
解析装置に関する。
[Detailed description of the invention] [Objective of the invention] (Industrial application field) This invention analyzes the local structure around a predetermined constituent element in a micro region by detecting fluorescent X-rays or Auger electron hair. E X A F S that can be done
(Extended Xrt+y Absorpti
The present invention relates to a local structure analysis device using the FineStructura method.

(従来の技術) 分子から固体に到るまで、注「1する原子のまわりに存
在する原子の種類、数、配位、距離等の局所構造を解析
する手段として近年E X A F S ’thが注目
されている。半導体産業で重要な材料のうち長範囲の周
期性を持つ、結晶、例えばシリコン。
(Prior art) In recent years, E Among the important materials in the semiconductor industry, crystals with long-range periodicity, such as silicon, are attracting attention.

GaAsに対しては、回折(X線、電子線、中性子等)
という有力な構造解析手段がある。しかしながら、固溶
体、非晶質といった周期性を持たない均質の構造を解析
することは従来、殆んど不可能であった。EXAFS法
の開発により、任意の物質に対して、任意の構成原子ま
わりの局所構造を非破壊で解析することが可能になった
For GaAs, diffraction (X-ray, electron beam, neutron, etc.)
There is a powerful structural analysis method. However, it has been almost impossible to analyze homogeneous structures without periodicity, such as solid solutions and amorphous structures. The development of the EXAFS method has made it possible to non-destructively analyze the local structure around any constituent atoms of any substance.

この方法は、試料に単色化されたxL;Aを入射し。In this method, monochromated xL;A is incident on the sample.

その波長を連続的に変えることにより、注目する原子の
吸収端、例えばに吸収端から高エネルギー側に現われる
X線吸収の微細構造スペクトルをt1g定し、その振動
スペクトルのフーリエ変換から?を目する原子のまわり
の最近接、第2近接原子の種類、数、配位距離等を求め
る構造解析法である。
By continuously changing the wavelength, the absorption edge of the atom of interest, for example, the fine structure spectrum of X-ray absorption that appears on the high energy side from the absorption edge, is determined by t1g, and from the Fourier transform of the vibrational spectrum? This is a structural analysis method that determines the type, number, coordination distance, etc. of the nearest and second neighboring atoms around the target atom.

従って半導体の場合には、従来不可能であった非lI&
質シリコン中のシリコンのまわりのシリコンの数、配位
、シリコン間の距離、或いは水素の添加によるこれ等の
変化、或いはパシベーションに広く用いられている。 
Sj、21 Si3N4中のSiのまわりの構造解析が
可能になった。この結果デバイズ或いはプロセス評価法
としてEXAFSの活用が考えられる。
Therefore, in the case of semiconductors, non-I&
It is widely used for changing the number of silicon around silicon in silicon, coordination, distance between silicon, or these changes by adding hydrogen, or for passivation.
Sj, 21 Structural analysis around Si in Si3N4 has become possible. As a result, EXAFS can be considered as a device or process evaluation method.

又、オプトエレクトロニクス、超高速デバイス用材料と
して重要な■−■族化合物液晶薄膜においては、その組
成の均一性が要求される。ウェハ面内で結晶組成がゆら
ぐことによりそれを用いて作成する半導体レーザの発振
波長が定まらない等の問題があり、EXAFSに期待す
るところは大きい。
In addition, compositional uniformity is required for liquid crystal thin films of group 1-2 compounds, which are important as materials for optoelectronics and ultrahigh-speed devices. There are problems such as the fluctuation of the crystal composition within the wafer plane, such as the inability to determine the oscillation wavelength of the semiconductor laser produced using it, so there are great expectations for EXAFS.

しかしながら、従来のEXAFS法は、局所構造は求め
られるが、照射X線ビーム自体の径が数mm中あるので
、この照射域に存在する。注目する原子のまわりの局所
構造が平均として得られる。
However, in the conventional EXAFS method, although the local structure is determined, the diameter of the irradiated X-ray beam itself is within several mm, so the structure exists in this irradiation area. The local structure around the atom of interest is obtained as an average.

従って真に局所構造が求められる訳ではない。Therefore, a true local structure is not required.

(発明が解決しようとする問題点) そこで可能な限り照射ビームサイズを小さくすることが
望まれる。現在する最も強力なアンジュレータからのシ
ンクロトロン放射光をスリン1へ等で絞って用いても、
S/Nが悪くなる。或いはS/Nを向上させると測定時
間が長くなる等の問題が生じる。又、集光装置を用いな
いので測定域はX線の吸収係数ビームサイズによって決
まる。本発明の目的は上述の点に鑑み、集光装置を用い
て微小領域に強力なX線を照射することにより、微細領
域の局所構造解析が可能なEXAFS装置を提供するこ
とにある。
(Problems to be Solved by the Invention) Therefore, it is desirable to reduce the irradiation beam size as much as possible. Even if we narrow down the synchrotron radiation from the most powerful undulator to Surin 1 and use it,
S/N deteriorates. Alternatively, if the S/N ratio is improved, problems such as a longer measurement time may arise. Furthermore, since no condensing device is used, the measurement range is determined by the X-ray absorption coefficient beam size. In view of the above-mentioned points, an object of the present invention is to provide an EXAFS apparatus capable of analyzing the local structure of a minute area by irradiating the minute area with powerful X-rays using a condenser.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 現存する全ての物質のX線に対する屈折率は1より10
−5程度小さい、このために、可視光のそれに対応する
有効な集光レンズを作成することはできない、これに代
る集光光学素子として本提案ではフレネル輪帯板を用い
る。フレネル輪帯板は使用光に対する吸収領域と透過領
域が交互に同心円に配置された円板である。これにより
位相の合った波のみをたし合わせることができるので透
過域の数をΩとすれば光の強度は22倍になる。n番目
の円の半径Rnが +1n = (nfλN/2       Q)を満た
す様に描かれていると、波長λに対してfが焦点距離と
なる。従ってフレネル輪帯板のfに波長λに反比列する
。試料とフレネル輪帯板の間隔を(1)式に従って変化
させることにより異ったエネルギ(波長)の光を試料の
一定の位置に集光することができる。
(Means for solving the problem) The refractive index of all existing substances for X-rays is between 1 and 10.
-5, which makes it impossible to create an effective condensing lens corresponding to that of visible light.In this proposal, a Fresnel zone plate is used as an alternative condensing optical element. A Fresnel zone plate is a disk in which absorption areas and transmission areas for the light used are alternately arranged in concentric circles. This allows only waves that are in phase to be added together, so if the number of transmission regions is Ω, the intensity of light will be 22 times greater. When the radius Rn of the n-th circle is drawn so as to satisfy +1n = (nfλN/2 Q), f becomes the focal length for the wavelength λ. Therefore, f of the Fresnel zone plate is inversely proportional to the wavelength λ. By changing the distance between the sample and the Fresnel zone plate according to equation (1), it is possible to focus light of different energies (wavelengths) on a fixed position on the sample.

(作  用) 前述のフレネル輪帯板は0式から明らかな様に、波長(
エネルギ)により焦点距離が変化する。従って試料の表
面上の任意の位置、そしてその位置において任意の深さ
に常に焦点を結ぶためには試料位置をフレネル輪帯板に
対して相対的に移動する必要がある。こうすることによ
り、波長を変化させつ\照射位置を一定に保つことがで
きる。こうして試料の所定の微小部分に、波長を所定の
、は原子の吸収端近傍で変化させて蛍光XRIAM或い
はオージェ電子量を測定することによりEXAFSスペ
ク1−ルを求め、その振動部のフーリエ変換により微小
領域の局所構造解析が求められる。
(Function) As is clear from formula 0, the Fresnel zone plate mentioned above has a wavelength (
The focal length changes depending on the energy (energy). Therefore, in order to always focus on an arbitrary position on the surface of the sample and at an arbitrary depth at that position, it is necessary to move the sample position relative to the Fresnel zone plate. By doing this, the irradiation position can be kept constant while changing the wavelength. In this way, the EXAFS spectrum is obtained by measuring the amount of fluorescent XRIAM or Auger electrons in a predetermined minute part of the sample while changing the wavelength at a predetermined value near the atomic absorption edge, and by Fourier transform of the vibrating part. Local structural analysis of minute regions is required.

(実 施 例) 第1図に本装置の概略を示す。符号1で示す白色X線ビ
ーム、例えばアンジュレータからのシンクロトロン放線
X線はモノクロメータ或いは回折格子2により単色化さ
れる。この回折格子2を紙面に垂直な軸のまわりに回転
することにより、試料に入射するビーム3の波長λは連
続的に変えられる。
(Example) Figure 1 shows an outline of this device. A white X-ray beam denoted by 1, for example synchrotron radiation X-rays from an undulator, is made monochromatic by a monochromator or a diffraction grating 2. By rotating this diffraction grating 2 around an axis perpendicular to the plane of the paper, the wavelength λ of the beam 3 incident on the sample can be continuously changed.

今、シリコンのに吸収端、〜1 、84eVに注目する
と、波長は〜6.74人となる。この時吸収は最大とな
り高エネルギ側で振動をしながら減衰する。一般にEX
AFSスペクトルは吸収端から高エネルギ側に200〜
300eV測定する。−200eV離れた点では波長は
〜6.08人となる。これに対応するフレネル輪帯板4
−試料5の距HA (x )の変化は1.84cVに対
してf=lo口とすると+1.086■となるxti−
変化させることにより試料中の一点を保つことができる
Now, if we focus on the absorption edge of silicon, ~1,84 eV, the wavelength will be ~6.74 eV. At this time, absorption reaches its maximum and is attenuated while vibrating on the high energy side. Generally EX
The AFS spectrum is 200~ from the absorption edge to the high energy side.
Measure 300eV. At a point -200 eV away, the wavelength is ~6.08 people. Corresponding Fresnel ring plate 4
-The change in the distance HA (x) of sample 5 is +1.086■ for 1.84cV xti-
By changing it, one point in the sample can be maintained.

試料入射面に対向して固体検出器6を置き多チャンネル
分析器7で注目する原子からの蛍光X線を計測し、記録
計8に記録する。
A solid-state detector 6 is placed opposite the sample entrance surface, and a multi-channel analyzer 7 measures fluorescent X-rays from atoms of interest, which are recorded on a recorder 8.

しかる後に、スペクトルの振動項をフーリエ変換し注目
する原子のまわりの原子の種類、数、距離等が求められ
る。
Thereafter, the vibration term of the spectrum is Fourier transformed to determine the type, number, distance, etc. of atoms surrounding the atom of interest.

蛍光X線ではなくオージェ電子を検出する場合には、固
体検出器の代りに電子エネルギ分析器を用いれば良い。
When detecting Auger electrons instead of fluorescent X-rays, an electron energy analyzer may be used instead of a solid state detector.

〔発明の効果〕〔Effect of the invention〕

本発明によって以下の効果が得られる。 The present invention provides the following effects.

1)入射X線としてフレネル輪帯板がらの位相の合った
光を集光して用いることにより、少くとも一以下の領域
で従来の平行光、例えばシンクロトロン放射光の数10
〜数100倍の強度のX線が得られる。
1) By condensing and using phase-matched light from a Fresnel zone plate as incident X-rays, conventional parallel light, such as synchrotron radiation, can be used in at least one area or less
X-rays with intensity up to several hundred times higher can be obtained.

2)強力なXX1Aが集光されることにより任意の微小
領域のEXATSが測定可能となり局所構造解析が可能
となる。
2) By condensing the powerful XX1A, EXATS in any minute region can be measured and local structure analysis becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す概略図である。 1・・・白色X線ビーム 2・・・モノクロメータ若しくは回折格子3・・・単色
X線ビーム 4・・・フレネル輪帯板 5・・・被検試料 6・・・固体検出器 7・・・多チャンネル分析器 8・・・記録計。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 is a schematic diagram showing the configuration of the present invention. 1... White X-ray beam 2... Monochromator or diffraction grating 3... Monochromatic X-ray beam 4... Fresnel zone plate 5... Test sample 6... Solid state detector 7...・Multi-channel analyzer 8...Recorder. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] 入射白色X線光を分光する分光器と、分光された光を被
検試料の表面上、及び深さ方向の所定の位置に集光する
フレネル輪帯板と、試料移動台とから成り被検試料中の
注目する原子の吸収端近傍において該原子の共鳴吸収を
励起するX線入射系と、励起された蛍光X線、もしくは
、オージュ電子を検出する検出系とから成るEXAFS
による局所構造解析装置。
It consists of a spectroscope that spectrally separates the incident white X-ray light, a Fresnel zone plate that focuses the spectrally spectrally separated light on the surface of the test sample and at a predetermined position in the depth direction, and a sample moving table. EXAFS consists of an X-ray incidence system that excites resonance absorption of atoms of interest in the sample near their absorption edges, and a detection system that detects excited fluorescent X-rays or Auger electrons.
local structure analysis device.
JP61107617A 1986-05-13 1986-05-13 Local structure analyzing device Pending JPS62265555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107617A JPS62265555A (en) 1986-05-13 1986-05-13 Local structure analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107617A JPS62265555A (en) 1986-05-13 1986-05-13 Local structure analyzing device

Publications (1)

Publication Number Publication Date
JPS62265555A true JPS62265555A (en) 1987-11-18

Family

ID=14463715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107617A Pending JPS62265555A (en) 1986-05-13 1986-05-13 Local structure analyzing device

Country Status (1)

Country Link
JP (1) JPS62265555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055679A (en) * 1989-01-06 1991-10-08 Hitachi, Ltd. Surface analysis method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055679A (en) * 1989-01-06 1991-10-08 Hitachi, Ltd. Surface analysis method and apparatus

Similar Documents

Publication Publication Date Title
US4169228A (en) X-ray analyzer for testing layered structures
US5132997A (en) X-ray spectroscopic analyzing apparatus
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
JPH08184572A (en) Total-reflection x-ray analytical apparatus
JP6142135B2 (en) Obliquely incident X-ray fluorescence analyzer and method
Nanba et al. Far-infrared spectroscopy by synchrotron radiation at the UVSOR Facility
US6628748B2 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
JPS62265555A (en) Local structure analyzing device
JPH08313458A (en) X-ray equipment
JPH05196583A (en) Total reflection x-ray analyzer
JP5332801B2 (en) Sample analyzer and sample analysis method
EP0697109B1 (en) X-ray spectrometer with a grazing take-off angle
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
JPH04164239A (en) Powder x-ray diffraction meter
JPH033946B2 (en)
JPS6353457A (en) 2-d scan type state analyzer
JPS62293733A (en) Measuring method for solid state property of semiconductor
WO2003081222A1 (en) Screening of combinatorial library using x-ray analysis
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JPH03188362A (en) Microstructure evaluating apparatus
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
JPH04184155A (en) Total reflection spectrum measuring device
JPH0694653A (en) X-ray analyzer
JPH07120417A (en) Fluorescent x-ray analysis device
JP2002116159A (en) X-ray structure analyzer for thin-film process