JPH03188362A - Microstructure evaluating apparatus - Google Patents

Microstructure evaluating apparatus

Info

Publication number
JPH03188362A
JPH03188362A JP1328663A JP32866389A JPH03188362A JP H03188362 A JPH03188362 A JP H03188362A JP 1328663 A JP1328663 A JP 1328663A JP 32866389 A JP32866389 A JP 32866389A JP H03188362 A JPH03188362 A JP H03188362A
Authority
JP
Japan
Prior art keywords
rays
energy
sample
electron beam
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1328663A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1328663A priority Critical patent/JPH03188362A/en
Publication of JPH03188362A publication Critical patent/JPH03188362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to analyze a structure highly accurately by using the electron beam from an electron gun having the high controllability of energy values together with high-resolution X rays from an X-ray source, and projecting the X rays and the electron beams on the same place of a sample at the same time. CONSTITUTION:An electron beams 7 is projected on a sample 1 in a vaccum state. The position on which the electron beam is projected is set at the same position on which X rays are applied. The energy of the electron beam 7 from the electron gun 5 is controlled. The X rays 2 are changed from the energy which is slightly lower than that at an absorbing end to the energy which is higher by about 1 keV and applied on the sample 1. The detection is performed with an X-ray detector 8 under the controlled state wherein the energy of the electron beam 7 and the energy of the X ray 2 are completely equal. When the X rays 2 having high resolution and the highly controllable electron beam 7 are applied on the same place in this way, sufficient measurement result is obtained even if the intensity of the X rays 2 is low.

Description

【発明の詳細な説明】 技術分野 本発明は、物質の原子的微細構造、特に1μm以下の薄
膜構造を明らかにするための微細構造評価装置に関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a microstructure evaluation device for elucidating the atomic microstructure of a substance, particularly the structure of a thin film of 1 μm or less.

従来技術 従来、物質の局所構造を解析する手法として、拡張X線
吸収微細構造(Extended X−rayAbso
rption Fine 5tructure1以下、
” E X AFS”と略す)法が提案され、実施され
ている。
BACKGROUND ART Conventionally, as a method for analyzing the local structure of materials, extended X-ray absorption fine structure (Extended X-ray absorption
rption Fine 5structure1 or less,
(abbreviated as "EX AFS") has been proposed and is being implemented.

これは、試料に単色化されたX線を入射し、その波長を
連続的に変えることにより、注目する原子の吸収端、例
えばに吸収端から高エネルギー側に現われるX線吸収の
微細構造スペクトルを測定し、その振動スペクトルのフ
ーリエ変換から、注目する特定原子の周りの動径分布、
即ち、最近接、第2近接原子の種類、数、配位等を求め
るという構造解析法である。即ち、X線吸収スペクトル
の内殻吸収端から約1keV程度高エネルギー側まで連
続して観察される吸収の細かい振動であり、古くから知
られていた現象ではあるが、フーリエ変換を用いて解析
しEXAFSから吸収原子の周りの短距離原子配列に関
する知見が得られることが解明されてから、急に実用化
されるようになったものである。
This method involves injecting monochromatic X-rays into a sample and continuously changing its wavelength to obtain the fine structure spectrum of the X-ray absorption that appears from the absorption edge of the target atom, such as the absorption edge on the high energy side. From the Fourier transform of the vibrational spectrum measured, the radial distribution around the specific atom of interest,
That is, it is a structural analysis method that determines the type, number, coordination, etc. of the nearest neighbor and second neighbor atoms. In other words, it is a fine oscillation of absorption that is observed continuously from the core absorption edge of the X-ray absorption spectrum to the high energy side of about 1 keV, and although it is a phenomenon that has been known for a long time, it can be analyzed using Fourier transform. After it was discovered that EXAFS can provide knowledge about short-range atomic arrangements around absorbing atoms, it suddenly came into practical use.

このようなEXAFSによる構造解析においては試料に
入射するX線源として放射光(SOR)を用いることが
多いが、近年では、より簡便に実験を行うために実験室
内においてローターターゲットを用いたEXAFSの測
定が多く行われるようになっている。
In structural analysis using EXAFS, synchrotron radiation (SOR) is often used as the X-ray source that enters the sample, but in recent years, EXAFS using a rotor target in the laboratory has been developed to make experiments easier. More and more measurements are being taken.

発明が解決しようとする課題 ところが、この場合、放射光の1000〜10000分
の1の光線強度となるために、X線の強度と分解能とを
両立させるのが困難である、という課題が基本的に発生
する。X線強度を上げるためには例えばLiF (20
0)等のわん曲結晶を用いる、といった方法があるが、
何れも、必ずX線の単色性=分解能を低下させてしまう
ものである。よって、ローターターゲットを用いた実験
室系EXAFS装置では、1週間連続測定するといった
方法もとられているが、未だに十分とはいえない現状に
ある。
Problem to be Solved by the Invention However, in this case, the light intensity is 1/1000 to 10,000 of that of synchrotron radiation, so the fundamental problem is that it is difficult to achieve both X-ray intensity and resolution. occurs in In order to increase the X-ray intensity, for example, LiF (20
There is a method such as using a curved crystal such as 0),
In either case, the monochromaticity of X-rays (resolution) is inevitably reduced. Therefore, in a laboratory EXAFS apparatus using a rotor target, a method of continuous measurement for one week has been adopted, but the current situation is still not sufficient.

課題を解決するための手段 X線を発生するX線源と、試料に照射させるX線のエネ
ルギーを変化させるモノクロメータと、前記試料を真空
中に保持する試料ホルダと、前記試料を透過し又は反射
されたX線を検出するX線検出器との他に、試料ホルダ
に固定されて試料のX線と同一個所に電子線を照射する
電子銃を設けた。
Means for Solving the Problems An X-ray source that generates X-rays, a monochromator that changes the energy of the X-rays irradiated onto a sample, a sample holder that holds the sample in vacuum, and a In addition to an X-ray detector that detects reflected X-rays, an electron gun was provided that was fixed to the sample holder and irradiated an electron beam onto the same area of the sample as the X-rays.

作用 高分解能のX線とともに、エネルギー値の制御性が極め
て高い電子線を用い、試料の同一個所に同時に照射させ
ることにより、電子線のエネルギー相当の電子波を放出
させてX線に影響を及ぼすことになり、X線の強度が低
くても短時間で高分解能のスペクトルを得ることができ
、精度のよい構造解析が可能となる。
Effect: Using high-resolution X-rays and electron beams with extremely high controllability of energy values, by simultaneously irradiating the same part of the sample, an electron wave equivalent to the energy of the electron beam is emitted, which affects the X-rays. Therefore, even if the intensity of the X-rays is low, a high-resolution spectrum can be obtained in a short time, making it possible to perform highly accurate structural analysis.

実施例 本発明の第一の実施例を第1図に基づいて説明する。本
実施例は、試料1中にX線2を透過させてX線2の物質
による吸収の変化を測定するものである。まず、X線2
を発生させるX線源3が設けられている。このX線源3
としては、主として実験室用に多用されるローターター
ゲットを用いるのがよいが、放射光(SOR)であって
もよい。
Embodiment A first embodiment of the present invention will be explained based on FIG. In this example, X-rays 2 are transmitted through a sample 1 and changes in absorption of the X-rays 2 by substances are measured. First, X-ray 2
An X-ray source 3 is provided. This X-ray source 3
It is preferable to use a rotor target, which is mainly used in laboratories, but synchrotron radiation (SOR) may also be used.

他に、プラズマX線源やレーザX線と称されるものでも
よく、さらには、封入管タイプでもよい。
Alternatively, a so-called plasma X-ray source or a laser X-ray source may be used, or an enclosed tube type may be used.

しかし、簡便性、使いやすさを考えると、W(タングス
テン)やMo(モリブデン)、Ag(銀)等をターゲッ
トとして電子線を照射して発生する白色X線を用いるロ
ーターターゲットで十分である。
However, in terms of simplicity and ease of use, a rotor target that uses white X-rays generated by irradiating electron beams to targets such as W (tungsten), Mo (molybdenum), and Ag (silver) is sufficient.

このX線源3からのX線2はモノクロメータ4に入射さ
れ、測定すべき試料lに対する入射X線のエネルギーが
可変制御される。モノクロメータ4としては特に限定さ
れない。即ち、分光特性のよいものという点では、例え
ばチャネルカットのSi結晶を2個対称に配置させたダ
ブルモノクロ等がよいが、単なる1枚の結晶板やわん曲
モノクロ等であってもよい。これは、X線源3で発生し
た白色X線をモノクロメータ4で分光する時、より分解
能よく分光されればされるほど強度が落ちるが、本実施
例においては、下記のように電子銃5を用いることによ
り、この分光までの過程では、分解能のみに注意を払い
、強度にはあまり注意を要しない点に特徴があるからで
ある。
X-rays 2 from this X-ray source 3 are incident on a monochromator 4, and the energy of the incident X-rays on the sample l to be measured is variably controlled. The monochromator 4 is not particularly limited. That is, in terms of good spectral characteristics, for example, a double monochrome crystal in which two channel-cut Si crystals are arranged symmetrically is preferable, but a single crystal plate or a curved monochrome crystal plate may also be used. This is because when the white X-rays generated by the X-ray source 3 are separated by the monochromator 4, the intensity decreases as the spectra are separated with better resolution.In this embodiment, the electron gun 5 This is because in the process up to this spectroscopy, attention is paid only to the resolution and not so much to the intensity.

モノクロメータ4により分光された単色のX線2は試料
lに入射するが、この試料1はベルジャ(真空容器)中
の試料ホルダ6により真空中(10″″″Torrより
高真空)に保持される。試料lとしては数μm〜数10
μm程度の厚さのものとされる。
Monochromatic X-rays 2 separated by a monochromator 4 are incident on a sample 1, which is held in vacuum (higher vacuum than 10'''' Torr) by a sample holder 6 in a bell jar (vacuum container). The sample size is from several μm to several tens of micrometers.
The thickness is about μm.

薄すぎるとX線吸収量が不足し、厚すぎるとX線透過量
が不足するからであり、この点は従来のEXAFSの場
合と同様である。また、真空中に保持させるのは電子銃
5を用いるからである。この電子銃5は試料ホルダ6に
保持固定されており、真空中において電子線7を試料1
に照射させる。
This is because if it is too thin, the amount of X-ray absorption will be insufficient, and if it is too thick, the amount of X-ray transmission will be insufficient, and this point is the same as in the case of conventional EXAFS. Further, the electron gun 5 is used to maintain the vacuum. This electron gun 5 is held and fixed to a sample holder 6, and emits an electron beam 7 to the sample 1 in vacuum.
irradiate it.

この照射位置はX線照射位置と同一に設定されている。This irradiation position is set to be the same as the X-ray irradiation position.

また、電子銃5による電子線7のエネルギーも制御され
ている。例えば試料lが銅のフォイルであれば、電子線
7のエネルギーは銅の吸収端8.898keV近くに制
御される。X線2は従来のEXAFSと同様に吸収端よ
り少し低いエネルギーから約1 keV程度高いエネル
ギーまで変化されて試料1に入射し、電子線7のエネル
ギーとX線2のエネルギーとが全く同一となるように制
御された状態で、X線検出器8により検出される。
Furthermore, the energy of the electron beam 7 emitted by the electron gun 5 is also controlled. For example, if the sample 1 is a copper foil, the energy of the electron beam 7 is controlled to be near the copper absorption edge of 8.898 keV. As in conventional EXAFS, the X-ray 2 is changed from an energy slightly lower than the absorption edge to an energy approximately 1 keV higher, and then enters the sample 1, so that the energy of the electron beam 7 and the energy of the X-ray 2 are exactly the same. It is detected by the X-ray detector 8 in such a controlled state.

このように高分解能なX線2と、非常に制御性の高い電
子線7とを同一個所に同時に照射することにより、X線
2の強度が低くても十分な測定結果が得られるものとな
る。例えば、上側の銅の場合であれば、銅の吸収端8.
898keVより少し高いエネルギーの電子線7が入射
されると銅原子からは電子波が放出され、周りの銅原子
から散乱され吸収原子へ戻る。この状態の鋼試料部分に
照射されたX線2(同じエネルギー)は、やはり吸収さ
れるが、上記電子波の影響を受けるので、このX線2の
スペクトルを求めれば、EXAFSと同様に銅の原子間
距離や配位、数等の微細構造が求められる。X線検出器
8としては一般に使用されているシンチレーションカウ
ンタ、プロポーショナルカウンタ、半導体装置検出器(
SSD)、さらには、イメージングプレートと称される
輝尽性蛍光体(BaFBr;Er″t)等を用いてもよ
い。
In this way, by simultaneously irradiating the same location with the high-resolution X-rays 2 and the highly controllable electron beam 7, sufficient measurement results can be obtained even if the intensity of the X-rays 2 is low. . For example, in the case of the upper copper, the absorption edge of the copper is 8.
When an electron beam 7 with an energy slightly higher than 898 keV is incident, an electron wave is emitted from the copper atom, scattered from the surrounding copper atoms, and returned to the absorbing atom. The X-ray 2 (same energy) irradiated to the steel sample part in this state is absorbed, but it is affected by the above-mentioned electron waves, so if we obtain the spectrum of this X-ray 2, we can find that the copper Fine structures such as interatomic distance, coordination, and number are required. As the X-ray detector 8, commonly used scintillation counters, proportional counters, semiconductor device detectors (
Furthermore, a photostimulable phosphor (BaFBr; Er″t), which is called an imaging plate, may be used.

つづいて、本発明の第二の実施例を第2図により説明す
る。前記実施例で示した部分と同一部分は同一符号を用
いて示す。基本的には、前記実施例と同様であるが、本
実施例は試料基板9の表面に設けられた簿膜状の試料(
1μm以下)10表面にX線2を照射し、試料10から
発生する蛍光X線の強度を測定する装置の例である。即
ち、基板9がX線2を通さない場合に適用される。
Next, a second embodiment of the present invention will be described with reference to FIG. The same parts as those shown in the previous embodiment are indicated using the same reference numerals. Basically, it is the same as the previous embodiment, but this embodiment has a film-like sample (
This is an example of an apparatus that irradiates X-rays 2 onto the surface of a sample 10 (1 μm or less) and measures the intensity of fluorescent X-rays generated from the sample 10. That is, this is applied when the substrate 9 does not allow the X-rays 2 to pass through.

本実施例は、例えば特開昭62−214335号公報に
示されるような(全反射)蛍光EXAFSと称されるも
のをベースとし、照射されたX線2の吸収量に比例して
蛍光X線が発生するので、前記実施例のEXAFSと同
様に微細構造(スペクトル)が得られるというものであ
る。しかし、単なる従来の蛍光EXAFSによると、蛍
光X線量が微量なため、たとえ1週間かけて測定しても
十分なスペクトルは得られない。
The present embodiment is based on what is called (total internal reflection) fluorescence EXAFS as shown in, for example, Japanese Patent Application Laid-Open No. 62-214335, and the fluorescence X-rays are is generated, so that a fine structure (spectrum) can be obtained in the same way as EXAFS in the above embodiment. However, with mere conventional fluorescence EXAFS, the amount of fluorescent X-rays is so small that a sufficient spectrum cannot be obtained even if the measurement takes one week.

この点、本実施例では電子銃5による電子線7を同時に
同一個所に照射するという本質的な改良を施すことによ
り、従来の実験室系蛍光EXAFS装置では測定できな
かった薄膜試料についても測定可能としたものである。
In this regard, in this embodiment, by making an essential improvement by simultaneously irradiating the same location with the electron beam 7 from the electron gun 5, it is possible to measure thin film samples that could not be measured with conventional laboratory fluorescence EXAFS equipment. That is.

いうなれば、電子線アシストEXAFSとでもいうべき
ものであり、吸収端以上のエネルギーのX線2によって
光電子波を作っていたものに対し、電子線7も加わるこ
とになり、X線の吸収が薄膜の厚さでも十分に大きくな
り、スペクトルが明瞭となるものである。
In other words, it can be called electron beam assisted EXAFS, and while the photoelectron wave was generated by X-ray 2 with energy above the absorption edge, electron beam 7 is also added, and the X-ray absorption is reduced by the thin film. The thickness is sufficiently large and the spectrum becomes clear.

本実施例にあっても、試料10(基板9)は試料ホルダ
6により真空中に保持される。そして、試料10表面の
同一個所にX線源3からモノクロメータ4を通ったX線
2と電子銃5でエネルギーが制御された電子線7とが同
時に照射される。この際、入射X線に対して試料10表
面が全反射を起こすような低角度に設定してもよい。本
実施例のX線検出器8は試料10表面からの蛍光X線を
検出してもよく、全反射の場合には全反射したX線を直
接検出するようにしてもよい。何れにしても、X線の吸
収による振動が得られる。この場合もX線2が高分解能
であれば、その強度は必ずしも強くなくてもよい。これ
は、電子銃5からも精度よくエネルギー制御された電子
線7が照射されるので、分解能よく検出すれば、短時間
(2〜3時間)で十分なデータが得られる。前記実施例
と同様に、電子線7とX線2とのエネルギーが全く同一
に調整されていることはもちろんである。
Also in this embodiment, the sample 10 (substrate 9) is held in vacuum by the sample holder 6. Then, the same location on the surface of the sample 10 is simultaneously irradiated with the X-ray 2 from the X-ray source 3 that has passed through the monochromator 4 and the electron beam 7 whose energy is controlled by the electron gun 5. At this time, the angle may be set at such a low angle that the surface of the sample 10 causes total reflection of the incident X-rays. The X-ray detector 8 of this embodiment may detect fluorescent X-rays from the surface of the sample 10, or in the case of total internal reflection, may directly detect the totally reflected X-rays. In any case, vibrations due to absorption of X-rays are obtained. In this case as well, as long as the X-rays 2 have a high resolution, their intensity does not necessarily have to be strong. This is because the electron beam 7 whose energy is precisely controlled is also irradiated from the electron gun 5, so if detection is performed with good resolution, sufficient data can be obtained in a short time (2 to 3 hours). It goes without saying that the energies of the electron beam 7 and the X-ray 2 are adjusted to be exactly the same, as in the previous embodiment.

なお、第2図においてはモノクロメータ4で分光された
X線2の方向が変えられているのは、モノクロメータ4
として5i(Ill)の単結晶を用いたからであり、そ
の回折による。
In addition, in FIG. 2, the direction of the X-rays 2 separated by the monochromator 4 is changed because the monochromator 4
This is because a single crystal of 5i (Ill) was used, and it is due to its diffraction.

発明の効果 本発明は、上述したようにX線源による高分解能のX線
とともに、エネルギー値の制御性が極めて高い電子銃に
よる電子線を用い、試料の同一個所に同時に照射させる
ようにしたので、実験室レベルのように低エネルギーの
X線の場合でも短時間で高分解能のスペクトルを得るこ
とができ、精度のよい構造解析が可能となるものである
Effects of the Invention As mentioned above, the present invention uses high-resolution X-rays from an X-ray source and electron beams from an electron gun with extremely high controllability of energy values, and simultaneously irradiates the same part of the sample. Even in the case of low-energy X-rays such as those used in a laboratory, high-resolution spectra can be obtained in a short time, making it possible to perform highly accurate structural analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示す概略構成図、第2
図は本発明の第二の実施例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention, and FIG.
The figure is a schematic configuration diagram showing a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] X線を発生するX線源と、試料に照射させるX線のエネ
ルギーを変化させるモノクロメータと、前記試料を真空
中に保持する試料ホルダと、この試料ホルダに固定され
て前記試料の前記X線と同一個所に電子線を照射する電
子銃と、前記試料を透過し又は反射されたX線を検出す
るX線検出器とからなることを特徴とする微細構造評価
装置。
an X-ray source that generates X-rays; a monochromator that changes the energy of the X-rays irradiated onto a sample; a sample holder that holds the sample in vacuum; A microstructure evaluation apparatus comprising: an electron gun that irradiates an electron beam to the same location as the specimen; and an X-ray detector that detects X-rays transmitted or reflected from the sample.
JP1328663A 1989-12-19 1989-12-19 Microstructure evaluating apparatus Pending JPH03188362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1328663A JPH03188362A (en) 1989-12-19 1989-12-19 Microstructure evaluating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1328663A JPH03188362A (en) 1989-12-19 1989-12-19 Microstructure evaluating apparatus

Publications (1)

Publication Number Publication Date
JPH03188362A true JPH03188362A (en) 1991-08-16

Family

ID=18212780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328663A Pending JPH03188362A (en) 1989-12-19 1989-12-19 Microstructure evaluating apparatus

Country Status (1)

Country Link
JP (1) JPH03188362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188777A1 (en) * 2013-05-24 2014-11-27 住友電気工業株式会社 Nitride semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188777A1 (en) * 2013-05-24 2014-11-27 住友電気工業株式会社 Nitride semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
Matsushita et al. A fast X-ray absorption spectrometer for use with synchrotron radiation
US4169228A (en) X-ray analyzer for testing layered structures
US20080095311A1 (en) Measuring Device for the Shortwavelentgh X Ray Diffraction and a Method Thereof
JP2005515474A (en) X-ray diffraction method
JP2005515474A6 (en) X-ray diffraction method
Hayakawa et al. Fluorescence x‐ray absorption fine structure measurements using a synchrotron radiation x‐ray microprobe
US2908821A (en) Apparatus for spectrochemical analysis and structural analysis of solids, fluids andgases by means of x-rays
Wobrauschek et al. X‐ray fluorescence analysis with a linear polarized beam after bragg reflection from a flat or a curved single crystal
Claes et al. Comparison of Grazing Emission XRF with Total Reflection XRF and Other X‐Ray Emission Techniques
JP2000504422A (en) X-ray analyzer having two collimator masks
Harada et al. K-line X-ray fluorescence analysis of high-Z elements
EP0697109B1 (en) X-ray spectrometer with a grazing take-off angle
JPH03188362A (en) Microstructure evaluating apparatus
JPH06249804A (en) Fluorescent x-ray spectroscopic device
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
Tsuji et al. Characterization of x‐rays emerging from between reflector and sample carrier in reflector‐assisted TXRF analysis
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP2921597B2 (en) Total reflection spectrum measurement device
JPH0792112A (en) X-ray evaluation system
JP5846469B2 (en) Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method
JPH06160312A (en) X-ray evaluation apparatus
JPS6353457A (en) 2-d scan type state analyzer
JPH03289550A (en) Fluorescence exafs apparatus
Takahashi et al. Development of laboratory x-ray fluorescence holography equipment
Shi et al. A novel X-ray spectrometer for plasma hot spot diagnosis