JPS62264785A - Parallel processing circuit - Google Patents

Parallel processing circuit

Info

Publication number
JPS62264785A
JPS62264785A JP61107550A JP10755086A JPS62264785A JP S62264785 A JPS62264785 A JP S62264785A JP 61107550 A JP61107550 A JP 61107550A JP 10755086 A JP10755086 A JP 10755086A JP S62264785 A JPS62264785 A JP S62264785A
Authority
JP
Japan
Prior art keywords
input data
phase
parallel
parallel input
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61107550A
Other languages
Japanese (ja)
Other versions
JPH0547157B2 (en
Inventor
Takeshi Okazaki
健 岡崎
Kiichi Matsuda
松田 喜一
Toshitaka Tsuda
俊隆 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61107550A priority Critical patent/JPS62264785A/en
Publication of JPS62264785A publication Critical patent/JPS62264785A/en
Publication of JPH0547157B2 publication Critical patent/JPH0547157B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain parallel processing by using m sets of delay elements to retard m phases in n phases of paralle input data thereby forming (n+m) phases of equivalent parallel input data equivalently. CONSTITUTION:The parallel processing circuit consists of delay elements 1001-100n giving a delay of one data length, delay elements 1011-101n giving a one-sample delay and forecast error signal generating circuits 1021-102n generating a forecast error signal. Parallel input data developing a time series input data string to n phases is inputted to the parallel processing circuit. The m sets of delay elements 1001-100m retard respectively m-phase parallel input data in the n-phase data by one data length respectively to output the m-phase retarded parallel input data. Further, the processing circuits 1021-102n process the (n+m)phase parallel input data comprising the n-phase parallel input data and the m-phase retarded parallel input data to generate the n-phase processing output.

Description

【発明の詳細な説明】 〔概 要〕 画像のフレーム内内挿符号化等の処理を行う並列処理回
路であって、n相の並列入力データの内のm相をm個の
遅延素子で遅延させることにより等価的に(n+m)相
の等価並列入力データをつくり、並列処理を行う。
[Detailed Description of the Invention] [Summary] A parallel processing circuit that performs processing such as intraframe interpolation encoding of images, which delays m phases of n phases of parallel input data using m delay elements. By doing so, equivalent parallel input data of (n+m) phases is created and parallel processing is performed.

〔産業上の利用分野〕[Industrial application field]

本発明は画像信号等の並列処理回路に関する。 The present invention relates to a parallel processing circuit for image signals, etc.

本発明の並列処理回路は、例えば帯域20 M Ilz
等の高精細TV信号等の超高速信号の内挿DPCM符号
化を低速な演算素子からなる小規模な回路で比較的容易
に実現できる並列処理回路に適用できる。
The parallel processing circuit of the present invention has a band of 20 M Ilz, for example.
It is possible to apply interpolation DPCM encoding of ultra-high-speed signals such as high-definition TV signals such as DPCM to a parallel processing circuit that can be relatively easily realized with a small-scale circuit consisting of low-speed arithmetic elements.

画像データ伝送においては、その伝送路がデータ伝送に
必要な帯域幅を有していない場合がある。
In image data transmission, the transmission path may not have the bandwidth necessary for data transmission.

そのような伝送路を用いて、伝送しようとするデータを
受信側に送り届ける手段として、その伝送路の帯域幅以
内までデータを圧縮する手段が採られている。その一つ
の手段として例えば内挿DPCM符号化方式がある。
As a means of sending data to be transmitted to a receiving side using such a transmission path, a means of compressing the data to within the bandwidth of the transmission path is adopted. One such means is, for example, an interpolation DPCM encoding method.

この内挿DPCM符号化方式によるも被符号化信号が高
速になると、内挿DPCM符号化処理のだめの回路素子
に高速性が要求されるに至る。
Even with this interpolation DPCM encoding method, as the signal to be encoded becomes faster, the circuit elements used for the interpolation DPCM encoding process are required to be faster.

そこで比較的に回路規模が小さく、しかもそこに用いら
れる素子が低速のものでありながら高速の被符号化信号
の内挿DPCM符号化を実現し得る手段の開発が求めら
れている。
Therefore, there is a need to develop means that can realize high-speed interpolation DPCM encoding of a signal to be encoded even though the circuit scale is relatively small and the elements used therein are of low-speed.

〔従来の技術〕[Conventional technology]

代表的な画像信号の内挿DPCM符号化方式は、第6図
に示されるように、現在値該に対して、同一走査線上の
左側値a2および右側値a1、上側走査線上の直上値a
4、および下側走査線上の直下M a 、の4点を用い
て予測値を発生して差分符号化を行わんとするものであ
り、具体的には各個a2〜a5の平均をとって現在値a
1についての予測値を求め、さらにこの予測値と現在値
a。
As shown in FIG. 6, a typical image signal interpolation DPCM encoding method is based on the current value, a left value a2 and a right value a1 on the same scanning line, and an immediately above value a on the upper scanning line.
4, and directly below M a on the lower scanning line to generate a predicted value and perform differential encoding. Specifically, the average of each point a2 to a5 is taken to calculate the current value. value a
Find the predicted value for 1, and further combine this predicted value and the current value a.

との差分をとり符号化するものである。The difference between the two is taken and encoded.

第7図は上記方式を行うための内挿DPCM符号化器を
示すプロ・ツク図である。図中、符号化器は、入力信号
を(1走査線−1サンプル)分遅延させて左側値a3と
直下値a、、をそれぞれ出力する(1ラインー1サンプ
ル)遅延素子7と76、入力信号を1サンプル分遅延さ
せて現在値a1と右側値a2を出力する1サンプル遅延
素子1と8、各個a2〜a、を加算する加算器4、各個
a2〜a、の平均をとって予測値を演算する174乗算
器5、予測値と現在値との差分(予測誤差)をとる減算
器3、減算器3からの予測誤差を量子化する量子化器6
を含み構成される。
FIG. 7 is a block diagram showing an interpolation DPCM encoder for implementing the above method. In the figure, the encoder delays the input signal by (1 scanning line - 1 sample) and outputs the left value a3 and the value directly below a, respectively (1 line - 1 sample) delay elements 7 and 76, the input signal 1-sample delay elements 1 and 8 which output the current value a1 and right-side value a2 by delaying by one sample, an adder 4 which adds each piece a2 to a, and a predicted value by taking the average of each piece a2 to a. 174 multiplier 5 that performs calculations, a subtracter 3 that takes the difference (prediction error) between the predicted value and the current value, and a quantizer 6 that quantizes the prediction error from the subtracter 3.
It consists of:

第7図に示されるような構成によれば、標本化周波数が
20MHz弱程度までの場合にはTTL或いはMOSデ
バイスを用いて比較的に容易にその企図する内挿DPC
M符号化を実現し得る。
According to the configuration shown in FIG. 7, when the sampling frequency is less than 20 MHz, the intended interpolation DPC can be achieved relatively easily using TTL or MOS devices.
M encoding can be realized.

しかしながら入力画像信号の帯域幅が20MHz程度の
高精細TV信号になると、標本化周波数が少なくとも4
(1MIIz以上必要となりTTL或いはMOSデバイ
スでは動作速度の点からその意図する内挿DPCM符号
化を実現し得ない。またECLデバイスを用いる場合で
あっても同様に動作速度の点からしてその実現が困難で
ある。
However, when the input image signal becomes a high-definition TV signal with a bandwidth of about 20 MHz, the sampling frequency becomes at least 4
(More than 1 MIIz is required, and TTL or MOS devices cannot achieve the intended interpolation DPCM encoding from the viewpoint of operating speed.Also, even when using an ECL device, it is difficult to achieve the intended interpolation DPCM encoding from the viewpoint of operating speed.) is difficult.

そこで本出願人は特願昭60−191該1において、超
高速の被符号化信号を低速な素子からなる小規模な回路
で内挿DPCM符号化を行い得る並列形内挿DPCM符
号化回路を開示している。
Therefore, in Japanese Patent Application No. 198-198, the applicant proposed a parallel interpolation DPCM encoding circuit that can perform interpolation DPCM encoding of ultra-high-speed encoded signals using a small-scale circuit consisting of low-speed elements. Disclosed.

第4図はかかる並列形内挿DPCM符号化回路を示すブ
ロック図である。この符号化回路は、上下左右の4画素
を用いる内挿符号化を4相展開して行っている。すなわ
ち第5図に示すように、時系列入力データ列を4つの相
からなる並列入力データ(例えばLl−L4 、PI−
PI 、Nl〜N、)に4相展開し、各相毎に並列に内
挿D P’ CM符号化を行っている。その構成は、各
相の入力データ、例えばN1〜N4を(1走査腺−lサ
ンプル)分遅延させて各相における右側値a2をそれぞ
れ出力する(1ラインー1サンプル)遅延素子71〜7
4、各相における入力データを1サンプル分遅延させて
現在値a、をそれぞれ出力する1サンプル遅延素子11
−14、各相における入力データを1サンプル分遅延さ
せて左側値a3をそれぞれ出力する1サンプル遅延素子
81〜84、第4相の1サンプル遅延素子84の出力を
(1走査線−1サンプル)分遅延させて第1相について
の直上値a4を出力する(lラインーlサンプル)遅延
素子75、各相における各個a2〜a5を加算する加算
器41〜44、各相における各個a2〜a、の平均をと
って予測値を演算する1/4乗算器51〜54、各相に
おける予測値と現在値との差分(予測誤差)をとる減算
器該〜34、各相における減算器該〜34からの予測誤
差を量子化する量子化器61〜64からなる。
FIG. 4 is a block diagram showing such a parallel interpolation DPCM encoding circuit. This encoding circuit performs interpolation encoding using four pixels on the upper, lower, left and right sides by four-phase expansion. In other words, as shown in FIG.
PI, Nl to N,), and interpolation D P' CM encoding is performed in parallel for each phase. Its configuration consists of delay elements 71 to 7 that delay the input data of each phase, for example N1 to N4, by (1 scanning line - 1 sample) and output the right side value a2 in each phase (1 line - 1 sample).
4. One-sample delay element 11 that delays the input data in each phase by one sample and outputs the current value a, respectively.
-14, 1-sample delay elements 81 to 84 that delay the input data in each phase by 1 sample and output the left side value a3, and the output of the 4th phase 1-sample delay element 84 (1 scanning line - 1 sample) A delay element 75 that outputs the immediate value a4 for the first phase with a delay of 1 line (1 line - 1 sample), adders 41 to 44 that add each value a2 to a5 in each phase, and each value a2 to a in each phase. 1/4 multipliers 51 to 54 that calculate the predicted value by taking the average, subtractors 34 to 34 that take the difference (prediction error) between the predicted value and the current value in each phase, and subtractors 34 to 34 in each phase. It consists of quantizers 61 to 64 that quantize prediction errors.

かかる構成によれば、現サイクルの並列入力データP、
〜P4は(lラインーlサンプル)遅延素子71〜74
の出力側に、次サイクルの並列入力データN1〜N4は
その入力側に現れ、また前サイクルの並列入力データ中
の入力データL4は(lラインーlサンプル)遅延素子
75の出力に現れる。
According to this configuration, the parallel input data P of the current cycle,
~P4 is (l line - l sample) delay elements 71 to 74
Parallel input data N1 to N4 of the next cycle appear on the output side of the delay element 75, and input data L4 among the parallel input data of the previous cycle appears at the output of the delay element 75 (l line - l sample).

したがって入力データP1の現在値a1に対する直上値
a4は(1ラインー1サンプル)遅延素子75の出力か
ら得られ、入力データP4の現在値a。
Therefore, the value a4 immediately above the current value a1 of the input data P1 is obtained from the output of the delay element 75 (1 line - 1 sample), and is the current value a of the input data P4.

に対する直下値a、は(lラインー1サンプル)遅延素
子71の入力端の入力データN、から得られ、それによ
り各相における内挿D P CM符号化が可能となる。
The immediate value a for (1 line - 1 sample) is obtained from the input data N at the input end of the delay element 71, which enables interpolation D P CM encoding in each phase.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、かかる構成の符号化回路は、(lライン
ー 1サンプル)遅延素子としての大規模、なラインメ
モリを多く必要とし、装置の大型化、高価格化を招いて
いる。
However, an encoding circuit having such a configuration requires many large-scale line memories as delay elements (1 line - 1 sample), leading to an increase in the size and cost of the device.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明にかかる並列処理回路の原理図である。 FIG. 1 is a principle diagram of a parallel processing circuit according to the present invention.

図中、100+ ” 100mはlデータ長の遅延を与
える遅延素子、101.および101 zはlサンプル
分の遅延を与える遅延素子、102.〜102nは、予
測誤差信号を発生する予測誤差信号発生回路などの処理
回路である。
In the figure, 100+" 100m is a delay element that provides a delay of l data length, 101. and 101z are delay elements that provide a delay of l samples, and 102. to 102n are prediction error signal generation circuits that generate a prediction error signal. This is a processing circuit such as

この並列処理回路には時系列入力データ列をn(nは2
以上の整数)相に展開せしめた並列入力データが入力さ
れる。m個の遅延素子100.〜100nは、n相中の
m (mは2以上、n以下の整数)相の並列入力データ
を1データ長それぞれ遅延させてm相の遅延並列入力デ
ータを出力する。また処理回路1021〜102nは、
n相の並列入力データとm相の遅延並列入力データとか
らなる(n+m)相の並列入力データを用いて、n相の
処理出力を発生する。
This parallel processing circuit receives n time series input data sequences (n is 2
Parallel input data expanded into phases (an integer greater than or equal to) is input. m delay elements 100. ~100n outputs delayed parallel input data of m phases by delaying parallel input data of m (m is an integer greater than or equal to 2 and less than or equal to n) phase by one data length among n phases. Further, the processing circuits 1021 to 102n are
An n-phase processing output is generated using (n+m)-phase parallel input data consisting of n-phase parallel input data and m-phase delayed parallel input data.

〔作 用〕[For production]

n相に展開された並列入力データの他に、m個の遅延素
子100.〜100nから得られるm相の遅延並列入力
データを用いて等価的に(n+m)相の並列入力データ
を作る。そしてこの(n+m)相の並列入力データを用
いて遅延素子101い10hや処理回路102.〜10
2nによって例えば予測誤差信号等のn相の並列出力デ
ータを発生させる。
In addition to the parallel input data expanded into n phases, m delay elements 100. Using m-phase delayed parallel input data obtained from ~100n, equivalently create (n+m)-phase parallel input data. Then, using this (n+m) phase parallel input data, the delay elements 101 to 10h and the processing circuit 102. ~10
2n generates n-phase parallel output data such as a prediction error signal.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例としての並列処理回路を示す
ブロック図である。図中、10〜15.80〜83はそ
れぞれ1サンプルタイム遅延素子、20および21はそ
れぞれ1走査線分の遅延素子、30〜33はそれぞれ減
算器、40〜43はそれぞれ加算器、50〜53は1/
4乗算器、60〜63は量子化器である。
FIG. 2 is a block diagram showing a parallel processing circuit as an embodiment of the present invention. In the figure, 10 to 15. 80 to 83 are each one sample time delay element, 20 and 21 are each one scanning line delay element, 30 to 33 are each subtractors, 40 to 43 are each adders, 50 to 53 is 1/
4 multipliers, 60 to 63 are quantizers.

P1〜P、はそれぞれ4相展開された並列入力信号であ
り、これらの並列入力信号P1〜P、は遅延素子11〜
14にそれぞれ導かれるとともに、そのうちの並列入力
信号P3 、P−は遅延素子20.21を介して遅延素
子15、IOにそれぞれ導かれる。
P1 to P are parallel input signals developed into four phases, respectively, and these parallel input signals P1 to P are connected to the delay elements 11 to
14, and the parallel input signals P3 and P- are respectively guided to delay elements 15 and IO via delay elements 20 and 21.

これにより遅延素子20.21の出力側には前サイクル
の第3相、第4相の並列入力信号に相当する並列入力信
号1.:+ 、L−が現れる。この結果、Ll、L4、
P+〜P4は6相並列入力信号と等価である。
As a result, the output side of the delay element 20.21 receives parallel input signals 1. :+ and L- appear. As a result, Ll, L4,
P+ to P4 are equivalent to six-phase parallel input signals.

遅延素子15.10〜14の入力側には並列入力信号L
3、L、a 、PI〜P4の右側値a2が、出力側には
現在値a1がそれぞれ現れ、並列入力信号L4、P1〜
P4の現在値a、をさらに遅延素子80〜83を通過さ
せることによりその出力側に左側値a3がそれぞれ現れ
る。
A parallel input signal L is connected to the input side of the delay elements 15.10 to 14.
3, L, a, the right side value a2 of PI~P4 appears, the current value a1 appears on the output side, and the parallel input signals L4, P1~
By further passing the current value a of P4 through delay elements 80 to 83, the left value a3 appears on the output side.

加算器40〜43は前サイクルの第4相の現在値a1お
よび現サイクルの第1〜第3相の各相の現在値a1の各
々の近傍の各個a2〜asをそれぞれ加算する回路であ
り、加算2S40〜43の各出力信号は1/4乗算器5
0〜53によって1/4にされて予測値(平均値)が求
められる。′$i算器30〜33は各相のこの予測値と
現在値との差分(予測誤差)を求めて量子化器60〜6
3に出力する回路である。
Adders 40 to 43 are circuits that add respective values a2 to as in the vicinity of the current value a1 of the fourth phase of the previous cycle and the current value a1 of each of the first to third phases of the current cycle, Each output signal of the addition 2S40 to 43 is sent to the 1/4 multiplier 5.
The predicted value (average value) is calculated by dividing the value into 1/4 by 0 to 53. '$i calculators 30 to 33 calculate the difference (prediction error) between this predicted value and the current value of each phase and send it to quantizers 60 to 6.
This is a circuit that outputs to 3.

第2図回路の動作を第3図を参照して以下に説明する。The operation of the circuit of FIG. 2 will be explained below with reference to FIG.

第3図は4相展開された並列入力信号を示す図であって
、L1〜L4は前サイクルの並列入力信号、P+−Pa
は現サイクルの並列入力信号、N、−N、は次サイクル
の並列入力信号である。
FIG. 3 is a diagram showing parallel input signals expanded into four phases, where L1 to L4 are the parallel input signals of the previous cycle, P+-Pa
is the parallel input signal of the current cycle, and N, -N are the parallel input signals of the next cycle.

この回路では並列入力信号P+の現在値a、の予測値を
演算するための直上値a4を、遅延素子20および10
を経て得られた前サイクルの第4相に相当する並列入力
信号L4を用いて計算している。
In this circuit, the immediate value a4 for calculating the predicted value of the current value a of the parallel input signal P+ is transferred to the delay elements 20 and 10.
The calculation is performed using the parallel input signal L4 corresponding to the fourth phase of the previous cycle obtained through the process.

またその並列入力信号り、の現在値a、の予測値は同様
に遅延素子21および15を経て得られた前すィクルの
第3相に相当する並列入力信号L3を用いて計算してい
る。なお、他の相の並列入力信号Pz 、P3はそれぞ
れ近傍の相の各個を用いて予測値を計算する。
The predicted value of the current value a of the parallel input signal L3 is similarly calculated using the parallel input signal L3 corresponding to the third phase of the previous cycle obtained through the delay elements 21 and 15. Note that the predicted values of the parallel input signals Pz and P3 of other phases are calculated using respective neighboring phases.

上述のようにして予測値を求め、4相並列内挿符号化後
の出力信号としての並列予測誤差信号E。
A parallel prediction error signal E is obtained as an output signal after obtaining a predicted value as described above and performing four-phase parallel interpolation encoding.

〜E3を得るようにする。〜E3.

本発明の実施にあたっては種々の変更態様が可能である
。例えば上述の実施例では4相展開された画像信号をつ
いて説明したが、他の多相展開された信号であっもよい
。また本発明は実施例のような内挿符号化以外にも適用
可能であり、フレーム内の複数本にまたがる情報を用い
た処理を並列処理により行う装置に適用でき、例えば2
次元フィルタ等に利用できる。
Various modifications are possible in carrying out the invention. For example, in the above-mentioned embodiment, an image signal expanded into four phases was explained, but other signals expanded into multiple phases may be used. Furthermore, the present invention can be applied to systems other than interpolation coding as described in the embodiments, and can be applied to a device that performs processing using information spanning multiple lines in a frame in parallel.
Can be used for dimensional filters, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高精細画像信号等の超高速の被符号化
信号を低速な素子からなる小規模な回路で[)PCM等
により処理し得る。また本発明装置はラインメモリを多
く必要とせず、装置の一層の小型化、低廉化が可能であ
る。
According to the present invention, an ultra-high-speed coded signal such as a high-definition image signal can be processed by [)PCM or the like using a small-scale circuit made up of low-speed elements. Furthermore, the device of the present invention does not require a large number of line memories, and the device can be made even smaller and less expensive.

【図面の簡単な説明】[Brief explanation of drawings]

第[図は本発明の原理図、第2図は本発明の一実施例と
しての並列処理回路のブロック図、第3図は第2図回路
の動作説明のための図であって4相展開された並列入力
信号を示す図、第4図は関連技術としての並列形内挿D
PCM符号化回路を示すブロック図、第5図は第4図回
路の動作説明のための図、第6図は内挿DPCM符号化
方式の説明図、第7図は従来の内挿DPCM符号化器の
ブロック図である。 lO〜15.80〜84−−−1サンプルタイム遅延素
子20.21−・・l走査線遅延素子 30〜34−減算器 40〜44−加算器 50−1/4乗算器 60〜64・−量子化器 (n、m)相等価並列入力データ 不発明の原理を示す図 第1図 本発明の実施例の並列処理形差分符号化器第2図 第2図回路の動作説明図 笠 qF’fl 第4図回路の動作説明図
[Figure] is a principle diagram of the present invention, Figure 2 is a block diagram of a parallel processing circuit as an embodiment of the present invention, and Figure 3 is a diagram for explaining the operation of the circuit shown in Figure 2, which is developed in four phases. Figure 4 is a diagram showing parallel input signals obtained using parallel interpolation D as a related technique.
A block diagram showing the PCM encoding circuit, FIG. 5 is a diagram for explaining the operation of the circuit in FIG. 4, FIG. 6 is an explanatory diagram of the interpolation DPCM encoding method, and FIG. FIG. lO~15.80~84--1 sample time delay element 20.21--l scanning line delay element 30-34-subtractor 40-44-adder 50-1/4 multiplier 60-64-- Quantizer (n, m) phase equivalent parallel input data Diagram showing the principle of non-invention Figure 1 Parallel processing type differential encoder according to the embodiment of the present invention Figure 2 Figure 2 Diagram explaining the operation of the circuit Cap qF' fl Figure 4 Diagram explaining the operation of the circuit

Claims (1)

【特許請求の範囲】 時系列入力データ列をn(nは2以上の整数)相に展開
せしめた並列入力データ(P_1〜P_4)が入力され
、 該n相中のm(mは2以上、n以下の整数)相の並列入
力データを1データ長それぞれ遅延させてm相の遅延さ
れた並列入力データを出力するm個の遅延素子(101
_1〜101_m)および、該n相の並列入力データと
該m相の遅延された並列入力データとからなる(n+m
)相の並列入力データを用いて、n相の処理出力(E_
0〜E_3)を得るn個の処理回路(102_1〜10
2_n)、を具備する並列処理回路。
[Claims] Parallel input data (P_1 to P_4) obtained by expanding a time-series input data string into n phases (n is an integer of 2 or more) are input, and m of the n phases (m is 2 or more, m delay elements (101
_1 to 101_m) and (n+m) consisting of the n-phase parallel input data and the m-phase delayed parallel input data
)-phase parallel input data is used to generate the n-phase processing output (E_
n processing circuits (102_1 to 10
2_n), a parallel processing circuit comprising:
JP61107550A 1986-05-13 1986-05-13 Parallel processing circuit Granted JPS62264785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107550A JPS62264785A (en) 1986-05-13 1986-05-13 Parallel processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107550A JPS62264785A (en) 1986-05-13 1986-05-13 Parallel processing circuit

Publications (2)

Publication Number Publication Date
JPS62264785A true JPS62264785A (en) 1987-11-17
JPH0547157B2 JPH0547157B2 (en) 1993-07-15

Family

ID=14462025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107550A Granted JPS62264785A (en) 1986-05-13 1986-05-13 Parallel processing circuit

Country Status (1)

Country Link
JP (1) JPS62264785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174482A (en) * 1988-12-27 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Parallel coding processing system for moving picture signal
JPH03250995A (en) * 1990-02-28 1991-11-08 Nec Corp Dpcm coder for picture signal
WO2009122463A1 (en) * 2008-03-31 2009-10-08 富士通株式会社 Image data compression apparatus, decompression apparatus, compression method, decompression method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174482A (en) * 1988-12-27 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Parallel coding processing system for moving picture signal
JPH03250995A (en) * 1990-02-28 1991-11-08 Nec Corp Dpcm coder for picture signal
WO2009122463A1 (en) * 2008-03-31 2009-10-08 富士通株式会社 Image data compression apparatus, decompression apparatus, compression method, decompression method, and program
JP4756665B2 (en) * 2008-03-31 2011-08-24 富士通株式会社 Image compression apparatus, restoration apparatus, compression method, restoration method, and program
US8411976B2 (en) 2008-03-31 2013-04-02 Fujitsu Limited Image data compression apparatus, decompression apparatus, compressing method, decompressing method, and storage medium

Also Published As

Publication number Publication date
JPH0547157B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
JPH0512910B2 (en)
JPS62264785A (en) Parallel processing circuit
EP0314356B1 (en) Predictive coding system
JPS6118910B2 (en)
JP3025750B2 (en) Discrete cosine transform circuit, discrete cosine inverse transform circuit, MPEG video encoder, MPEG video decoder
KR840006269A (en) Receives via a single coaxial lead, which synchronizes the bit stream
US5805229A (en) Apparatus for simultaneously generating interpolated video signals for even and odd lines
US4893184A (en) Arrangement for DPCM-coding with high data rate
JP2603274B2 (en) Encoding device
JPS61232725A (en) Data compression circuit
JP2001103482A (en) Motion compensation device for digital video down- converter using orthogonal transformation
JPH0525142B2 (en)
JPS6251830A (en) Parallel processing type plane forecasting circuit
JP3608554B2 (en) 5 × 3 wavelet transform device
KR970003101B1 (en) Digital filter
JPH01114181A (en) Predictive coding system
JPS6251829A (en) Parallel interpolation dpcm coding circuit
Saidani et al. Design of a high speed architecture of MQ-coder for JPEG2000 on FPGA
US6072911A (en) Linear image filter and the corresponding filtering method
JPH0473352B2 (en)
KR100431354B1 (en) The multiplier circuit
GB2106348A (en) Video signal coding
JPH1023426A (en) Picture predicting method and picture coding method
SU1363538A1 (en) Apparatus for correcting hf predistortion of secam colour signal
JP2888849B2 (en) Intra-frame predicted DPCM coding circuit