JPS62263955A - Manufacture of aluminum alloy sheet for magnetic disk - Google Patents

Manufacture of aluminum alloy sheet for magnetic disk

Info

Publication number
JPS62263955A
JPS62263955A JP10819986A JP10819986A JPS62263955A JP S62263955 A JPS62263955 A JP S62263955A JP 10819986 A JP10819986 A JP 10819986A JP 10819986 A JP10819986 A JP 10819986A JP S62263955 A JPS62263955 A JP S62263955A
Authority
JP
Japan
Prior art keywords
aluminum alloy
magnetic disk
plate
cast
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10819986A
Other languages
Japanese (ja)
Other versions
JPS6411108B2 (en
Inventor
Hideyoshi Usui
碓井 栄喜
Kozo Hoshino
晃三 星野
Yoshihiro Mitsuta
美蔦 芳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10819986A priority Critical patent/JPS62263955A/en
Publication of JPS62263955A publication Critical patent/JPS62263955A/en
Publication of JPS6411108B2 publication Critical patent/JPS6411108B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve strength and surface accuracy, by subjecting a cast plate of Al alloy in which Mg and Be are specified and the amounts of Si, Fe, Mn, Cr, and Ti are limited to annealing under prescribed conditions prior to cold rolling. CONSTITUTION:The Al alloy containing, by weight, 3.5-5.5% Mg and 0.5-50ppm Be and also containing <=0.04% Si, <=0.64% Fe, <=0.2% Mn, 0.06% Cr, and <=0.006% Ti is cast to 4-10mm thickness. Then this cast plate is annealed at 380-480 deg.C for 1-24hr, followed by cold rolling.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は磁気ディスク用アルミニウム合金板の製造方法
に関し、さらに詳しくは、信頼性の高い高記録密度磁気
ディスク用アルミニウム合金板の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application J] The present invention relates to a method for manufacturing an aluminum alloy plate for magnetic disks, and more particularly, to a method for manufacturing highly reliable aluminum alloy plates for high recording density magnetic disks. It is.

[従来技術] 従来から、磁気ディスク用基盤は、非磁性、強度、耐熱
性等の点からアルミニウム合金が使用されている。
[Prior Art] Conventionally, aluminum alloys have been used for magnetic disk substrates due to their non-magnetic properties, strength, heat resistance, and the like.

しかし、磁気記録密度の向上に伴い磁気ディスク用基盤
と磁気ヘッドとの間隔は益々小さくなり、また、記録の
単位面積も小さくなることから、磁気ディスク用基盤表
面の粗度はできるだけ小さいことが要求され、さらに、
基盤表面の欠陥はできるだけ小さく、かつ、少ないこと
が要求されている。
However, as magnetic recording density improves, the distance between the magnetic disk substrate and the magnetic head becomes smaller and smaller, and the recording unit area also becomes smaller, so it is required that the roughness of the magnetic disk substrate surface be as small as possible. and furthermore,
It is required that defects on the substrate surface be as small and as few as possible.

このような、要求に対する改善策として、本発明者は従
来の5086合金に対して、 (1)特公昭60−140号公報に説明したように、高
凝固速度化による晶出化合物の微細化(3μm以下)お
よびマクロ組織の安定化による表面精度の向上について
、また、 (2)薄板連続鋳造時のサーフェイス・ラインパターン
の問題点を見出し、鋳造板厚のさらなる限定および熱処
理等によりこれを改善し、特開昭57−185961号
公報記載の発明を 提案した。
As an improvement measure to meet these demands, the present inventors have developed the following improvements to the conventional 5086 alloy: (1) As explained in Japanese Patent Publication No. 60-140, the crystallized compound is made finer by increasing the solidification rate ( 3μm or less) and improved surface precision by stabilizing the macrostructure. (2) We discovered problems with the surface line pattern during continuous thin plate casting and improved them by further limiting the thickness of the cast plate and heat treatment. proposed the invention described in Japanese Patent Application Laid-Open No. 57-185961.

しかしながら、磁気ディスク記録密度のさらなる増加お
よび精密切削技術の向上により、素材に対して、寸法精
度のさらなる向上、晶出化合物のさらなる微細化が要求
されている。
However, with further increases in magnetic disk recording densities and improvements in precision cutting technology, there are demands for further improvements in dimensional accuracy and further miniaturization of crystallized compounds for materials.

また、磁性膜の薄膜化に伴い、磁気媒体の加工工程中に
おいても基盤の表面精度が劣化しないことが要求されて
いる。
Further, as magnetic films become thinner, it is required that the surface precision of the substrate does not deteriorate even during the processing process of the magnetic medium.

即ち、信頼性の高い高記録密度磁気記録媒体とするため
に、晶出化合物のさらなる微細化と共に基盤加工以後の
工程中における表面精度の保証が必要となった。
That is, in order to obtain a highly reliable high-density magnetic recording medium, it has become necessary to further refine the crystallized compound and to ensure surface accuracy during the steps after substrate processing.

しかして、」二足に説明した製造方法により得られた基
盤においては、基盤の表面精度は良好ではあるが、磁気
媒体として使用した際に記録エラーが発生することがあ
り、信頼性に欠ける場合があった。
However, although the surface precision of the substrate obtained by the manufacturing method described in the previous section is good, recording errors may occur when used as a magnetic medium, resulting in a lack of reliability. was there.

[発明が解決しようとする問題点] 本発明は上記に説明したように従来における磁気ディス
ク用アルミニウム合金板の製造方法の種々の問題点に鑑
み、本発明者が鋭意研究を行い、かつ、検討を重ねた結
果、鋳造時の凝固状態の乱れに起因して鋳造板内部に形
成・巻き込まれるAl−10〜20wt%Mgの「ハー
ドスポット」の存在により、この部分にガス集中が起り
、その結果微少なフクレ(高さ2000A程度)が生じ
て記録エラーとなることを見出し、この知見に基づいて
、晶出化合物をより微細化し、かつ、鋳造時に生成され
る[ハードスポット]を低減することにより信頼性の高
い高記録密度の磁気ディスク用アルミニウム合金板の製
造方法を開発したのである。
[Problems to be Solved by the Invention] As explained above, the present invention has been developed by the inventors of the present invention, who has conducted extensive research and studies in view of the various problems of the conventional methods of manufacturing aluminum alloy plates for magnetic disks. As a result, due to the presence of "hard spots" of Al-10 to 20 wt% Mg that are formed and rolled up inside the cast plate due to disturbances in the solidification state during casting, gas concentration occurs in this area, and as a result, We discovered that minute blisters (about 2000A in height) occur and cause recording errors.Based on this knowledge, we made the crystallized compound finer and reduced the [hard spots] generated during casting. We have developed a method for manufacturing highly reliable aluminum alloy plates for magnetic disks with high recording density.

[問題点を解決するための手段] 本発明に係る磁気ディスク用アルミニウム合金板の製造
方法の特徴とするところは、 Mg3.5〜5.5wt%、Be 0.5〜50ppm
を含有し、不純物として、 Si≦0.04wt%、Fe50.04wt%、Mn≦
0 、2wt%、Cr≦0.06wt%、Ti 50.
006wt% に規定し、残部AIよりなるアルミニウム合金を薄板連
続鋳造法により4〜10mmの板厚に鋳造し、冷間圧延
の前に380〜480℃の温度において1〜24時間の
焼鈍を行うことにある。
[Means for Solving the Problems] The method for manufacturing an aluminum alloy plate for a magnetic disk according to the present invention is characterized by: Mg 3.5 to 5.5 wt%, Be 0.5 to 50 ppm
Contains impurities such as Si≦0.04wt%, Fe50.04wt%, Mn≦
0, 2wt%, Cr≦0.06wt%, Ti 50.
006wt%, with the remainder being AI, is cast into a sheet with a thickness of 4 to 10 mm by continuous thin plate casting method, and annealed at a temperature of 380 to 480°C for 1 to 24 hours before cold rolling. It is in.

本発明に係る磁気ディスク用アルミニウム合金板の製造
方法について以下詳細に説明する。
The method for manufacturing an aluminum alloy plate for magnetic disks according to the present invention will be described in detail below.

先ず、本発明に係る磁気ディスク用アルミニウム合金板
の製造方法に使用するアルミニウム合金の含有成分およ
び含有割合について説明する。
First, the components and content ratios of the aluminum alloy used in the method of manufacturing an aluminum alloy plate for a magnetic disk according to the present invention will be explained.

Mgはディスク用基盤に所定の強度を付与するのに必須
の元素であり、ディスク基盤の寸法によっては2wt%
以上からでもよいが、14インチ(368mm)径ディ
スクを考慮すると、3.5wt%以上を含有させる必要
があり、また、5.5wt%を越えて含有されると[ハ
ードスポット]が形成されやすくなると共にMgOの非
金属介在物の生成頻度が増加する。よって、Mg含有量
は3.5〜5.5wt%とする。
Mg is an essential element for imparting a certain strength to the disk substrate, and depending on the dimensions of the disk substrate, Mg may be 2wt%.
The above may be sufficient, but considering a 14-inch (368 mm) diameter disk, it is necessary to contain 3.5 wt% or more, and if it is contained in excess of 5.5 wt%, [hard spots] are likely to be formed. As the temperature increases, the frequency of generation of MgO nonmetallic inclusions increases. Therefore, the Mg content is set to 3.5 to 5.5 wt%.

Beは連続鋳造時の溶湯から水冷ロール、水冷ベルト等
の冷却体に接触するまでの溶湯表面のMgの酸化抑制の
ために含有させるものであり、そして、Mgを含有をす
るアルミニウム合金はノズル冷却体間で溶湯表面に厚い
酸化皮膜を形成し、この酸化皮膜は周期的に鋳造材中に
巻き込まれると共に溶湯の流れの均一性を乱すため、鋳
造板の凝固状態が乱れ、その結果Mg濃度が10〜2h
t%の[ハードスポット]を形成することが判明し、こ
の現象を軽減するためBeを含有させて、溶湯表面に極
めて薄い酸化皮膜を形成させるのであり、この効果を発
揮させるためには含有量は0.5ppm以上を含有させ
る必要があり、また、50ppmを越えて含有されると
効果は飽和してしまい、それ以上含有させることは無駄
であり、高価となる。よって、Be含有量はo、g〜5
0ppmとする。
Be is included to suppress the oxidation of Mg on the surface of the molten metal during continuous casting until it contacts cooling bodies such as water-cooled rolls and water-cooled belts. A thick oxide film is formed on the surface of the molten metal between the bodies, and this oxide film is periodically rolled into the casting material and disturbs the uniformity of the flow of the molten metal, which disturbs the solidification state of the cast plate and, as a result, increases the Mg concentration. 10~2h
t% of [hard spots] are formed, and in order to reduce this phenomenon, Be is added to form an extremely thin oxide film on the surface of the molten metal. It is necessary to contain 0.5 ppm or more, and if it is contained in excess of 50 ppm, the effect will be saturated, and it is wasteful and expensive to contain more than that. Therefore, the Be content is o, g~5
Set to 0 ppm.

St、FeはAI−FeSMgpSi等の晶出化合物を
形成し易いため、Si含有量は50.04wt%、Fe
含有量は50.04wt%に規制する。
Since St and Fe tend to form crystallized compounds such as AI-FeSMgpSi, the Si content was 50.04 wt% and Fe
The content is regulated to 50.04wt%.

MnはAl−Fe−Mn系の晶出化合物を形成し易いた
め、Mn含有量は60.2wt%とする。
Since Mn tends to form Al-Fe-Mn-based crystallized compounds, the Mn content is set to 60.2 wt%.

Crは本発明に係る磁気ディスク用アルミニウム板合金
の製造方法に使用するアルミニウム合金は不純物が少な
いのでディスク基盤としての使用時に完全軟質材とする
に際して粗大結晶粒の生成を防止するために含有させる
ものであり、含有量が0.06wt%を越えて含有され
るとAl−Fe系晶出化合物の粗大化傾向が強くなる。
Cr is contained in the aluminum alloy used in the method for producing an aluminum plate alloy for magnetic disks according to the present invention because it has few impurities, so it is added to prevent the formation of coarse crystal grains when used as a disk substrate to make it a completely soft material. If the content exceeds 0.06 wt%, the Al-Fe crystallized compound tends to become coarser.

よって、Cr含有量は50.06wt%に規制する。Therefore, the Cr content is regulated to 50.06 wt%.

Tiは鋳塊結晶粒の微細化に極めて有効であるが、Al
−Ti系金属間化合物を形成するため少量とする必要が
あるが、少量とすると結晶粒の微細効果は期待できず、
さらに、高純度であることにより、形成される化合物が
小さく、かつ、少ないため組織調整も不要である。よっ
て、Ti含有量は60.006wt%とする。
Ti is extremely effective in refining ingot crystal grains, but Al
- It is necessary to use a small amount to form a Ti-based intermetallic compound, but if it is a small amount, no effect on fine grains can be expected.
Furthermore, due to the high purity, the compounds formed are small and few, so no structure adjustment is required. Therefore, the Ti content is set to 60.006 wt%.

上記以外の成分としてCuは不純物程度の含有は許容さ
れるが、しかし、ディスク基盤としての使用時に完全軟
質材とした際の粗大再結晶粒傾向において、結晶粒間の
方向性の差を少なくする効果、および、それ自体の強度
向上効果の複合により切削性、研削性を高めるのに有効
であり、そのために含有量は0.3wt%までの含有は
許容されるが、0.3wt%を越えて含有されると再結
晶粒界にAl−Mg−Cu系の析出化合物が形成される
ため、精密切削時の表面精度がかえって低下するのでC
u含有量はo3wt%未満とする。
As a component other than the above, Cu is allowed to be contained at an impurity level, but it is necessary to reduce the difference in directionality between crystal grains in the tendency of coarse recrystallized grains when used as a disk base and made into a completely soft material. It is effective in increasing machinability and grindability due to the combination of the effect and its own strength-improving effect, and for this reason, the content is allowed up to 0.3 wt%, but if it exceeds 0.3 wt%. If C is contained, Al-Mg-Cu precipitated compounds will be formed at the recrystallized grain boundaries, which will actually reduce the surface accuracy during precision cutting.
The u content is less than o3wt%.

次に、本発明に係る磁気ディスク用アルミニウム合金板
の製造方法の鋳造および熱処理について説明する。
Next, casting and heat treatment of the method for manufacturing an aluminum alloy plate for a magnetic disk according to the present invention will be explained.

上記説明したアルミニウム合金を連続鋳造により薄板を
製造する場合に、アルミニウム合金の溶湯を溶湯供給ノ
ズルにより供給する際に、冷却体の間隙にN6.Ar、
N等の不活性ガスを供給し溶湯表面の酸化皮膜の形成を
防止し、この不活性ガ □スによるシールドはBeを含
有させる効果と相まって溶湯の表面酸化防止に有効であ
り、その結果凝固の乱れを抑制でき、さらに、「ハード
スポット」の低減効果かあり、また、ガスシールドは密
閉方式であれば流量は殆ど不要であるが、鋳造機の構造
から密閉が困難な場合は定常的なガスフロ一方式が望ま
しく、この場合鋳造板1cm当たり幅(片面)5cc/
min以上とするのが好ましく、また、流量が多すぎる
と逆にノズル−ロール間の湯の流れが不均一になる傾向
があり、シールドガス供給量は500cc/min以下
とするのがよい。そして、このような環境下において4
〜10mmの板厚に鋳造する。
When manufacturing a thin plate from the above-described aluminum alloy by continuous casting, when the molten aluminum alloy is supplied by the molten metal supply nozzle, N6. Ar,
The formation of an oxide film on the surface of the molten metal is prevented by supplying an inert gas such as N. The shielding by this inert gas, combined with the effect of containing Be, is effective in preventing oxidation of the surface of the molten metal, and as a result, it prevents solidification. It can suppress turbulence and has the effect of reducing "hard spots."Also, if the gas shield is a sealed method, there is almost no need for a flow rate, but if it is difficult to seal the casting machine due to the structure of the casting machine, a constant gas flow is required. One-sided type is preferable; in this case, the width (one side) is 5cc/cm per 1cm of cast plate.
It is preferable that the shielding gas supply amount be 500 cc/min or more. If the flow rate is too large, the flow of hot water between the nozzle and the roll tends to become uneven, so the shielding gas supply amount is preferably 500 cc/min or less. Under such circumstances, 4
Cast to a thickness of ~10 mm.

次に、この鋳造板の冷間圧延前に、380〜480℃の
温度において、1〜24時間の焼鈍を行う。この焼鈍は
僅かではあるが、鋳造板中に形成されるMg含有量が1
0〜20wt%のハードスポットを固溶拡散させて無害
化するためであり、380℃未満ではこの効果が少なく
、また、480℃を越える温度ではハードスポット部に
バーニング現象が生じ易くなる。よって、焼鈍温度は3
80〜480℃とする。
Next, before cold rolling this cast plate, it is annealed at a temperature of 380 to 480°C for 1 to 24 hours. Although this annealing is slight, the Mg content formed in the cast plate is 1
This is to diffuse 0 to 20 wt% of hard spots into a solid solution and render them harmless. At temperatures below 380°C, this effect is small, and at temperatures above 480°C, a burning phenomenon tends to occur in the hard spots. Therefore, the annealing temperature is 3
The temperature is 80 to 480°C.

また、保持時間は1時間未満ではハードスポットの均一
な拡散効果が少なく、また、24時間を越えると効果は
飽和してしまい無駄である。よって、焼鈍時間は1〜2
4時間とする。そして、この拡散効果をさらに完全にす
るためには、2回目−8〜 の焼鈍を480〜580℃の温度において1〜24時間
行うことが望ましい。
Further, if the holding time is less than 1 hour, the effect of uniformly diffusing hard spots will be small, and if it exceeds 24 hours, the effect will be saturated and it will be useless. Therefore, the annealing time is 1 to 2
It will be 4 hours. In order to further perfect this diffusion effect, it is desirable to perform the second annealing at a temperature of 480 to 580°C for 1 to 24 hours.

さらに、ハードスポットの偏析が比較的少ない場合は、
1回目の焼鈍を480℃以上で行うことも可能である。
Furthermore, if hard spot segregation is relatively small,
It is also possible to perform the first annealing at 480°C or higher.

この焼鈍後の鋳造板を20%以上の圧延率で冷間圧延を
行うが、この圧延率が20%未満ではディスク用基盤と
しての加工中の完全軟化処理時に再結晶粒が粗大化する
場合があり、仕上げ切削、研削時に粗大結晶粒に起因す
る段差が生じ易くなり、充分な表面精度が得られない。
This annealed cast plate is cold rolled at a rolling rate of 20% or more, but if this rolling rate is less than 20%, recrystallized grains may become coarse during the complete softening process during processing as a base for a disk. However, during finishing cutting and grinding, steps due to coarse grains tend to occur, making it impossible to obtain sufficient surface precision.

また、歪み除去の向上、板厚精度の向上の観点からも冷
間圧延は必要である。そのためにも、冷間圧延の圧延率
は20%以上とするのが好ましい。
Cold rolling is also necessary from the viewpoint of improving distortion removal and improving plate thickness accuracy. For this reason, it is preferable that the rolling reduction in cold rolling is 20% or more.

なお、軟質材とするための焼鈍はバッヂ方式では320
〜450℃の温度において1〜10時間行うのが好まし
く、特に350〜400℃とするのが望ましい。また、
急速加熱方式ではさらに高温においても可能である。
In addition, annealing to make a soft material is 320 in the badge method.
It is preferable to carry out the reaction at a temperature of -450°C for 1 - 10 hours, and particularly preferably at a temperature of 350 - 400°C. Also,
With the rapid heating method, even higher temperatures are possible.

[実 施 例] 本発明に係る磁気ディスク用アルミニウム合金板の製造
方法の実施例を説明する。
[Example] An example of the method for manufacturing an aluminum alloy plate for a magnetic disk according to the present invention will be described.

実施例1 第1表に示す含有成分および含有割合のアルミニウム合
金を溶解、精錬した後、第1表に示した板厚に鋳造した
。この場合、溶湯供給ノズル−冷却体間にArガスを鋳
造板の片面Icm当たり38cc/minの流徽で供給
し、溶湯表面をシールドした。また、この時の鋳造板の
水素ガス含有量は0.23 cc/]、OOgであった
Example 1 After melting and refining an aluminum alloy having the components and proportions shown in Table 1, the aluminum alloy was cast to the thickness shown in Table 1. In this case, Ar gas was supplied between the molten metal supply nozzle and the cooling body at a flow rate of 38 cc/min per Icm of one side of the cast plate to shield the molten metal surface. Further, the hydrogen gas content of the cast plate at this time was 0.23 cc/], OOg.

鋳造板を450°Cの温度に4時間焼鈍した後、2mm
厚まで冷間圧延を行った。さらに、打ち抜き、歪取り焼
鈍を350℃の温度において4時間行って完全軟質材と
した後、精密切削を行いディスク用基盤とした。
After annealing the cast plate at a temperature of 450°C for 4 hours, 2mm
Cold rolling was performed until the thickness was reached. Furthermore, the material was punched and strain-relieved annealed at a temperature of 350° C. for 4 hours to obtain a completely soft material, and then precision cut to obtain a disk base.

このディスク用基盤の晶出化合物の分布を測定し最大晶
出化合物サイズの測定結果を第2表に示す。この第2表
から明らかなように、本発明に係る磁気ディスク用アル
ミニウム合金板の製造方法に使用するアルミニウム合金
では晶出化合物のサイズが2.0μm以下となっている
。なお、この仕」二げ而の表面精度はいずれも0.00
6〜0007μmRaであり、測定値における差は認め
られなかった。
The distribution of crystallized compounds on this disk substrate was measured, and the results of the measurement of the maximum crystallized compound size are shown in Table 2. As is clear from Table 2, in the aluminum alloy used in the method for manufacturing an aluminum alloy plate for magnetic disks according to the present invention, the size of the crystallized compound is 2.0 μm or less. In addition, the surface accuracy of this work is 0.00 in both cases.
6 to 0007 μmRa, and no difference was observed in the measured values.

さらに、これらのディスク用基盤を、30℃の蓚酸水溶
液中で3A/dm2の電流密度で12μmの陽極酸化皮
膜を形成した後、40°Cの15%1−1.SO4水溶
液中に15分間浸漬し、さらに、研磨布および研磨剤を
用いて研磨仕上げを行った。
Furthermore, after forming a 12 μm anodic oxide film on these disk substrates at a current density of 3 A/dm2 in an oxalic acid aqueous solution at 30° C., a 15% 1-1. It was immersed in an SO4 aqueous solution for 15 minutes, and then polished using a polishing cloth and an abrasive.

この研磨仕上げ後の表面租度は0旧μmRmaxであっ
た。
The surface roughness after this polishing was 0 μmRmax.

即ち、本発明に係る磁気ディスク用アルミニウム合金板
の製造方法によれば、高記録密度化が可能な磁気ディス
ク用基盤の製造が容易である。
That is, according to the method for manufacturing an aluminum alloy plate for a magnetic disk according to the present invention, it is easy to manufacture a base for a magnetic disk that can achieve high recording density.

なお、Cu含有は第3表に示すように、強度向」〕に有
効であるがN018では陽極酸化の際に、Al−Mg−
Cu系の粒界析出物が優先的に溶解し溝が形成されるた
めディスク用基盤としては不適であった。
As shown in Table 3, Cu content is effective for improving strength, but in N018, Al-Mg-
Since Cu-based grain boundary precipitates were preferentially dissolved and grooves were formed, it was unsuitable as a disk substrate.

第3表 実施例2 第4表に示す含有成分、含有割合のアルミニウム合金を
溶解し、7mm厚に鋳造した。鋳造に際しては溶湯供給
ノズル−冷却ロールの間隙にArガスを第4表に示した
量を供給した。
Table 3 Example 2 An aluminum alloy having the components and proportions shown in Table 4 was melted and cast to a thickness of 7 mm. During casting, Ar gas was supplied in the amount shown in Table 4 into the gap between the molten metal supply nozzle and the cooling roll.

鋳造された板を第5表に示した焼鈍条件で焼鈍後、3m
m厚まで冷間圧延を行った。その後さらに打ち抜き、歪
み取り焼鈍(350℃の温度で2時間)、精密切削を行
い、ディスク基盤とした。
After annealing the cast plate under the annealing conditions shown in Table 5,
Cold rolling was performed to a thickness of m. Thereafter, further punching, strain relief annealing (at a temperature of 350° C. for 2 hours), and precision cutting were performed to obtain a disk base.

さらに、脱脂、表面処理、磁気膜塗布、塗膜焼成乾燥(
250℃の温度で1時間)、研磨を行い磁気ディスクと
した。
In addition, we also perform degreasing, surface treatment, magnetic coating, coating baking and drying (
Polishing was performed at a temperature of 250° C. for 1 hour) to obtain a magnetic disk.

これらの磁気ディスクの異常(フクレ)を判定し結果を
第5表に示す。
Abnormalities (blisters) in these magnetic disks were determined and the results are shown in Table 5.

この第5表よりフクレの発生率は、本発明に係る磁気デ
ィスク用アルミニウム合金板の製造方法以外の方法では
信頼性に欠け、ディスク基盤として不適切であることは
明らかであり、また、490°Cの温度における2時間
の焼鈍でバーニングが生じ、精密切削の時点で不適正な
基盤と判断された。
From this Table 5, it is clear that any method other than the manufacturing method of the aluminum alloy plate for magnetic disks according to the present invention lacks reliability in terms of the blistering rate and is unsuitable as a disk substrate. Burning occurred after 2 hours of annealing at a temperature of C, and the base was determined to be inappropriate at the time of precision cutting.

[発明の効果] 以」−説明したように、本発明に係る磁気ディスク用ア
ルミニウム合金板の製造方法は、上記の構成を有してい
るものであるから、良好な強度を有し、表面精度に優れ
ているので記録エラーが少なく、高記録密度で何り、極
めて信頼性の高い磁気ディスク用基盤が製造できるとい
う効果を有するものである。
[Effects of the Invention] As explained above, since the method for manufacturing an aluminum alloy plate for a magnetic disk according to the present invention has the above configuration, it has good strength and surface precision. It has the advantage of being able to produce a highly reliable magnetic disk substrate with few recording errors and high recording density.

Claims (1)

【特許請求の範囲】 Mg3.5〜5.5wt%、Be0.5〜50ppmを
含有し、不純物として、 Si≦0.04wt%、Fe≦0.04wt%、Mn≦
0.2wt%、Cr≦0.06wt%、Ti≦0.00
6wt% に規定し、残部Alよりなるアルミニウム合金を薄板連
続鋳造法により4〜10mmの板厚に鋳造し、冷間圧延
の前に380〜480℃の温度において1〜24時間の
焼鈍を行うことを特徴とする磁気ディスク用アルミニウ
ム合金板の製造方法。
[Claims] Contains 3.5 to 5.5 wt% Mg and 0.5 to 50 ppm Be, and as impurities, Si≦0.04 wt%, Fe≦0.04 wt%, Mn≦
0.2wt%, Cr≦0.06wt%, Ti≦0.00
6 wt%, and the balance is Al, cast into a plate with a thickness of 4 to 10 mm by continuous thin plate casting method, and annealed at a temperature of 380 to 480°C for 1 to 24 hours before cold rolling. A method for manufacturing an aluminum alloy plate for magnetic disks, characterized by:
JP10819986A 1986-05-12 1986-05-12 Manufacture of aluminum alloy sheet for magnetic disk Granted JPS62263955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10819986A JPS62263955A (en) 1986-05-12 1986-05-12 Manufacture of aluminum alloy sheet for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10819986A JPS62263955A (en) 1986-05-12 1986-05-12 Manufacture of aluminum alloy sheet for magnetic disk

Publications (2)

Publication Number Publication Date
JPS62263955A true JPS62263955A (en) 1987-11-16
JPS6411108B2 JPS6411108B2 (en) 1989-02-23

Family

ID=14478528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10819986A Granted JPS62263955A (en) 1986-05-12 1986-05-12 Manufacture of aluminum alloy sheet for magnetic disk

Country Status (1)

Country Link
JP (1) JPS62263955A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556008U (en) * 1991-12-27 1993-07-27 紀伊産業株式会社 compact
JPH0560404U (en) * 1992-01-21 1993-08-10 紀伊産業株式会社 compact

Also Published As

Publication number Publication date
JPS6411108B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
TWI361836B (en) Method for fabricating aluminum alloy thick plate and aluminum alloy thick plate
CN109563572B (en) Aluminum alloy plate for magnetic disk substrate, method for producing same, and magnetic disk
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
JP5767384B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP4490850B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP2020029595A (en) Aluminum alloy blank for magnetic disk and manufacturing method therefor, magnetic disk using aluminum alloy blank for magnetic disk and manufacturing method therefor
JP3286982B2 (en) Mold material
JPS62263955A (en) Manufacture of aluminum alloy sheet for magnetic disk
JP4751246B2 (en) Manufacturing method of aluminum alloy substrate for magnetic disk and aluminum alloy substrate for magnetic disk manufactured by this manufacturing method
JPS6033333A (en) Al-alloy for magnetic disc substrate
JPH06145927A (en) Production of al-mg alloy rolled sheet for magnetic disk
JPS6253586B2 (en)
JPS6152228B2 (en)
JPS604263B2 (en) Manufacturing method of Al alloy plate for magnetic disk substrate
JPS6154105B2 (en)
JPH11315338A (en) Aluminum alloy for magnetic disk, excellent in zincate treatment property
JPS6056415B2 (en) Manufacturing method of Al alloy plate for magnetic disk
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JP4214143B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy substrate for magnetic disk, and method for producing the alloy plate
JPH07195150A (en) Method for casting aluminum alloy for hdd
JP2019039078A (en) Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JPS634050A (en) Manufacture of aluminum-alloy substrate for magnetic disk
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JP2018059138A (en) Al-Mg-BASED ALLOY SHEET FOR MAGNETIC DISK, Al-Mg-BASED ALLOY BLANK FOR MAGNETIC DISK, AND Al-Mg-BASED ALLOY SUBSTRATE FOR MAGNETIC DISK