JPH02111839A - Aluminum alloy sheet for disk having superior plating suitability and its production - Google Patents

Aluminum alloy sheet for disk having superior plating suitability and its production

Info

Publication number
JPH02111839A
JPH02111839A JP63262650A JP26265088A JPH02111839A JP H02111839 A JPH02111839 A JP H02111839A JP 63262650 A JP63262650 A JP 63262650A JP 26265088 A JP26265088 A JP 26265088A JP H02111839 A JPH02111839 A JP H02111839A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
plating
disk
intermetallic compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63262650A
Other languages
Japanese (ja)
Inventor
Masahiro Kawaguchi
雅弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63262650A priority Critical patent/JPH02111839A/en
Publication of JPH02111839A publication Critical patent/JPH02111839A/en
Priority to US07/927,740 priority patent/US5244516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al alloy sheet having a smooth plated surface minimal in plating defects by specifying the composition of an Al alloy containing Cu and Zn and also specifying respective sizes and quantities of an intermetallic compound composed principally of Al-Fe and an intermetallic compound composed principally of Mg-Si. CONSTITUTION:An Al alloy having a composition which contains, as essential components, >3-6%, by weight, Mg, 0.03-<0.3% Cu, and 0.03-0.4% Zn and in which the amounts of Fe and Si among impurities are regulated to <=0.07% and <=0.06%, respectively, in the case of semicontinuous casting and also to <=0.1% and <=0.1%, respectively, in the case of continuous casting of steel sheet is cast at >=710 deg.C. The resulting ingot is subjected to soaking treatment at >=450 deg.C is then subjected to hot rolling at >=500 deg.C initial temp. and to cold rolling. By this method, the Al alloy sheet in which the size of an intermetallic compound composed principally of Al-Fe and the number of the above intermetallic compounds of <=5mu are regulated to <=10mu and <=5 pieces/2mm<2>, respectively, and also the size of an intermetallic compound composed principally of Mg-Si and the number of the above intermetallic compounds of >=5mu are regulated to <=8mu and <=5 pieces/2mm<2>, respectively, and which has superior surface accuracy after polishing minimal in nodules and micropits can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は優れたメッキ性を有するディスク用アルミニウ
ム合金板に係り、更に詳しくは、コンピュータの記録媒
体として使用される磁気ディスク等のディスク用のアル
ミニウム合金基盤表面にメッキ層を形成する工程に供さ
れる場合に、優れた下地処理性、メッキ性を有し、更に
ノジュール。 マイクロピットが少なく優れた研磨後表面精度を有する
ディスク用アルミニウム合金板とその製造方法に関する
ものである。 (従来の技術) 一般に、コンピュータの記録媒体として使用される磁気
ディスク等のディスク用基盤としては、軽量、非磁性で
あり、且つ高速回転に耐える剛性を有すること、また、
精密切削或いは研磨により良好な表面精度が得られるこ
と、更には成る程度の耐食性を有すること等の点から、
アルミニウム合金が用いられている。 従来1例えば磁気ディスク用基盤を例に説明すると、こ
のような磁気ディスク用アルミニウム合金基盤上に磁性
膜を形成する方法としては塗布法が主体であったが、近
年1m気ディスクの高密度化のためにメッキ法やスパッ
タ法が開発され、適用が進められている。これらメッキ
法やスパッタ法による磁気ディスク用基盤の場合には、
N1−P等のメッキが下地処理として施されている。 このような下地メッキ処理を施す磁気ディスク用アルミ
ニウム合金としては、従来、AA5086合金(Al−
Mg系)が最も多く使用されており、また一部ではJI
S、7075合金(Al−Zn−Mg系)も使用されて
いる。 (発明が解決しようとする課題) しかし乍ら、これら従来のアルミニウム合金を基盤材料
として使用した場合には、アルミニウム合金素材中に1
0μmを超えるA Q −Feを主成分とする晶出物(
Al−Fe、Aff−Fe−5i、Al−Fe−Mn等
)や、Mg−8Lを主成分とする晶出物等の金属間化合
物が多数存在するため、切削や研磨時或いは下地メッキ
の前処理時にこれらの粗大な金属間化合物がアルミニウ
ム合金基盤から脱落して穴となるため、下地メッキ後の
表面が粗くなり易いという欠点があった。 特に、JIS7075合金(Al−Zn−Mg系)を基
盤材料として使用した場合には、このアルミニウム合金
はCu、Znを過剰に含有するものであるため、それら
の粗大金属間化合物もメッキ後の表面が粗面化する原因
となるだけでなく、熱処耶系合金であることから、圧延
板から打抜き或いは機械加工により作製したディスクの
歪み除去の焼鈍において、冷却速度を適切に調整しない
場合には内部応力が発生するという欠点もあった。 上記に説明したように、ディスク表面の粗さが大きくな
り易く、或いはそれに起因してピット(小さな穴)等の
メッキ欠陥が発生し易いという欠点があるため、従来の
ディスク用アルミニウム合金においては、このような欠
点を解消するためにメッキ皮膜を、例えば、30〜50
μm前後と比較的厚く形成し、次いで研磨して仕上げる
という方法が採用されていた。しかし、メッキ皮膜を厚
くすることはメッキや研磨に多大の費用を要するという
問題があった。 したがって、コストの低減及び生産性の向上のため、メ
ッキ皮膜厚を薄くすることが重要な課題となっている。 更に、メッキ皮膜厚さとは別に、ピットを低減すること
、及びメッキ前処理における粗さを低減してメッキ処理
の効率を向上させることも重要な課題となっている。そ
のため、例えば、純度が99.9%或いは99.99%
のAβ地金を使用して金属間化合物を微細化することに
よる改善も試みられたが、唯単に使用Afl地金の純度
を上げただけでは、却ってメッキ面の粗さが増大するの
みならず、メッキ層の付着性も低下するという問題が発
生する。 本発明者は、これらの原因が、一般にアルミニウム合金
のメッキ前処理法として用いられる亜鉛置換時において
、高純度Al地金を使用することによりアルミ素材中の
Fe含有量が減少したために亜鉛の析出が粗雑で不均一
となることに起因するためであることを見い出した。そ
こで、本発明者は、上記に説明したような従来のアルミ
ニウム材料における種々の問題点を検討し及び磁気ディ
スクに対する多くの要求を満たすべく鋭意研究を重ねた
結果、合金元素としてCu、Znを添加することによっ
てメッキ性を向上させることができるることを見い出し
、先にディスク用アルミニウム合金を提案した(特公昭
62−2018号)。 この提案に係るディスク用アルミニウム合金は既に実用
化さ力、ており、高い評価を受けている。 しかし乍ら、磁気ディスクには益々コス1−ダウンが要
求されており、そのため更に下地メッキの厚さを薄くす
ることやポリッシュ時の研磨式を小さくすることが重要
な課題となっている。したがって、下地メッキ後のディ
スク表面に生じる半球状の突起(所謂、ノジュール)の
発生を抑制して如何に平滑なメッキ面を得るか、また、
従来は問題とならなかった極表面層の小さなピット(所
謂。 マイクロピット)を如何に低減するかが大きな開発課題
となっている。 本発明の目的は、上記の如く磁気ディスク、光ディスク
等々のディスク並びにディスク用アルミニウム材料に対
して求められている種々の要請を満足し、優れた下地処
理性、メッキ付着性を有すると共に、マイクロピットや
ノジュール等のメッキ欠陥が少なく平滑なメッキ面が得
られるディスク用アルミニウム合金板を提供することに
ある。 また、本発明の他の目的は、かぎるディスク用アルミニ
ウム合金板を安価に製造する方法を提供することにある
。 (課題を解決するための手段) 本発明者らは、このような実情を鑑みて、種々研究を重
ねた結果、メッキ面でのノジュールとマイクロピットの
発生はメッキの前処理後の基盤面の凹凸と強い相関関係
があること、そのためには、メッキ曲処理後の基盤面の
凹凸の原因となる金属間化合物(所謂、晶出物や粗大な
化合物)を低減する必要があるが、従来は単に種々の金
属間化合物を一括して検討対象として考えられていたの
とは異なり、特にA犯−Feを主成分とする金属間化合
物とMg−Siを主成分とする金属間化合物とを区別し
てそれぞれ異なるサイズ、量を規定すること、同時に組
成の調整等によりメッキ性を付与することにより、可能
であることを見い出し、ここに本発明をなしたものであ
る。 すなわち、本発明は、必須元素として3%〈Mg56%
、0.03%≦Cu<0.3%及び0.03%≦Zn≦
0.4%を含有し、不純物のうちのFe、Siを半連続
鋳造の場合はFe50.07%、Si≦0.06%、薄
板連鋳の場合はFe50.1%、Si≦0.1%に規制
した組成を有すると共に。 A Q −Feを主成分とする金属間化合物の大きさの
最大値が10μm以下であって、なお且つ5μm以上の
該金属間化合物の数が5個10.2mm”以下であり、
更に、Mg−Siを主成分とする金属間化合物の大きさ
の最大値が8μm以下であって、なお且つ5μm以上の
該金属間化合物の数が5個10.2mm2以下であるこ
とを特徴とする優れた下地処理性、メッキ付着性を有し
、ノジュール、マイクロピットが少ない優れた表面精度
を有するディスク用アルミニウム合金板、を要旨とする
ものである。 また、その製造方法は、必須元素として3%くMg56
%、0.03%≦Cu<0.3%及び0.03%≦Zn
≦0.4%を含有し、不純物のうちのFe、SiをFe
50.07%、Si≦0.06%に規制した組成を有す
るアルミニウム合金を710℃以上で鋳込み、得られた
鋳塊に450℃以上の均熱処理を施した後、熱間圧延開
始温度500″C以上の熱間圧延及び冷間圧延を行うこ
とを特徴とするものである。 更に、他の製造方法は、必須元素として3%くMg56
%、0.03%≦Cu<0.3%及び0.03%≦Zn
≦0.4%を含有し、不純物のうちのFe、SiをFe
50,1%、Si≦0.1%に規制した組成を有するア
ルミニウム合金を690℃以上で鋳込み、3mm厚以上
の薄板連鋳コイルを得て。 これを冷間圧延することを特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由について説明
する。 Mヱ: Mgはディスク基盤として必要な機械的強度を付与する
のに必要な元素である。しかし、含有量が3%以下では
この効果が不十分であり、また6%を超えると圧延時に
耳割れが生じ易くなり、生産性が低下すると共に、溶解
、鋳造時の高温酸化によってMgO等の非金属介在物が
生成し易くなり、好ましくない。よって1M代量は3%
< M g≦6%の範囲とする。 Cu、  Zn: Cu、Znはメッキ前処理時の均一エツチング性を付与
すると共に、亜鉛置換処理時の亜鉛の基盤表面への析出
を均一微細にする効果を有するものである。これによっ
て下地メッキ皮膜面の粗さを小さくすると共に皮膜の付
着性の向上に寄与する。 しかし、Cu、Znがそれぞれ0.03%未満では上記
のような効果が得られず、またCuが0.3%以上であ
ったり、Znが0.4%を超える場合には、ノジュール
の発生が多大となったり、結晶粒界のエツチング性が過
剰となってメッキ面の平滑性を損ねるので好ましくない
。したがって、Cu mは0.03%≦CI<0.3%
の範囲とし、より好ましくはCu:0.05−0.2%
であり、ZrJlは0゜03≦Zn<0.4%の範囲と
し、より好ましくはZn:O,’06−0.3%である
。なお、Cu、Znが上記範囲にある場合でも、それぞ
れ単独添加では結晶粒間での化学的反応性の差が顕著と
なり、粒)?Jlで段差を生じることから好ましくない
ため、CuとZnは同時に添加する。 Al−Fe、AM−Fe−Si、Al−Fe−Mn系等
のA Q −Feを主成分とする金属間化合物及びMg
−Siを主成分とする金属間化合物は、地金不純物とし
て混入するFe、SLに起因するものであるが、これら
のディスク用基盤としての加工、所J1ツサブス1ヘレ
ート加工時の切削や研磨・研削等の加工工程において突
起や脱落による窪みとなったり、メッキ前処理工程にお
いて脱落又は溶解してメッキ面のマイクロピッ1−の原
因となるため、いずれも好ましくない。 特に、メッキ前処理工程において、10μmを超えるA
l−Feを主成分とする金属間化合物や8μmを超える
Mg−5iを主成分とする金属間化合物が存在する場合
には、メッキ前処理工程中のエツチング量がl Omg
 / dm2以下のマイルドなエツチング条件下であっ
ても、メッキ皮膜表面のマイクロビット、の原因となる
ので好ましくない。 更に、A Q −Feを主成分とする金属間化合物の最
大値が10μm以下であり、Mg−5iを主成分とする
金属間化合物の最大値が8μm以下であったとしても、
5μm以上のAl−Feを主成分とする金属間化合物が
5個70.2mm2を超えて存在したり、5μm以上の
Mg−Siを主成分とする金属間化合物が5個10.2
mm”を超えて存在すると、実質的に粗大な金属間化合
物1個と同様の悪影響を与えることがあり、好ましくな
い。したがって、Al−Feを主成分とする金属間化合
物の大きさの最大値が10μm以下であって、なお且つ
5μm以上の該金属間化合物が5個10.2mm2以下
であり、更に、Mg−Siを主成分とする金属間化合物
の大きさの最大値が8μm以下であって、なお且つ5μ
m以上の該金属間化合物が5個70.2mm2以下とす
る。 しかし、メッキ前処理工程中のエツチング量が11〜2
0mg/dm”以上の強エツチング条件下では、6μm
を超えるA Q −Feを主成分とする金属間化合物や
5μmを超えるMg−Siを主成分とする金属間化合物
が存在する場合には、メッキ皮膜表面のマイクロピット
の原因となるので好ましくない。更に、Al−Feを主
成分とする金属間化合物の大きさの最大値が6μm以下
であり1Mg−5iを主成分とする金属間化合物の最大
値が5μm以下であったとしても、5μm以上のAl−
Feを主成分とする金属間化合物が5個10.2mm”
を超えて存在したり、4μm以上のMg−8Lを主成分
とする金属間化合物が5個10,2mm”を超えて存在
すると、実質的に粗大な化合物1個と同様の悪影響を与
えることがあり、好ましくない。したがって、より好ま
しくは、Al−Feを主成分とする金属間化合物の大き
さの最大値が6μm以下であって。 なお且つ5μm以上の該金属間化合物が5個10.2m
m2以下であり、更に、Mg−8Lを主成分とする金属
間化合物の最大値が5μm以下であって、なお且つ4μ
m以上の該金属間化合物が5個10.2mm2以下とす
る。 なお、これらの金属間化合物(Al−Feを主成分とす
るもの、Mg−Siを主成分とするもの)の大きさと量
は、素材中のFe、Siの含有量に大きく影響されるも
のであるが、その鋳造条件や均熱処理(ソーキング)条
件等の影響も大きい。 例えば、鋳造条件に関しては、U造時の鋳込み温度を高
くしたり、所謂薄板連鋳のように鋳造板厚を薄くしたり
して、凝固時の冷却速度を速くすることによっても低減
される。したがって、本発明におけるアルミニウム合金
の不純物Fe、Siの含有量は、一義的に決定されるも
のではないが、半連続鋳造法の場合にはFe50.07
%、Si≦0.06%が望ましい。より好ましくは、F
e≦0.04%、SiS2,04%である。また、薄板
連鋳法の場合には、Fe50.1%、Si≦0.1%、
より好ましくは、Fe50.07%、Si≦0.06%
である。Fe、Siの含有量の下限値は特に定めるもの
ではないが、2μm以下の金属間化合物の場合は、メッ
キの膜厚が極端に薄く(例えば3μm以下)ない限りメ
ッキ欠陥とはなり難いこと、更にSiの場合は、後述の
均熱処理条件等によっても低減できること等から、経済
的な面からFe>0゜003%、Si>0.005%が
望ましい。 また、本発明に係るディスク用アルミニウム合金におい
ては、これらの不純物以外のMn、Cr、Ti等につい
ては、再結晶粒の微細化や高温熱処理時のグレングロス
の防止或いはU造組織の微細化等の効果を有するため、
JI35086合金に許容されている範囲において含ま
れてもよいが、上記の金属間化合物の粗大化を惹き起こ
したり。 インクルージヨンの原因となる場合もあるので、Mn≦
0.4%、Cr≦0.1%、Ti≦0.1%が望ましい
。また、BやBe等の元素は溶解、鋳造時に添加される
ことも多いが、1何れもlooppm以下が望ましい。 次に1本発明に係るディスク用アルミニウム合金板の製
造法について説明する。 まず、鋳造方法としては、上記成分組成のアルミニウム
合金につき、鋳塊厚を300〜600mmとする通常の
半連続鋳造法でも、或いは鋳塊厚を30mm以下とする
薄板連鋳法のいずれの方法でもよいが、より低純度のA
l地金を用いても上記の金属間化合物の低減と微細化が
可能な薄板連鋳法の方が望ましい。なお、薄板連鋳法の
場合、U造時のコイル板厚は、ディスク基盤としての打
抜き加工や切削、研磨加工等の精度上から50%以上の
冷間圧延を施すことが望ましいことから、3mn+以上
とするべきである。 いずれの鋳造方法の場合にも、鋳込み温度を高くして金
属間化合物を低減し易くするのがよく、特に通常の半連
続鋳造法の場合には710°C以上が望ましい。 次に、上記のアルミニウム合金鋳塊(或いは薄板連鋳コ
イル)を常法により均熱処理及び圧延を行う。但し、半
連続鋳造法の場合は、均熱処理は450°C以上とし、
Mg−8Lを主成分とする金属間化合物の低減のために
は、より好ましくは500℃以上の温度に1時間以上保
持する条件で行う。 圧延については、大型鋳塊は生産性の点から熱間圧延及
び冷間圧延を行うが、Mg、−Siを主成分とする金属
間化合物の低減のためには、熱間圧延開始温度を500
 ’C以上にすることが好ましい。 もっとも、薄板連鋳コイルの場合には、熱間圧延を省略
し冷間圧延のみでもよいが、コイル板厚が比較的厚い場
合には上記条件の熱間圧延を鋳造に引き続いて行っても
よい。いずれの場合でも、冷間圧延工程においては、必
要に応じて焼鈍(300〜b 薄板連鋳コイルの場合には、圧延の前、途中において焼
鈍を行うことにより、偏析の除去や圧延性の向上等の効
果がある。 この圧延板は、打抜きや切削等によりディスクの形状と
した後、必要に応じて歪み除去のために焼鈍を行う。こ
の熱処理の際、ディスク面に荷重をかけると歪み矯正効
果が大きいので望ましい。 次に、通常の圧延板は粗度が、例えば、Ra=0.1〜
0.5μmとディスク基盤としては大きく、また、歪も
更に低下させる必要があるので、切削或いは研磨により
ディスク表面を削除する。この場合、10μm未満の表
面削除では歪除去が十分ではなく、また500μmを超
える表面削除ではディスクの性能は満足するけれども、
生産性、コスト等の経済的な点から無駄であるので、ア
ルミニウム合金板のディスク基盤としては、表面を削除
する厚さは10〜500μmとするのがよい。 そして、この加工工程において、必要により歪を除去す
るために焼鈍を行う。 次いで、脱脂、酸洗、Zn置換等の前処理を行い、その
上に、例えばN1−P等の非磁性のメッキ皮I漠を形成
する。 前処理におけるエツチングはマイルドエツチング(エツ
チング量3〜10mg/dm2)でも強エツチング(エ
ツチング量11oIg/d112以上)でもよい。 本発明によれば、強エツチングも可能であり、しかも仕
上研磨代を少なくしてもピットが少なく優れた研磨後表
面精度が得られる。エツチングは酸洗が好ましい。この
点、従来のディスク用アルミニウム合金板の場合は弱い
エツチングしか適用できなかったのに比べて、優れてい
る。 メッキ皮膜厚さは、3μm未満では前処理の影響でディ
スク表面の粗さが大きく、マイクロピットも残存し易い
。更に、仕上研磨代も必然的に少ないことになり、粗さ
の小さい均一なメッキ皮膜が得られ難いので、メッキ皮
膜形成厚さは3μin以上とするのがよく、またディス
ク基盤の表面強度の点からは5μm以上とするのが好ま
しい。また、メッキ皮1漠の厚さは厚くなっても特に性
能が低下することはないけれども、あまり厚くするのも
経済的にみて不利であるので、30μm以上とするのは
好ましくない。 このようにして製造されたメッキ後のディスクは、仕上
研磨した後、更にメッキ或いはスパッタ処理により磁性
体皮膜を形成して磁気ディスクとして使用するのである
。仕上研磨代は少なくすることができ、0.2〜2μm
が望ましい。この場合でも研磨後マイクロピットが少な
く優れた表面精度を有し、平滑な表面が得られる。
(Industrial Application Field) The present invention relates to an aluminum alloy plate for disks having excellent plating properties, and more specifically, a plating layer is formed on the surface of an aluminum alloy substrate for disks such as magnetic disks used as recording media for computers. When subjected to the process of forming nodules, it has excellent surface treatment properties and plating properties, and also has excellent nodule forming properties. The present invention relates to an aluminum alloy plate for disks having fewer micropits and excellent surface precision after polishing, and a method for manufacturing the same. (Prior Art) In general, a substrate for a disk such as a magnetic disk used as a recording medium for a computer must be lightweight, non-magnetic, and rigid enough to withstand high-speed rotation.
From the viewpoints that good surface precision can be obtained by precision cutting or polishing, and furthermore, it has a certain degree of corrosion resistance, etc.
Aluminum alloy is used. Conventional Example 1: Taking a magnetic disk substrate as an example, the main method for forming a magnetic film on such an aluminum alloy substrate for a magnetic disk was a coating method, but in recent years, with the increasing density of 1m disks, For this purpose, plating methods and sputtering methods have been developed and are being applied. In the case of magnetic disk substrates made by these plating methods or sputtering methods,
Plating such as N1-P is applied as a base treatment. Conventionally, AA5086 alloy (Al-
Mg type) is the most commonly used, and in some cases JI
S, 7075 alloy (Al-Zn-Mg based) is also used. (Problem to be solved by the invention) However, when these conventional aluminum alloys are used as base materials,
A crystallized product whose main component is A Q -Fe with a diameter exceeding 0 μm (
Because there are many intermetallic compounds such as Al-Fe, Aff-Fe-5i, Al-Fe-Mn, etc.) and crystallized substances whose main component is Mg-8L, it is necessary to During processing, these coarse intermetallic compounds fall off from the aluminum alloy base and form holes, which has the disadvantage that the surface after base plating tends to become rough. In particular, when JIS 7075 alloy (Al-Zn-Mg system) is used as a base material, since this aluminum alloy contains excessive amounts of Cu and Zn, these coarse intermetallic compounds also form on the surface after plating. Not only does this cause the surface to become rough, but since it is a heat treatable alloy, if the cooling rate is not properly adjusted during annealing to remove distortion from a disk punched or machined from a rolled plate, Another disadvantage was that internal stress was generated. As explained above, conventional aluminum alloys for disks have the drawback that the roughness of the disk surface tends to increase, or that plating defects such as pits (small holes) tend to occur due to this. In order to eliminate such defects, the plating film should be coated with a thickness of, for example, 30 to 50
The method used was to form a relatively thick layer of around μm and then finish it by polishing. However, there is a problem in that increasing the thickness of the plating film requires a large amount of cost for plating and polishing. Therefore, in order to reduce costs and improve productivity, it has become an important issue to reduce the thickness of the plating film. Furthermore, apart from the thickness of the plating film, it is also important to reduce the number of pits and to reduce the roughness in the plating pretreatment to improve the efficiency of the plating process. Therefore, for example, purity is 99.9% or 99.99%.
Attempts have also been made to improve the quality of the intermetallic compounds by using Aβ base metal, but simply increasing the purity of the Afl base metal used will not only increase the roughness of the plated surface. , a problem arises in that the adhesion of the plating layer also decreases. The inventor believes that these causes are due to the precipitation of zinc due to the reduced Fe content in the aluminum material due to the use of high-purity Al base metal during zinc replacement, which is generally used as a pre-plating method for aluminum alloys. It was found that this is due to the roughness and non-uniformity of the grains. Therefore, the inventor of the present invention investigated various problems with conventional aluminum materials as explained above, and as a result of extensive research to satisfy many demands for magnetic disks, the inventors added Cu and Zn as alloying elements. They discovered that plating properties could be improved by doing so, and previously proposed an aluminum alloy for disks (Japanese Patent Publication No. 62-2018). The aluminum alloy for discs according to this proposal has already been put into practical use and has received high praise. However, magnetic disks are increasingly required to have a cost reduction of 1-down, and therefore it is important to further reduce the thickness of the base plating and to reduce the polishing method during polishing. Therefore, how to obtain a smooth plated surface by suppressing the formation of hemispherical protrusions (so-called nodules) on the disk surface after base plating, and
A major development issue is how to reduce small pits (so-called micropits) in the extreme surface layer, which have not been a problem in the past. The object of the present invention is to satisfy the various requirements for disks such as magnetic disks and optical disks as well as aluminum materials for disks as described above, to have excellent surface treatment properties and plating adhesion, and to have micro-pits. An object of the present invention is to provide an aluminum alloy plate for a disk, which has fewer plating defects such as nodules and a smooth plated surface. Another object of the present invention is to provide a method for manufacturing an aluminum alloy plate for discs at low cost. (Means for Solving the Problems) In view of the above circumstances, the inventors of the present invention have conducted various studies and found that the generation of nodules and micro pits on the plated surface is caused by the formation of the substrate surface after pre-treatment for plating. There is a strong correlation with unevenness, and in order to achieve this, it is necessary to reduce intermetallic compounds (so-called crystallized substances and coarse compounds) that cause unevenness on the substrate surface after the plating process. Unlike the previous studies, where various intermetallic compounds were considered to be the subject of investigation all at once, it is now necessary to distinguish between intermetallic compounds whose main component is A-Fe and intermetallic compounds whose main component is Mg-Si. We have discovered that it is possible by separately specifying different sizes and amounts, and at the same time imparting plating properties by adjusting the composition, etc., and have hereby accomplished the present invention. That is, the present invention uses 3% <Mg56% as an essential element.
, 0.03%≦Cu<0.3% and 0.03%≦Zn≦
Fe50.07%, Si≦0.06% in the case of semi-continuous casting, Fe50.1%, Si≦0.1 in the case of continuous thin plate casting. % and has a regulated composition. The maximum size of the intermetallic compound containing A Q -Fe as the main component is 10 μm or less, and the number of the intermetallic compounds with a size of 5 μm or more is 5 pieces and 10.2 mm” or less,
Furthermore, the maximum size of the intermetallic compound containing Mg-Si as a main component is 8 μm or less, and the number of the intermetallic compounds with a size of 5 μm or more is 5 pieces and 10.2 mm2 or less. The object of the present invention is to provide an aluminum alloy plate for disks, which has excellent surface treatment properties and plating adhesion, and has excellent surface precision with few nodules and micropits. In addition, the manufacturing method requires 3% Mg56 as an essential element.
%, 0.03%≦Cu<0.3% and 0.03%≦Zn
≦0.4%, and Fe and Si among impurities are replaced with Fe.
50.07%, Si≦0.06%, is cast at 710°C or higher, and the resulting ingot is subjected to soaking treatment at 450°C or higher, followed by a hot rolling start temperature of 500''. It is characterized by performing hot rolling and cold rolling of C or higher.Furthermore, another manufacturing method includes 3% Mg56 as an essential element.
%, 0.03%≦Cu<0.3% and 0.03%≦Zn
≦0.4%, and Fe and Si among impurities are replaced with Fe.
An aluminum alloy having a composition controlled to 50.1% and Si≦0.1% was cast at a temperature of 690°C or higher to obtain a thin continuous cast coil with a thickness of 3mm or more. This is characterized by cold rolling. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. M: Mg is an element necessary to provide mechanical strength necessary for the disk base. However, if the content is less than 3%, this effect is insufficient, and if it exceeds 6%, edge cracking tends to occur during rolling, productivity decreases, and high-temperature oxidation during melting and casting causes MgO, etc. Non-metallic inclusions tend to form, which is not preferable. Therefore, 1M cost is 3%
<Mg≦6%. Cu, Zn: Cu and Zn provide uniform etching properties during pre-plating treatment, and have the effect of uniformly and finely depositing zinc on the substrate surface during zinc replacement treatment. This reduces the roughness of the base plating film surface and contributes to improving the adhesion of the film. However, if Cu and Zn are each less than 0.03%, the above effects cannot be obtained, and if Cu is more than 0.3% or Zn is more than 0.4%, nodules may be generated. This is not preferable because it may result in a large amount of etchant or excessive etching of grain boundaries, impairing the smoothness of the plated surface. Therefore, Cu m is 0.03%≦CI<0.3%
Cu: 0.05-0.2%, more preferably Cu: 0.05-0.2%
and ZrJl is in the range of 0°03≦Zn<0.4%, more preferably Zn:O, '06-0.3%. Note that even if Cu and Zn are within the above ranges, if each is added alone, the difference in chemical reactivity between crystal grains will be significant, resulting in a change in grain size). Cu and Zn are added at the same time because Jl causes a step difference, which is undesirable. Intermetallic compounds mainly composed of AQ-Fe such as Al-Fe, AM-Fe-Si, Al-Fe-Mn, and Mg
Intermetallic compounds mainly composed of -Si are caused by Fe and SL mixed in as base metal impurities, but they are processed as substrates for disks, and during cutting, polishing, and Both of these are undesirable because they cause protrusions or depressions due to falling off during processing steps such as grinding, or they fall off or melt during the plating pretreatment step, causing micro-pits 1- on the plated surface. In particular, in the plating pretreatment process, A
If there is an intermetallic compound mainly composed of l-Fe or an intermetallic compound mainly composed of Mg-5i exceeding 8 μm, the amount of etching during the plating pretreatment process is l Omg.
Even under mild etching conditions of /dm2 or less, this is not preferable because it causes micro bits on the surface of the plating film. Furthermore, even if the maximum value of the intermetallic compound whose main component is AQ-Fe is 10 μm or less, and the maximum value of the intermetallic compound whose main component is Mg-5i is 8 μm or less,
5 intermetallic compounds whose main component is Al-Fe with a diameter of 5 μm or more are present in an area exceeding 70.2 mm2, or 5 intermetallic compounds whose main component is Mg-Si with a diameter of 5 μm or more are 10.2
mm", it is not preferable because it may have the same adverse effect as one coarse intermetallic compound. Therefore, the maximum size of the intermetallic compound whose main component is Al-Fe. is 10 μm or less, and five of the intermetallic compounds each having a size of 5 μm or more are 10.2 mm or less, and furthermore, the maximum size of the intermetallic compound whose main component is Mg-Si is 8 μm or less. Moreover, 5μ
The number of intermetallic compounds having a diameter of 5 m or more is 70.2 mm 2 or less. However, the amount of etching during the plating pretreatment process was 11 to 2
6μm under strong etching conditions of 0mg/dm” or more
If an intermetallic compound whose main component is A Q -Fe exceeding 5 μm or an intermetallic compound whose main component is Mg-Si exceeds 5 μm is present, it is not preferable because it causes micro pits on the surface of the plating film. Furthermore, even if the maximum size of the intermetallic compound whose main component is Al-Fe is 6 μm or less and the maximum size of the intermetallic compound whose main component is 1Mg-5i is 5 μm or less, Al-
5 pieces of intermetallic compound mainly composed of Fe 10.2mm"
If five intermetallic compounds mainly composed of Mg-8L with a diameter of 4 μm or more are present in a size exceeding 10.2 mm, it may have substantially the same adverse effect as one coarse compound. Therefore, it is more preferable that the maximum size of the intermetallic compound containing Al-Fe as the main component is 6 μm or less.
m2 or less, and furthermore, the maximum value of the intermetallic compound containing Mg-8L as a main component is 5 μm or less, and 4 μm or less.
The number of the intermetallic compounds having a size of 5 m or more is 10.2 mm 2 or less. The size and amount of these intermetallic compounds (those whose main component is Al-Fe, those whose main component is Mg-Si) are greatly influenced by the content of Fe and Si in the material. However, the influence of casting conditions, soaking treatment conditions, etc. is also large. For example, casting conditions can be reduced by increasing the casting temperature during U-making, reducing the thickness of the cast plate as in so-called continuous thin plate casting, and increasing the cooling rate during solidification. Therefore, the content of impurities Fe and Si in the aluminum alloy in the present invention is not uniquely determined, but in the case of the semi-continuous casting method, Fe50.07
%, Si≦0.06% is desirable. More preferably, F
e≦0.04%, SiS2.04%. In addition, in the case of continuous thin plate casting method, Fe50.1%, Si≦0.1%,
More preferably Fe50.07%, Si≦0.06%
It is. There is no particular lower limit for the content of Fe and Si, but in the case of intermetallic compounds with a thickness of 2 μm or less, plating defects are unlikely to occur unless the plating film thickness is extremely thin (for example, 3 μm or less); Furthermore, in the case of Si, Fe>0°003% and Si>0.005% are desirable from an economical point of view, since it can be reduced by the soaking treatment conditions described later. In addition, in the aluminum alloy for disks according to the present invention, Mn, Cr, Ti, etc. other than these impurities are used to refine recrystallized grains, prevent grain gloss during high-temperature heat treatment, refine U structure, etc. Because it has the effect of
Although it may be included within the range allowed by the JI35086 alloy, it may cause coarsening of the above-mentioned intermetallic compounds. Since it may cause inclusion, Mn≦
Desirably, the content is 0.4%, Cr≦0.1%, and Ti≦0.1%. Further, although elements such as B and Be are often added during melting and casting, it is desirable that each element be at loop per million or less. Next, a method for manufacturing an aluminum alloy plate for a disk according to the present invention will be explained. First, as a casting method, for the aluminum alloy having the above-mentioned composition, either the normal semi-continuous casting method with an ingot thickness of 300 to 600 mm, or the thin plate continuous casting method with an ingot thickness of 30 mm or less are used. Good but less pure A
It is preferable to use a thin plate continuous casting method that allows the above-mentioned intermetallic compounds to be reduced and made finer even if a metal is used. In addition, in the case of the thin plate continuous casting method, the coil plate thickness during U manufacturing is 3mm+, since it is desirable to perform cold rolling of 50% or more from the viewpoint of accuracy of punching, cutting, polishing, etc. as a disk base. It should be more than that. In any casting method, it is preferable to raise the casting temperature to facilitate reduction of intermetallic compounds, and in particular, in the case of a normal semi-continuous casting method, a temperature of 710° C. or higher is desirable. Next, the aluminum alloy ingot (or continuous thin plate coil) is soaked and rolled by a conventional method. However, in the case of semi-continuous casting method, the soaking treatment should be 450°C or higher,
In order to reduce the intermetallic compound containing Mg-8L as a main component, it is more preferable to maintain the temperature at 500° C. or higher for 1 hour or more. Regarding rolling, large ingots are hot-rolled and cold-rolled from the viewpoint of productivity, but in order to reduce intermetallic compounds whose main components are Mg and -Si, the hot rolling start temperature is set at 500°C.
'C or higher is preferable. However, in the case of continuously cast thin coils, hot rolling may be omitted and only cold rolling may be performed, but if the coil plate thickness is relatively thick, hot rolling under the above conditions may be performed subsequent to casting. . In either case, in the cold rolling process, annealing (300 to 300 b After forming the rolled plate into a disk shape by punching or cutting, it is annealed to remove distortion if necessary.During this heat treatment, if a load is applied to the disk surface, the distortion will be corrected. It is desirable because the effect is large.Next, the roughness of a normal rolled plate is, for example, Ra=0.1~
Since it is 0.5 μm, which is large for a disk substrate, and it is necessary to further reduce distortion, the disk surface is removed by cutting or polishing. In this case, if the surface is removed less than 10 μm, the distortion removal will not be sufficient, and if the surface is removed more than 500 μm, the performance of the disk will be satisfactory.
Since this is wasteful from an economic point of view such as productivity and cost, it is preferable that the thickness of the surface removed be 10 to 500 μm for a disk base made of an aluminum alloy plate. In this processing step, annealing is performed if necessary to remove strain. Next, pretreatments such as degreasing, pickling, and Zn substitution are performed, and a non-magnetic plating layer such as N1-P is formed thereon. The etching in the pretreatment may be either mild etching (etching amount 3 to 10 mg/dm2) or strong etching (etching amount 11 oIg/d112 or more). According to the present invention, strong etching is possible, and even if the final polishing allowance is reduced, excellent post-polishing surface accuracy with few pits can be obtained. Etching is preferably carried out by pickling. In this respect, it is superior to conventional aluminum alloy plates for disks, in which only weak etching could be applied. If the plating film thickness is less than 3 μm, the surface roughness of the disk will be large due to the influence of the pretreatment, and micro pits will likely remain. Furthermore, the amount of finish polishing will inevitably be small, and it will be difficult to obtain a uniform plating film with small roughness, so it is better to form a plating film with a thickness of 3 μin or more, and from the viewpoint of surface strength of the disk base. The thickness is preferably 5 μm or more. Further, even if the thickness of the plated skin becomes thick, the performance will not particularly deteriorate, but it is economically disadvantageous to make it too thick, so it is not preferable to make it thicker than 30 μm. After the plated disk manufactured in this manner is finished polished, a magnetic film is further formed by plating or sputtering, and the disk is used as a magnetic disk. Finish polishing allowance can be reduced to 0.2-2μm.
is desirable. Even in this case, a smooth surface with few micro pits and excellent surface precision can be obtained after polishing.

【以下余白】[Left below]

次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する合金Nα1〜Nα7(本
発明例)及びNα8〜Na 13 (比較例)をそれぞ
れ第1表に示す鋳造法により溶解し、フィルター処理後
、半連続鋳造材の場合は造塊、開削後、400mm厚x
looomm幅X3500mm長さのスラブとし、第1
表の条件で均熱処理を施した後、熱間圧延、冷間圧延を
行って板厚を2mmとした。薄板連鋳材の場合は6mm
厚X800mm幅(×長さ)のコイル状に鋳造し、40
0°Cの温度で5時間の焼鈍を施した後、冷間圧延を行
って板厚を2mmとした。 次いで、これらの板材を打抜いた後、歪み取り焼鈍を施
し、外径130mm、内径40mmの中空円円盤を得た
。 更に円盤の表面を切削加工(表面削除60μm)してR
maxo 、 1 μm、板厚1.88mmの磁気ディ
スク用アルミニウム合金基盤を製造した後、該基盤を以
下の条件にて処理し、下地処理性、メッキの付着性、メ
ッキ後の表面ノジュールの発生状況を調査し、またメッ
キ面を研磨してマイクロピッ1−発生状況を調査した。 その結果を第1表〜第3表に示す。 (処理条件) 脱脂(上材工業製U−クリーナーUA−68,5%、5
0’C15分、浸漬)→酸洗(上材工業製AD−101
,10%)→亜鉛置換(上材工業WAD−301、R,
T、、1分、浸漬)→硝酸剥離(50%硝酸、R,T、
、30秒、浸漬)→亜鉛置換(上材工業製AD−301
、室温、30秒、浸漬)→N1−Pメッキ(上材工業製
二ムデンHDX、90℃、浸漬、メッキ厚10μl11
)。なお、酸洗は、マイルドエツチングの場合は65℃
×3分の浸漬(エツチング量8mg / dm” )と
し、強エツチングの場合は75°CX5分の浸漬(エツ
チング量23 mH/ dm2)とした。 金属間化合物の大きさ及び量については、該磁気ディス
ク用アルミニウム合金基盤の評論について走査型電子顕
微鏡にて1000倍の倍率で開鎖1、Qmm”を測定し
て評価した。 また、下地処理性については、2回目の亜鉛置換後の表
面を観察し、析出物が均一でムラのないものをO1析出
が粗雑で粒が粗くムラの多いものを×、それらの中間の
ものや粒界が著しいエツチングを受けているものを△と
した。 メッキの付着性については、90’曲げによりメッキの
剥離が生じないものを0、一部でも剥離するものは×と
した。 ノジュールの評価については、粗度計によりメッキ面を
ランダムに20箇所、計80mm測定し、0.2μm以
上の突起が0〜2個のものを0,3〜10個のものをΔ
、11個のものを×とした。 仕上研磨後の表面精度については、メッキ面をアルミナ
粉を用いて鏡面研磨した後、640倍の倍率で100箇
所観察し、最大径2μm以上のピッ1−のないものをO
とし、1〜4個のピットがあるものを△、5個以上又は
8μm以上のピットが1個でもあるものを×とした。な
お、研磨式は0゜5μmと1.5μmとした。 第1表より、本発明例は、A Q −Fe系晶出物の大
きさが10μm以下で、5μm以上の該晶出物か5個1
0.2mm2以下であり、またMg−5i系品出物の大
きさが8μm以下で、5μm以上の該晶出物か5個70
.2mm2以下である。 もっとも、アルミニウム合金組成が本発明範囲外である
比較例のうちでも、本発明例と同様の品出物量、大きさ
のものがあるが、第2表、第3表から明らかなように、
これらの比較例では、下地処理性やメッキ性付着に劣り
、或いは下地処理[生やメッキ付着性が良好であっても
ノジュール、マイクロピットが多い。 一方、本発明例は下地処理性やメッキ付着性に優れ、更
にノジュール、マイクロピットが極めて少なく、比較例
に比べて格段に偏れていることがわかる。特に強エツチ
ングでも、ノジュールが極めて少なく、加えて、仕上研
磨式が少ない<0.5μm研磨)場合でもマイクロピッ
トの発生が極めて少なく優れた表面精度を有している。 [以下余白] (発明の効果) 以上詳述したように、本発明によれば、適量のMgを含
有するディスク用アルミニウム合金においてCu、Zn
の2種を必須元素として含有させると共に不純物のうち
のFe、Siを規制し、更に金属間化合物のうちA f
l −Fe系金属間化合物とMg−Si系金属間化合物
の大きさと量を規制したので、下地処理性、メッキ付着
性に優れると共にマイクロピットやノジュール等のメッ
キ欠陥が少なく平滑なメッキ面が得られるディスク用ア
ルミニウム合金を得ることができる。更には、強エツチ
ングの下地処理ができ、メッキ厚さを薄くできると共に
メッキ面の研磨式を少なくできるので、安価に磁気ディ
スク等の製品を提供できる。特に磁気ディスクや光ディ
スク等の素材として最適である。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚
Next, examples of the present invention will be shown. (Example) Alloys Nα1 to Nα7 (inventive examples) and Nα8 to Na13 (comparative examples) having the chemical components shown in Table 1 were melted by the casting method shown in Table 1, and after filtering, semi-continuous In the case of cast materials, after ingot making and cutting, the thickness is 400mm x
The first slab is loooomm width x 3500mm length.
After performing soaking treatment under the conditions shown in the table, hot rolling and cold rolling were performed to obtain a plate thickness of 2 mm. 6mm for thin plate continuous cast material
Cast into a coil shape with thickness x 800mm width (x length), 40
After annealing at a temperature of 0°C for 5 hours, cold rolling was performed to give a plate thickness of 2 mm. Next, after punching out these plate materials, they were subjected to strain relief annealing to obtain hollow discs with an outer diameter of 130 mm and an inner diameter of 40 mm. Furthermore, the surface of the disk was cut (surface removal 60μm) and R
After manufacturing an aluminum alloy substrate for a magnetic disk with a thickness of 1 μm and a plate thickness of 1.88 mm, the substrate was treated under the following conditions to evaluate the surface treatment properties, adhesion of plating, and the occurrence of surface nodules after plating. The plating surface was polished and the occurrence of micro pits was investigated. The results are shown in Tables 1 to 3. (Processing conditions) Degreasing (U-Cleaner UA-68, 5%, Uzai Kogyo Co., Ltd.
0'C 15 minutes, immersion) → Pickling (AD-101 manufactured by Uezai Kogyo)
, 10%) → Zinc replacement (Uezai Kogyo WAD-301, R,
T, 1 minute immersion) → Nitric acid peeling (50% nitric acid, R, T,
, 30 seconds, immersion) → Zinc replacement (AD-301 manufactured by Uezai Kogyo)
, room temperature, 30 seconds, immersion) → N1-P plating (Kamizai Kogyo Nimuden HDX, 90°C, immersion, plating thickness 10μl11
). In addition, pickling is performed at 65℃ in the case of mild etching.
For strong etching, it was immersed at 75°C for 5 minutes (etching amount 23 mH/dm2). Regarding the size and amount of the intermetallic compound, Regarding the evaluation of the aluminum alloy substrate for the disk, the open chain 1, Qmm'' was measured and evaluated using a scanning electron microscope at a magnification of 1000 times. Regarding the surface treatment properties, we observed the surface after the second zinc substitution, and found that those with uniform and even precipitates, those with coarse O1 precipitation and coarse grains, and those in between. Those in which the grain boundaries and grain boundaries were significantly etched were marked as △. Regarding the adhesion of the plating, those in which the plating did not peel off due to 90' bending were rated 0, and those in which even part of the plating peeled off were rated x. Regarding the evaluation of nodules, the plated surface was measured at 20 random locations, a total of 80 mm, using a roughness meter, and those with 0 to 2 protrusions of 0.2 μm or more were measured as 0, and those with 3 to 10 protrusions were evaluated as Δ.
, 11 items were marked as ×. Regarding the surface accuracy after final polishing, after polishing the plated surface to a mirror finish using alumina powder, we observed 100 points at 640x magnification and inspected those without any pits with a maximum diameter of 2 μm or more.
Those with 1 to 4 pits were rated Δ, and those with 5 or more pits or even one pit of 8 μm or more were rated ×. Note that the polishing method was 0°5 μm and 1.5 μm. From Table 1, in the example of the present invention, the size of the A Q -Fe-based crystallized product is 10 μm or less, and 5 of the crystallized products with a size of 5 μm or more are used.
0.2 mm2 or less, and the size of the Mg-5i-based product is 8 μm or less, and 5 of the crystallized products with a size of 5 μm or more 70
.. It is 2 mm2 or less. However, even among the comparative examples in which the aluminum alloy composition is outside the scope of the present invention, there are some that have the same quantity and size as the inventive examples, but as is clear from Tables 2 and 3,
In these comparative examples, the surface treatment properties and plating adhesion were poor, or there were many nodules and micro pits even though the surface treatment and plating adhesion were good. On the other hand, it can be seen that the examples of the present invention have excellent surface treatment properties and adhesion of plating, and have extremely few nodules and micropits, which are much more biased than the comparative examples. In particular, even with strong etching, there are very few nodules, and in addition, even with final polishing (less than 0.5 μm polishing), there are very few micro pits and excellent surface precision is achieved. [Margins below] (Effects of the invention) As detailed above, according to the present invention, Cu, Zn
In addition to containing two types of essential elements, Fe and Si among impurities are controlled, and A f among intermetallic compounds is contained.
The size and amount of l-Fe-based intermetallic compounds and Mg-Si-based intermetallic compounds are regulated, resulting in excellent surface treatment and plating adhesion, as well as a smooth plated surface with few plating defects such as micro pits and nodules. An aluminum alloy for discs can be obtained. Furthermore, it is possible to perform a strong etching base treatment, reduce the thickness of the plating, and reduce the need for polishing the plated surface, so products such as magnetic disks can be provided at low cost. It is particularly suitable as a material for magnetic disks, optical disks, etc. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (7)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、必須元素として3%<
Mg≦6%、0.03%≦Cu<0.3%及び0.03
%≦Zn≦0.4%を含有し、不純物のうちのFe、S
iを半連続鋳造の場合はFe≦0.07%、Si≦0.
06%、薄板連鋳の場合はFe≦0.1%、Si≦0.
1%に規制した組成を有すると共に、Al−Feを主成
分とする金属間化合物の大きさの最大値が10μm以下
であって、なお且つ5μm以上の該金属間化合物の数が
5個/0.2mm^2以下であり、更に、Mg−Siを
主成分とする金属間化合物の大きさの最大値が8μm以
下であって、なお且つ5μm以上の該金属間化合物の数
が5個/0.2mm^2以下であることを特徴とする優
れた下地処理性、メッキ付着性を有し、ノジュール、マ
イクロピットが少ない優れた研磨後表面精度を有するデ
ィスク用アルミニウム合金板。
(1) In weight% (the same applies hereinafter), as essential elements 3%<
Mg≦6%, 0.03%≦Cu<0.3% and 0.03
%≦Zn≦0.4%, and Fe and S among impurities
In the case of semi-continuous casting, i is Fe≦0.07%, Si≦0.
06%, in the case of continuous thin plate casting, Fe≦0.1%, Si≦0.
It has a composition regulated to 1%, and the maximum size of intermetallic compounds mainly composed of Al-Fe is 10 μm or less, and the number of intermetallic compounds of 5 μm or more is 5 / 0 .2 mm^2 or less, and furthermore, the maximum size of the intermetallic compound mainly composed of Mg-Si is 8 μm or less, and the number of intermetallic compounds of 5 μm or more is 5/0 An aluminum alloy plate for disks, which has excellent surface treatment properties and plating adhesion characterized by a thickness of .2 mm^2 or less, and has excellent surface precision after polishing with few nodules and micro pits.
(2)アルミニウム合金が前記組成を有すると共に、A
l−Feを主成分とする金属間化合物の大きさの最大値
が6μm以下であって、なお且つ5μm以上の該金属間
化合物の数が5個/0.2mm^2以下であり、更に、
Mg−Siを主成分とする金属間化合物の大きさの最大
値が5μm以下であって、なお且つ4μm以上の金属間
化合物の数が5個/0.2mm^2以下である請求項1
に記載のディスク用アルミニウム合金板。
(2) The aluminum alloy has the above composition, and A
The maximum size of the intermetallic compound containing l-Fe as a main component is 6 μm or less, and the number of the intermetallic compounds with a size of 5 μm or more is 5 pieces/0.2 mm^2 or less, and
Claim 1: The maximum size of the intermetallic compound whose main component is Mg-Si is 5 μm or less, and the number of intermetallic compounds with a size of 4 μm or more is 5 pieces/0.2 mm^2 or less.
Aluminum alloy plate for discs described in .
(3)前記ディスク用アルミニウム合金板はメッキ前処
理工程中のエッチング量が3〜10mg/dm^2のマ
イルドエッチングに供されるものである請求項1又は2
に記載のディスク用アルミニウム合金板。
(3) The aluminum alloy plate for a disk is subjected to mild etching at an etching amount of 3 to 10 mg/dm^2 during a plating pretreatment step.
Aluminum alloy plate for discs described in .
(4)前記ディスク用アルミニウム合金板はメッキ前処
理工程中のエッチング量が11mg/dm^2以上の強
エッチングに供されるものである請求項2に記載のディ
スク用アルミニウム合金板。
(4) The aluminum alloy plate for a disk according to claim 2, wherein the aluminum alloy plate for a disk is subjected to strong etching with an etching amount of 11 mg/dm^2 or more during a plating pretreatment step.
(5)必須元素として3%<Mg≦6%、0.03%≦
Cu<0.3%及び0.03%≦Zn≦0.4%を含有
し、不純物のうちのFe、SiをFe≦0.07%、S
i≦0.06%に規制した組成を有するアルミニウム合
金を710℃以上で鋳込み、得られた鋳塊に450℃以
上の均熱処理を施した後、熱間圧延開始温度500℃以
上の熱間圧延及び冷間圧延を行うことを特徴とする優れ
た下地処理性、メッキ付着性を有し、ノジュール、マイ
クロピットが少ない優れた研磨後表面精度を有するディ
スク用アルミニウム合金板の製造方法。
(5) 3%<Mg≦6%, 0.03%≦ as essential elements
Contains Cu<0.3% and 0.03%≦Zn≦0.4%, and contains Fe and Si among impurities such as Fe≦0.07% and S
An aluminum alloy having a composition regulated to i≦0.06% is cast at 710°C or higher, and the resulting ingot is soaked at 450°C or higher, followed by hot rolling at a hot rolling start temperature of 500°C or higher. A method for producing an aluminum alloy plate for a disk, which has excellent surface treatment properties and plating adhesion, and has excellent post-polishing surface precision with few nodules and micro pits, the method comprising cold rolling.
(6)前記均熱処理を500℃以上で1時間以上保持す
る条件で行う請求項5に記載の方法。
(6) The method according to claim 5, wherein the soaking treatment is carried out under conditions of holding the temperature at 500°C or higher for 1 hour or more.
(7)必須元素として3%<Mg≦6%、0.03%≦
Cu<0.3%及び0.03%≦Zn≦0.4%を含有
し、不純物のうちのFe、SiをFe≦0.1%、Si
≦0.1%に規制した組成を有するアルミニウム合金を
690℃以上で鋳込み、3mm厚以上の薄板連鋳コイル
を得て、これを冷間圧延することを特徴とする優れた下
地処理性、メッキ付着性を有し、ノジュール、マイクロ
ピットが少ない優れた研磨後表面精度を有するディスク
用アルミニウム合金板の製造方法。
(7) 3%<Mg≦6%, 0.03%≦ as essential elements
Contains Cu<0.3% and 0.03%≦Zn≦0.4%, and Fe and Si among impurities are Fe≦0.1% and Si
Excellent surface preparation and plating characterized by casting an aluminum alloy with a composition controlled to ≦0.1% at a temperature of 690°C or higher to obtain a thin continuous cast coil with a thickness of 3 mm or more, which is then cold rolled. A method for producing an aluminum alloy plate for a disk, which has adhesive properties and has excellent surface precision after polishing with few nodules and micro pits.
JP63262650A 1988-10-18 1988-10-18 Aluminum alloy sheet for disk having superior plating suitability and its production Pending JPH02111839A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63262650A JPH02111839A (en) 1988-10-18 1988-10-18 Aluminum alloy sheet for disk having superior plating suitability and its production
US07/927,740 US5244516A (en) 1988-10-18 1992-08-12 Aluminum alloy plate for discs with improved platability and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262650A JPH02111839A (en) 1988-10-18 1988-10-18 Aluminum alloy sheet for disk having superior plating suitability and its production

Publications (1)

Publication Number Publication Date
JPH02111839A true JPH02111839A (en) 1990-04-24

Family

ID=17378723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262650A Pending JPH02111839A (en) 1988-10-18 1988-10-18 Aluminum alloy sheet for disk having superior plating suitability and its production

Country Status (1)

Country Link
JP (1) JPH02111839A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275568A (en) * 2001-03-15 2002-09-25 Kobe Steel Ltd Aluminum alloy for magnetic disk and substrate for magnetic disk
JP2010168602A (en) * 2009-01-20 2010-08-05 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk, and method for manufacturing the same
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
JP5762612B1 (en) * 2014-09-27 2015-08-12 株式会社Uacj Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and manufacturing method of magnetic disk
JP2015196867A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet
JP2020041184A (en) * 2018-09-10 2020-03-19 株式会社Uacj Aluminum alloy sheet for magnetic disk, manufacturing method therefor, magnetic disk substrate and magnetic disk
US11270730B2 (en) 2018-03-09 2022-03-08 Uacj Corporation Magnetic disk substrate, method for manufacturing same and magnetic disk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698401A (en) * 1980-01-10 1981-08-07 Mitsui Toatsu Chem Inc Ferromagnetic metal powder with improved oxidation stability and preparation thereof
JPS61179843A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS61266548A (en) * 1985-05-21 1986-11-26 Furukawa Alum Co Ltd Aluminum alloy for substrate of magnetic disc
JPS6254053A (en) * 1985-09-02 1987-03-09 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
JPS63111153A (en) * 1986-10-30 1988-05-16 Kobe Steel Ltd Aluminum alloy sheet for vertical magnetic disk and its production
JPH01225739A (en) * 1988-03-03 1989-09-08 Furukawa Alum Co Ltd Aluminum alloy for magnetic disk substrate
JPH01298134A (en) * 1988-05-26 1989-12-01 Kobe Steel Ltd Aluminum alloy plate for disk having excellent grindability and plating characteristics and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698401A (en) * 1980-01-10 1981-08-07 Mitsui Toatsu Chem Inc Ferromagnetic metal powder with improved oxidation stability and preparation thereof
JPS61179843A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS61266548A (en) * 1985-05-21 1986-11-26 Furukawa Alum Co Ltd Aluminum alloy for substrate of magnetic disc
JPS6254053A (en) * 1985-09-02 1987-03-09 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
JPS63111153A (en) * 1986-10-30 1988-05-16 Kobe Steel Ltd Aluminum alloy sheet for vertical magnetic disk and its production
JPH01225739A (en) * 1988-03-03 1989-09-08 Furukawa Alum Co Ltd Aluminum alloy for magnetic disk substrate
JPH01298134A (en) * 1988-05-26 1989-12-01 Kobe Steel Ltd Aluminum alloy plate for disk having excellent grindability and plating characteristics and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275568A (en) * 2001-03-15 2002-09-25 Kobe Steel Ltd Aluminum alloy for magnetic disk and substrate for magnetic disk
JP2010168602A (en) * 2009-01-20 2010-08-05 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk, and method for manufacturing the same
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
JP2015196867A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet
JP5762612B1 (en) * 2014-09-27 2015-08-12 株式会社Uacj Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and manufacturing method of magnetic disk
US9613648B2 (en) 2014-09-27 2017-04-04 Uacj Corporation Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc
US11270730B2 (en) 2018-03-09 2022-03-08 Uacj Corporation Magnetic disk substrate, method for manufacturing same and magnetic disk
JP2020041184A (en) * 2018-09-10 2020-03-19 株式会社Uacj Aluminum alloy sheet for magnetic disk, manufacturing method therefor, magnetic disk substrate and magnetic disk

Similar Documents

Publication Publication Date Title
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
KR900007975B1 (en) Aluminium alloy substrate for disk having superior suitability to plating
JP2020029595A (en) Aluminum alloy blank for magnetic disk and manufacturing method therefor, magnetic disk using aluminum alloy blank for magnetic disk and manufacturing method therefor
US5244516A (en) Aluminum alloy plate for discs with improved platability and process for producing the same
KR930007317B1 (en) Aluminium alloy for the substrate of magnetic disk
EP0361483B1 (en) Aluminum alloy for magnetic disc substrate excellent in platability
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
WO2019102669A1 (en) Aluminum alloy substrate for magnetic disks, method for producing same, and magnetic disk which uses said aluminum alloy substrate for magnetic disks
JPH06145927A (en) Production of al-mg alloy rolled sheet for magnetic disk
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH10310836A (en) Aluminum alloy clad sheet for high capacitance magnetic disk substrate, excellent in recyclability, and its production
JPS63319143A (en) Plymetal of aluminum alloy for base of magnetic disk
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
JPH01225739A (en) Aluminum alloy for magnetic disk substrate
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JPH10121178A (en) Aluminum alloy clad plate for high capacity magnetic disk substrate excellent in zincate treatability and substrate treatability and its production
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
WO2023167219A1 (en) Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk
JPH02305936A (en) Aluminum alloy sheet for disk having excellent platability
JPH05140757A (en) Production of plated substrate for disk
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JPS62188743A (en) Aluminum alloy for magnetic disk substrate