JPH07331397A - Production of aluminum alloy sheet for magnetic disk substrate - Google Patents

Production of aluminum alloy sheet for magnetic disk substrate

Info

Publication number
JPH07331397A
JPH07331397A JP15166194A JP15166194A JPH07331397A JP H07331397 A JPH07331397 A JP H07331397A JP 15166194 A JP15166194 A JP 15166194A JP 15166194 A JP15166194 A JP 15166194A JP H07331397 A JPH07331397 A JP H07331397A
Authority
JP
Japan
Prior art keywords
aluminum alloy
magnetic disk
range
rolling
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15166194A
Other languages
Japanese (ja)
Inventor
Koichi Ohori
紘一 大堀
Mitsuo Kobi
三男 向尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP15166194A priority Critical patent/JPH07331397A/en
Publication of JPH07331397A publication Critical patent/JPH07331397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a method for producing a substrate for a magnetic disk excellent in flatness after mirror finishing, furthermore good in the adhesion of an Ni-P plated layer and free from surface flaws. CONSTITUTION:The ingot of an Al alloy having a chemical componental compsn. contg., by weight, 3.0 to 5.0% Mg, 0.10 to 0.30% Zn, 0.05 to 0.20% Cu and 0.01 to 0.10% Fe, in which the content of Si as impurities is limited to <=0.05%, furthermore contg., at need, at least one or more kinds among 0.001 to 0.03% Ti, 0.05 to 0.15% Cr and 0.05 to 0.15% Zr and the balance Al with other inevitable impurities is subjected to homogenizing treatment in the temp. range of 500 to 560 deg.C for 4 to 24Hr and is thereafter subjected to hot rolling and cold rolling. Next, the Al alloy sheet prepd. in the above-mentioned manner is heated to 400 to 560 deg.C temp. range as process annealing, is held for >0 to 30sec, is thereafter cooled and is moreover subjected to final cold rolling at 30 to 70% rolling ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、平面性とメッキ性に
優れた磁気デイスク基板用Al合金板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al alloy plate for a magnetic disk substrate which is excellent in flatness and plating property.

【0002】[0002]

【従来の技術】一般に、磁気デイスクの基板材料として
は、軽量、非磁性で、かつ基板製作時の機械加工やデイ
スク使用時の高速回転に耐えるに十分な強度を有し、更
に、耐食性も良好であること等が必要であるため、Al
−Mg系の合金板が使用されている。即ち、その合金板
を、ド−ナツ状円板に打ち抜き、加圧焼鈍した後、円板
表面の切削および研削・研磨により鏡面仕上げし、次い
で、このように調製された合金板を、ジンケ−ト処理
し、Ni−P無電解メッキし、そしてポリッシングする
方法が、最近の磁気デイスクAl合金製基板の製造方法
の主流となっている。従って、このような磁気デイスク
基板には、更に次のような特性が要求される。
2. Description of the Related Art Generally, as a substrate material for a magnetic disk, it is lightweight, non-magnetic, and has sufficient strength to withstand the mechanical processing at the time of manufacturing the substrate and the high-speed rotation at the time of using the disk. Since it is necessary that
-A Mg-based alloy plate is used. That is, the alloy plate was punched into a doughnut-shaped disk, pressure-annealed, and then mirror-finished by cutting, grinding and polishing the disk surface, and then the alloy plate thus prepared was The method of hot-treatment, Ni-P electroless plating, and polishing has become the mainstream of recent methods for manufacturing magnetic disk Al alloy substrates. Therefore, the following characteristics are further required for such a magnetic disk substrate.

【0003】磁気デイスク用基板と磁気ヘッドとの間
隔は極めて狭いが、磁気デイスクの高速回転時にその間
隔は一定に保持されねばならない。従って、鏡面仕上げ
後の円板の平面性は重要な特性である。 Ni−Pメッキ層と地のAl合金との密着性が良好
で、且つメッキ後ピット等の表面欠陥がないこと。
Although the distance between the magnetic disk substrate and the magnetic head is extremely narrow, the distance must be kept constant when the magnetic disk rotates at a high speed. Therefore, the flatness of the disk after mirror finishing is an important characteristic. Adhesion between the Ni-P plating layer and the underlying Al alloy is good, and there are no surface defects such as pits after plating.

【0004】また、最近では、磁気デイスクに対する高
密度化の要請がますます強まり、1ビット当たりの磁化
領域のより一層の微小化や、磁気ヘッドと磁気デイスク
との間隔の減少化が必要になった。更に、磁気デイスク
の薄肉化も進められており、自重による磁気デイスクの
変形も無視できなくなりつつあり、従って、基板の平面
性に対する要求は非常に厳しいものとなっている。
In recent years, the demand for higher density in magnetic disks has become stronger and stronger, and it has become necessary to further miniaturize the magnetized area per bit and to reduce the distance between the magnetic head and the magnetic disk. It was Further, the thickness of the magnetic disk is being reduced, and the deformation of the magnetic disk due to its own weight cannot be ignored. Therefore, the requirement for the flatness of the substrate is very strict.

【0005】このような要求に対して、磁気デイスク基
板用Al合金板として使用されているJIS5086合
金板やその改良合金板が発明されている。例えば、磁気
デイスク基板表面のうねりの改善が図られた発明が、特
公平5−40016号公報に開示されている(以下、先
行技術という)。
[0005] In response to such requirements, the JIS5086 alloy plate used as an Al alloy plate for a magnetic disk substrate and its improved alloy plate have been invented. For example, an invention in which the waviness on the surface of a magnetic disk substrate is improved is disclosed in Japanese Patent Publication No. 5-40016 (hereinafter referred to as prior art).

【0006】先行技術によれば、磁気デイスク用Al合
金として、Mg:3.0〜6.0wt%、Ti:0.0
3〜0.15wt%を含有し、かつ、Zn:0.1〜
2.0wt%およびCu:0.01〜0.5wt%のう
ちの1種または2種を含有し、更に、不純物としてF
e、Si、B、ZrおよびCrを所定値以下に限定した
ものが記載され(同号公告公報明細書の特許請求の範囲
参照)、そのような化学成分組成を有する鋳塊を530
°Cで8時間保持した後、470°Cで熱間圧延を開始
し、その後冷間圧延し、板厚2mmとし、打ち抜き加工
して中空円板とし、しかる後350°Cで2時間焼鈍
し、磁気デイスク用基板とした実施例が記載されてい
る。即ち、Tiの添加による結晶粒の微細化(同号公告
公報明細書、第8欄3行参照)や、熱間圧延開始の温度
を500°C未満にしてマクロ組織の粗大化を抑制する
(同欄第20〜22行)など、Al合金の成分組成や熱
間圧延温度の適正化により、磁気デイスク基板表面のう
ねりの改善を図る技術が示唆されている。
According to the prior art, as an Al alloy for magnetic disks, Mg: 3.0-6.0 wt%, Ti: 0.0
3 to 0.15 wt%, and Zn: 0.1
2.0 wt% and Cu: 0.01 to 0.5 wt%, containing 1 or 2 types, and further containing F as an impurity.
It is described that e, Si, B, Zr and Cr are limited to a predetermined value or less (see the claims of the specification of the same publication), and an ingot having such a chemical composition is 530
After holding at 8 ° C for 8 hours, hot rolling was started at 470 ° C, and then cold rolling was performed to a plate thickness of 2 mm, punching was performed into a hollow disc, and then annealing was performed at 350 ° C for 2 hours. , An example using a substrate for a magnetic disk is described. That is, the crystal grains are made finer by the addition of Ti (see the same publication, column 8, line 3), and the temperature at the start of hot rolling is set to less than 500 ° C. to suppress macrostructure coarsening ( The same column, lines 20 to 22) suggests a technique for improving the waviness of the surface of the magnetic disk substrate by optimizing the component composition of the Al alloy and the hot rolling temperature.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記先
行技術による磁気デイスク基板用アルミニウム合金板の
製造方法では、磁気デイスク基板の平面性が不十分であ
り、より一層の向上が望まれる。即ち、従来技術による
製造方法では、中間焼鈍が実施されていず、また、適切
な化学成分組成を有するアルミニウム合金との組み合わ
せと適切な中間焼鈍条件との組み合わせによる製造方法
が明らかにされていない。従って、この発明の課題は、
粗大な金属間化合物の生成が抑制された、均質微細な再
結晶粒組織を有する熱延板を製造し、更に、中間焼鈍と
それに次ぐ最終冷間圧延後において、等軸粒で結晶粒径
が均一な再結晶組織を有する冷延板を製造することにあ
る。
However, in the method of manufacturing an aluminum alloy plate for a magnetic disk substrate according to the above-mentioned prior art, the flatness of the magnetic disk substrate is insufficient, and further improvement is desired. That is, in the manufacturing method according to the prior art, the intermediate annealing is not performed, and the manufacturing method by combining the aluminum alloy having an appropriate chemical composition with the appropriate intermediate annealing condition has not been clarified. Therefore, the subject of this invention is
The production of coarse intermetallic compounds is suppressed, to produce a hot-rolled sheet having a homogeneous and fine recrystallized grain structure, and further, after intermediate annealing and subsequent final cold rolling, the crystal grain size is equiaxed grains. It is to produce a cold-rolled sheet having a uniform recrystallization structure.

【0008】従って、この発明の目的は、鏡面仕上げ後
の平面性に優れ、しかもNi−Pメッキ層の密着性が良
好で、表面欠陥のない磁気デイスク用基板の製造方法を
提供することにある。
Therefore, an object of the present invention is to provide a method for producing a magnetic disk substrate which has excellent flatness after mirror finishing, good adhesion of the Ni-P plating layer and no surface defects. .

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために、磁気デイスク基板用アルミニウム合
金を構成する化学成分組成の適正化、中間焼鈍工程の採
用、並びに、アルミニウム合金鋳片または鋳塊の均質化
処理条件、中間焼鈍条件および最終冷間圧延時の冷延率
条件の各条件の適正化について鋭意研究を重ねた結果、
下記発明をするに至った。
In order to achieve the above object, the present inventors have optimized the chemical composition of an aluminum alloy for a magnetic disk substrate, adopted an intermediate annealing step, and cast an aluminum alloy. As a result of repeated studies on the optimization of each condition of homogenizing treatment conditions of the piece or the ingot, the intermediate annealing condition and the cold rolling reduction condition at the final cold rolling,
The following invention has been reached.

【0010】この発明による磁気デイスク基板用アルミ
ニウム合金板の製造方法は、 マグネシウム(Mg):3.0 〜5.0wt%、 亜鉛(Zn) :0.10〜0.30wt%、 銅(Cu) :0.05〜0.20wt%、お
よび 鉄(Fe) :0.01〜0.10wt.% を含有し、不純物としてのシリコンの含有量を、 シリコン(Si) :0.05wt%以下 に限定し、更に、必要に応じて、 チタン(Ti) :0.001〜0.03wt.%、 クロム(Cr) :0.05〜0.15wt%、お
よび ジルコニウム(Zr):0.05〜0.15wt% のうち、少なくとも1種以上を含有し、残部がアルミニ
ウム(Al)およびその他の不可避不純物からなる化学
成分組成を有するアルミニウム合金の鋳塊に対して、温
度500〜560°Cの範囲内で時間4〜24Hrの範
囲内の均質化処理を施した後、熱間圧延および冷間圧延
を行ない、次いでこのようにして調製されたアルミニウ
ム合金板に対して、中間焼鈍として温度400〜560
°Cの範囲内に加熱し、時間0超〜30secの範囲内
保持した後冷却し、更に、圧延率30〜70%の最終冷
間圧延を行なうことに特徴を有するものである。
A method for manufacturing an aluminum alloy plate for a magnetic disk substrate according to the present invention is as follows: magnesium (Mg): 3.0 to 5.0 wt%, zinc (Zn): 0.10 to 0.30 wt%, copper (Cu) : 0.05 to 0.20 wt% and iron (Fe): 0.01 to 0.10 wt.%, And the content of silicon as an impurity is limited to silicon (Si): 0.05 wt% or less. Furthermore, if necessary, titanium (Ti): 0.001 to 0.03 wt.%, Chromium (Cr): 0.05 to 0.15 wt%, and zirconium (Zr): 0.05 to 0. In the range of 500 to 560 ° C for an ingot of an aluminum alloy that contains at least one of 15 wt% and has the chemical composition that the balance is aluminum (Al) and other unavoidable impurities. After performing a homogenizing treatment within a range of 4 to 24 hours for a period of time, hot rolling and cold rolling are performed, and then the aluminum alloy sheet thus prepared is subjected to intermediate annealing at a temperature of 400 to 560.
It is characterized in that it is heated in the range of ° C, kept for a time in the range of more than 0 to 30 sec, cooled, and then subjected to final cold rolling at a rolling rate of 30 to 70%.

【0011】[0011]

【作用】この発明の磁気デイスク基板用アルミニウム合
金の化学成分組成を上述した範囲内に限定した理由につ
いて述べる。 Mg:Mgは、磁気デイスク基板に所定の強度を付与す
るために有効な元素である。しかしながら、その含有量
が3.0wt%未満では所望の強度が得られず、一方、
5.0wt%超ではAl合金板の熱間圧延性が著しく低
下する。従って、Mg含有量は、3.0〜5.0wt%
の範囲内に限定すべきである。
The reason why the chemical composition of the aluminum alloy for a magnetic disk substrate of the present invention is limited to the above range will be described. Mg: Mg is an element effective for imparting a predetermined strength to the magnetic disk substrate. However, if the content is less than 3.0 wt%, the desired strength cannot be obtained, while
If it exceeds 5.0 wt%, the hot rolling property of the Al alloy plate is significantly reduced. Therefore, the Mg content is 3.0 to 5.0 wt%
Should be limited to within the range.

【0012】ZnおよびCu:ZnおよびCuは、Al
合金中に均一に固溶し、メッキ前処理のジンケ−ト処理
時に、均一微細で且つ緻密な処理皮膜を形成させる。こ
のため、ZnおよびCuは、地であるAl合金との密着
性に優れ、微小欠陥が少ない、健全なNi−Pメッキ層
を均一にデイスク基板の表面に形成させる効果を有す
る。このような効果を得るためには、ZnとCuとがA
l合金中に共存することが必須条件である。しかしなが
ら、Znの含有量が0.10wt%未満、Cuの含有量
が0.05wt%未満では上記効果は得られない。一
方、Znの含有量が0.30wt%超、Cuの含有量が
0.20wt%超では耐食性が著しく劣化するばかりで
なく、Al−Cu−Mg系等の析出物が生成し、ド−ナ
ツ状円板の打抜き後に行なう加圧焼鈍時に、それらの固
溶・析出による応力が発生し、基板の平面性を劣化させ
る。従って、基板の平面性を確保するために、Znおよ
びCu含有量が上記値を超えないことが特に重要であ
る。以上より、Zn含有量は0.10〜0.30wt
%、Cu含有量は0.05〜0.20wt%の範囲内と
すべきである。上述した効果を一層発揮し、しかも上述
した弊害の防止を一層確実なものにするため、Zn+C
uの含有量は0.3〜0.4wt%の範囲内とすること
が望ましい。
Zn and Cu: Zn and Cu are Al
It uniformly forms a solid solution in the alloy and forms a uniform fine and dense treatment film during the zincate treatment before plating. Therefore, Zn and Cu have the effect of forming a sound Ni—P plating layer having excellent adhesion to the base Al alloy, few fine defects, and uniform on the surface of the disk substrate. In order to obtain such effects, Zn and Cu are
Coexistence in the 1-alloy is an essential condition. However, if the Zn content is less than 0.10 wt% and the Cu content is less than 0.05 wt%, the above effect cannot be obtained. On the other hand, when the Zn content exceeds 0.30 wt% and the Cu content exceeds 0.20 wt%, not only the corrosion resistance is significantly deteriorated, but also Al-Cu-Mg-based precipitates are formed, resulting in the donut. During pressure annealing performed after punching the circular disk, stress is generated due to their solid solution / precipitation, which deteriorates the flatness of the substrate. Therefore, in order to ensure the flatness of the substrate, it is particularly important that the Zn and Cu contents do not exceed the above values. From the above, the Zn content is 0.10 to 0.30 wt.
%, Cu content should be within the range of 0.05 to 0.20 wt%. In order to further exert the above-mentioned effects and further prevent the above-mentioned harmful effects, Zn + C
The content of u is preferably within the range of 0.3 to 0.4 wt%.

【0013】Ti、CrおよびZr:Ti、Crおよび
Zrは、Al−Fe系金属間化合物およびMg2 Siを
晶出させることなく、しかも均一な再結晶粒組織を形成
することによって基板の平面性を向上させる。また、強
度を向上させる作用・効果をも有する。しかしながら、
Ti含有量が0.001wt%未満、CrおよびZrの
各含有量が0.05wt%未満では上記作用・効果を発
揮しない。一方、Ti含有量が0.03wt%超、Cr
およびZrの各含有量が0.15wt%超では、Al7
Cr、Al3 Zr等の粗大な金属間化合物を生成し、基
板表面に突起あるいは脱落窪みを生じ、メッキ欠陥の原
因となる。従って、Ti含有量は、0.001〜0.0
3wt%の範囲内、CrおよびZrの各含有量は、0.
05〜0.15wt%の範囲内とすべきである。
Ti, Cr and Zr: Ti, Cr and Zr do not crystallize the Al--Fe intermetallic compound and Mg 2 Si, and form a uniform recrystallized grain structure, so that the planarity of the substrate is improved. Improve. Further, it also has the function and effect of improving the strength. However,
If the Ti content is less than 0.001 wt% and the Cr and Zr contents are less than 0.05 wt%, the above-described action and effect are not exhibited. On the other hand, the Ti content exceeds 0.03 wt%, Cr
If the content of each of Zr and Zr exceeds 0.15 wt%, Al 7
Coarse intermetallic compounds such as Cr and Al 3 Zr are generated, and protrusions or drop pits are generated on the substrate surface, which causes plating defects. Therefore, the Ti content is 0.001 to 0.0.
Within the range of 3 wt%, each content of Cr and Zr is 0.
It should be in the range of 05 to 0.15 wt%.

【0014】Fe:Feは、Al合金中に含有されてい
ると、その切削性が良好となる。更に、Feは、Al−
Fe系金属間化合物を生成し、メッキ前処理およびNi
−Pメッキ処理において皮膜形成の核となり、メッキ層
の微細均一析出に有効である。しかしながら、Fe含有
量が0.01wt%未満では、基板の研削時に砥石の目
詰まりが生じ易く、生産性が大幅に低下する。一方、そ
の含有量が0.10wt%超では、Al−Fe系の粗大
な金属間化合物が生成し、基板の表面に突起あるいは脱
落窪みを生じ、メッキ欠陥の原因となる。従って、Fe
含有量は、0.01〜0.10wt%の範囲内とすべき
である。
Fe: When Fe is contained in the Al alloy, its machinability is improved. Further, Fe is Al-
Generates Fe-based intermetallic compound, pretreatment for plating and Ni
It becomes the core of the film formation in the -P plating process and is effective for fine and uniform deposition of the plating layer. However, if the Fe content is less than 0.01 wt%, the grindstone is likely to be clogged when the substrate is ground, and the productivity is significantly reduced. On the other hand, if the content exceeds 0.10 wt%, a coarse Al—Fe-based intermetallic compound is generated, which causes protrusions or drop dents on the surface of the substrate, which causes plating defects. Therefore, Fe
The content should be within the range of 0.01-0.10 wt%.

【0015】Si:Siは、Al合金中に殆ど固溶せ
ず、Mg2 Siとして晶出する。そしてメッキ前処理に
より、Mg2 Siは基板表面から溶解・脱落し、メッキ
後のピット欠陥の原因となり易い。従って、Si含有量
は極力低くすることが必要である。しかしながら、Si
含有量を低くするするためには費用がかかるので、上記
両者を考慮してSi含有量は0.05wt%以下に限定
する。
Si: Si hardly forms a solid solution in the Al alloy and is crystallized as Mg 2 Si. Then, by the pretreatment of plating, Mg 2 Si dissolves and falls off from the surface of the substrate, which easily causes a pit defect after plating. Therefore, it is necessary to make the Si content as low as possible. However, Si
Since it takes a high cost to reduce the content, the Si content is limited to 0.05 wt% or less in consideration of both of the above.

【0016】次に、この発明において、製造条件を前述
したように限定した理由について述べる。
Next, the reason why the manufacturing conditions are limited as described above in the present invention will be described.

【0017】均質化処理:鋳片または鋳塊の均質化処理
は、鋳造時に偏析し易いMg、CuあるいはSi成分を
均質にする効果、および再結晶微細化のためCr、Zr
を十分に析出させる効果がある。しかしながら、均質化
処理における加熱温度が500°C未満では、均質化効
果が不十分であり、特にピット欠陥の原因となるMg2
Si晶出物の密度およびサイズを減少させることができ
ない。一方、その加熱温度が560°C超を超えると、
共晶融解が生じる。また、均質化処理の加熱時間が、4
時間未満では、均質化の効果が少なく、一方、その時間
が24時間を超えると、均質化の効果が飽和し、工業上
の意味がなくなり、しかも、製造コストが上昇し不経済
となる。従って、鋳片または鋳塊の均質化処理の条件と
しては、加熱温度が500〜560°C未満の範囲内で
あって、その保持時間を4〜24時間の範囲内とすべき
である。
Homogenizing treatment: The homogenizing treatment of a slab or ingot is performed by the effect of homogenizing Mg, Cu or Si components which are easily segregated during casting, and Cr and Zr for refining recrystallization.
Is sufficiently precipitated. However, if the heating temperature in the homogenization treatment is less than 500 ° C, the homogenization effect is insufficient, and in particular Mg 2 which causes pit defects.
It is not possible to reduce the density and size of Si crystallisates. On the other hand, if the heating temperature exceeds 560 ° C,
Eutectic melting occurs. Also, the heating time for homogenization treatment is 4
If the time is less than the time, the homogenizing effect is small, while if the time exceeds 24 hours, the homogenizing effect is saturated, which has no industrial meaning, and further, the manufacturing cost is increased and it is uneconomical. Therefore, the conditions for homogenizing the slab or ingot should be such that the heating temperature is in the range of 500 to less than 560 ° C and the holding time is in the range of 4 to 24 hours.

【0018】中間焼鈍:中間焼鈍をすると、ド−ナツ状
円板を加圧焼鈍した後の板の再結晶組織が、圧延方向に
長い伸長粒組織となることが防止され、かつ、熱間圧延
時における板厚方向の温度および加工度の不均一分布に
より、板の表層と中心部との間に結晶粒径の差が発生す
ることが防止され、そのため加圧焼鈍後のド−ナツ状円
板の平面性が向上する。中間焼鈍としては、連続焼鈍加
熱炉を用いた急速加熱(10〜50°C/sec)・急
速冷却(10〜50°C/sec)による短時間加熱を
採用することにより、方向性のない等軸粒に近く、且つ
板厚方向での結晶粒径分布の比較的均一な再結晶組織が
形成され、このようにして加圧焼鈍後の平面性が向上す
る。しかしながら、加熱温度(焼鈍温度)が400°C
未満では、上記平面性の向上効果が不十分であり、一
方、560°Cを超えると、共晶融解を生じる。従っ
て、加熱温度は、400〜560°Cの範囲内とすべき
である。また、加熱温度保持時間は、30秒を超えると
結晶粒が粗大化し、平面性が劣化する。従って、保持時
間は、30秒以下とすべきである。
Intermediate annealing: When the intermediate annealing is performed, the recrystallized structure of the plate after pressure annealing of the doughnut-shaped disk is prevented from becoming elongated grain structure in the rolling direction, and hot rolling is performed. Due to the non-uniform distribution of temperature and working degree in the plate thickness direction at the time, it is possible to prevent a difference in crystal grain size between the surface layer and the central part of the plate, and therefore a donut-shaped circle after pressure annealing. The flatness of the plate is improved. As intermediate annealing, there is no directionality by adopting short-time heating by rapid heating (10 to 50 ° C / sec) and rapid cooling (10 to 50 ° C / sec) using a continuous annealing heating furnace. A recrystallized structure close to the axial grains and having a relatively uniform crystal grain size distribution in the plate thickness direction is formed, and thus the flatness after pressure annealing is improved. However, the heating temperature (annealing temperature) is 400 ° C.
If it is less than 5,000, the effect of improving the flatness is insufficient, while if it exceeds 560 ° C, eutectic melting occurs. Therefore, the heating temperature should be in the range of 400-560 ° C. If the heating temperature holding time exceeds 30 seconds, the crystal grains become coarse and the flatness deteriorates. Therefore, the holding time should be 30 seconds or less.

【0019】最終冷間圧延の圧延率:中間焼鈍後の最終
冷間圧延により所定の板厚に圧延することによって、加
圧焼鈍後の板の結晶粒が微細化し、平面性が向上する。
しかしながら、最終冷間圧延の圧延率が30%未満で
は、十分微細化せず、一方、70%を超えると中間焼鈍
の効果が不十分となる。従って、最終冷間圧延の圧延率
は、30〜70%の範囲内とすべきである。
Rolling ratio of final cold rolling: By rolling to a predetermined plate thickness by final cold rolling after intermediate annealing, the crystal grains of the plate after pressure annealing are refined and the flatness is improved.
However, if the rolling ratio of the final cold rolling is less than 30%, the grain size is not sufficiently refined, while if it exceeds 70%, the effect of intermediate annealing becomes insufficient. Therefore, the rolling rate of the final cold rolling should be within the range of 30 to 70%.

【0020】[0020]

【実施例】次に、本発明を実施例により説明する。表1
の合金NO.A,BまたはCに示す、本発明の範囲内の化
学成分組成を有する厚さ500mmの鋳塊に連続鋳造
し、各鋳塊を片面10mmずつ面削した。次に、表2
(後述)に示す条件で均質化処理を行った。そして、常
法に従いこれを熱間圧延して厚さ6mmにし、更に冷間
圧延して厚さ1.12〜4.25mmの所定の板厚にし
た。次いでこのようにして調製されたアルミニウム合金
板に対して、連続焼鈍炉を用いて所定温度に急速加熱
し、所定時間保持後、強制空冷して中間焼鈍を施した。
なお、強制空冷時の冷却速度は約20℃/secであっ
た。次いで、圧延率30〜70%の最終冷間圧延を行な
い、厚さ0.85mmの磁気デイスク基板用のアルミニ
ウム合金板を製造した。
EXAMPLES The present invention will now be described with reference to examples. Table 1
Of alloy No. A, B or C of No. 1 having a chemical composition within the range of the present invention was continuously cast, and each ingot was chamfered by 10 mm on each side. Next, Table 2
The homogenization treatment was carried out under the conditions shown below. Then, this was hot-rolled to a thickness of 6 mm and cold-rolled to a predetermined plate thickness of 1.12 to 4.25 mm according to a conventional method. Next, the aluminum alloy sheet thus prepared was rapidly heated to a predetermined temperature using a continuous annealing furnace, held for a predetermined period of time, and then forced air-cooled for intermediate annealing.
The cooling rate during forced air cooling was about 20 ° C./sec. Then, final cold rolling was performed at a rolling ratio of 30 to 70% to manufacture an aluminum alloy plate for a magnetic disk substrate having a thickness of 0.85 mm.

【0021】[0021]

【表1】 [Table 1]

【0022】表2に、上述したアルミニウム合金板の製
造条件を示す。即ち、すべての条件が本発明の範囲内に
ある本発明供試体NO.1〜6、および、少なくとも1つ
の条件が本発明の範囲外にある比較用供試体NO.1〜5
について、合金NO.、並びに均質化処理条件、中間焼鈍
条件および最終冷延率を示す。
Table 2 shows the manufacturing conditions of the above-mentioned aluminum alloy plate. That is, the present invention specimens No. 1 to 6 in which all the conditions are within the scope of the present invention, and the comparative specimens No. 1 to 5 in which at least one condition is outside the scope of the present invention.
For alloy No., and homogenization treatment conditions, intermediate annealing conditions and final cold rolling rate.

【0023】[0023]

【表2】 [Table 2]

【0024】このようにして製造された各アルミニウム
合金板を打抜き加工し、直径89mmのド−ナツ状円板
を調製し、次いでこれに350°Cで2時間の加圧焼鈍
を施した後、切削および研削・研磨により表面を鏡面に
仕上げた。このように鏡面仕上げされた各供試体NO.の
ド−ナツ状円板(ブランク)について、 レ−ザ−干渉計を用い、干渉縞を解析することによっ
て板の平面度測定試験をし、また、 板表面の光学顕微鏡観察によるMg2 Si金属間化合
物の分布測定試験をした。 上記試験の結果を、前記表2に併記した。
Each of the aluminum alloy sheets thus produced was punched to prepare a doughnut-shaped disc having a diameter of 89 mm, which was then subjected to pressure annealing at 350 ° C. for 2 hours, The surface was mirror finished by cutting, grinding and polishing. With respect to the doughnut-shaped disc (blank) of each sample No. mirror-finished in this way, a flatness measurement test of the plate was performed by analyzing interference fringes using a laser interferometer. A distribution measurement test of the Mg 2 Si intermetallic compound was carried out by observing the plate surface with an optical microscope. The results of the above tests are also shown in Table 2 above.

【0025】表1および表2より、下記事項が明らかで
ある。比較用供試体NO.1は、均質化処理の加熱温度が
本発明の範囲外に低かったため(460°C)、均質化
効果が不十分であり、特にピット欠陥の原因となるMg
2 Si晶出物の密度およびサイズを減少させることがで
きなかった。
From Table 1 and Table 2, the following matters are clear. Since the heating temperature of the homogenizing treatment was low outside the range of the present invention (460 ° C.), the homogenizing effect of Comparative Sample No. 1 was insufficient, and Mg, which causes pit defects in particular, was
It was not possible to reduce the density and size of the 2 Si crystallized products.

【0026】比較用供試体NO.2は、中間焼鈍の加熱温
度が本発明の範囲外に低かった(360°C)ので、中
間焼鈍の効果が不十分であり、加圧焼鈍後の板の再結晶
組織が、伸長粒組織となり、熱間圧延時における板厚方
向の温度および加工度の不均一分布による板の表層と中
心部との結晶粒径差のため、平面性が劣化した。
Since the heating temperature of the intermediate annealing was low outside the range of the present invention (360 ° C.) in the comparative sample No. 2, the effect of the intermediate annealing was insufficient, and the sheet after pressure annealing was The recrystallized structure became an elongated grain structure, and the flatness was deteriorated due to the difference in crystal grain size between the surface layer and the central part of the plate due to the uneven distribution of temperature and workability in the plate thickness direction during hot rolling.

【0027】比較用供試体NO.3は、最終冷延率が本発
明の範囲外に小さすぎたので、板の結晶粒が十分微細化
せず、そのため平面性が劣っていた。これに対して比較
用供試体NO.4は、最終冷延率が本発明の範囲外に大き
すぎたので、中間焼鈍の効果が十分に発揮されず、平面
性が劣っていた。
Since the final cold rolling ratio of the comparative sample No. 3 was too small outside the range of the present invention, the crystal grains of the plate were not sufficiently refined, and therefore the flatness was poor. On the other hand, since the final cold rolling rate of the comparative sample No. 4 was too large outside the range of the present invention, the effect of the intermediate annealing was not sufficiently exhibited and the flatness was poor.

【0028】比較用供試体NO.5は、均質化処理の加熱
時間が本発明の範囲外に短かすぎたので、ピット欠陥の
原因となるMg2 Si晶出物の密度およびサイズを減少
させることができず、また、成分偏析を十分均一化する
ことができなかったため、結晶粒の均一化が不十分とな
り、平面性に劣っていた。
Since the heating time of the homogenization treatment was too short for the comparative sample No. 5 outside the scope of the present invention, the density and size of the Mg 2 Si crystallized substances causing pit defects were reduced. In addition, since the segregation of the components could not be made sufficiently uniform, the uniformity of the crystal grains was insufficient and the flatness was poor.

【0029】これに対して、本発明供試体はいずれも、
ド−ナツ状円板の平面性に優れ、しかも、ピット欠陥の
原因となるような大きなMg2 Si晶出物の分布密度も
小さく、磁気デイスク基板用アルミニウム合金板として
望ましいものであった。
On the other hand, all the samples of the present invention are
The donut-shaped disc was excellent in flatness, and the distribution density of large Mg 2 Si crystallized substances that could cause pit defects was small, and it was desirable as an aluminum alloy plate for a magnetic disk substrate.

【0030】以上のように、比較用供試体には、磁気デ
イスク基板用アルミニウム合金板として、所望の特性を
備えたものはなかったが、本発明供試体は、そのアルミ
ニウム合金板の化学成分組成およびその製造条件がすべ
て本発明の範囲内にあったので、平面性に優れ、且つ表
面欠陥のない優れた特性を有するアルミニウム合金板で
あった。
As described above, none of the comparative specimens had the desired characteristics as an aluminum alloy plate for a magnetic disk substrate, but the specimen of the present invention has a chemical composition of the aluminum alloy sheet. Since all the manufacturing conditions were within the scope of the present invention, the aluminum alloy plate had excellent flatness and excellent characteristics without surface defects.

【0031】[0031]

【発明の効果】この発明は、上述したように構成されて
おり、特に磁気デイスク基板用アルミニウム合金板の製
造に際して、中間焼鈍工程が組み込まれ、しかも合金成
分の適正化と中間焼鈍条件の適正化との組み合わせがさ
れることによって、従来得られなかった優れた平面性が
得られ、しかも表面欠陥のない、優れた磁気デイスク基
板用アルミニウム合金板を提供することができる、工業
上、有益な効果をもたらすことができる。
The present invention is configured as described above, and particularly in the manufacture of an aluminum alloy plate for a magnetic disk substrate, an intermediate annealing step is incorporated, and further, the alloy components are optimized and the intermediate annealing conditions are optimized. It is possible to provide an excellent aluminum alloy plate for a magnetic disk substrate, which has excellent flatness, which has not been obtained in the past, and has no surface defects, by combining it with Can bring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム(Mg):3.0 〜5.
0wt%、 亜鉛(Zn) :0.10〜0.30wt%、 銅(Cu) :0.05〜0.20wt%、お
よび 鉄(Fe) :0.01〜0.10wt.% を含有し、更に、不純物としてのシリコンの含有量を、 シリコン(Si) :0.05wt%以下 に限定し、残部がアルミニウム(Al)およびその他の
不可避不純物からなる化学成分組成を有するアルミニウ
ム合金の鋳塊に対して、温度500〜560°Cの範囲
内で時間4〜24Hrの範囲内の均質化処理を施した
後、熱間圧延および冷間圧延を行ない、次いでこのよう
にして調製されたアルミニウム合金板に対して、中間焼
鈍として温度400〜560°Cの範囲内に急速加熱
し、時間0超〜30secの範囲内保持した後急速冷却
し、更に、圧延率30〜70%の最終冷間圧延を行なう
ことを特徴とする、磁気デイスク基板用アルミニウム合
金板の製造方法。
1. Magnesium (Mg): 3.0-5.
0 wt%, zinc (Zn): 0.10 to 0.30 wt%, copper (Cu): 0.05 to 0.20 wt%, and iron (Fe): 0.01 to 0.10 wt.%, Further, the content of silicon as an impurity is limited to silicon (Si): 0.05 wt% or less, and the balance is aluminum alloy ingot having a chemical composition of aluminum (Al) and other unavoidable impurities. Then, after subjecting to a homogenizing treatment in a temperature range of 500 to 560 ° C. for a time of 4 to 24 hours, hot rolling and cold rolling are performed, and then the aluminum alloy sheet thus prepared is subjected to On the other hand, as intermediate annealing, rapid heating is performed within a temperature range of 400 to 560 ° C., time is maintained within a range of more than 0 to 30 seconds, followed by rapid cooling, and further final cold rolling is performed at a rolling rate of 30 to 70%. This Wherein the manufacturing method of an aluminum alloy plate for a magnetic disk substrate.
【請求項2】 マグネシウム(Mg):3.0 〜5.
0 wt%、 亜鉛(Zn) :0.10〜0.30wt%、 銅(Cu) :0.05〜0.20wt%、お
よび 鉄(Fe) :0.01〜0.10wt% を含有し、不純物としてのシリコンの含有量を、 シリコン(Si) :0.05wt%以下 に限定し、更に、 チタン(Ti) :0.001〜0.03wt.%、 クロム(Cr) :0.05〜0.15wt%、お
よび ジルコニウム(Zr):0.05〜0.15wt% のうち、少なくとも1種以上を含有し、残部がアルミニ
ウム(Al)およびその他の不可避不純物からなる化学
成分組成を有するアルミニウム合金の鋳塊に対して、温
度500〜560°Cの範囲内で時間4〜24Hrの範
囲内の均質化処理を施した後、熱間圧延および冷間圧延
を行ない、次いでこのようにして調製されたアルミニウ
ム合金板に対して、中間焼鈍として温度400〜560
°Cの範囲内に加熱し、時間0超〜30secの範囲内
保持した後冷却し、更に、圧延率30〜70%の最終冷
間圧延を行なうことを特徴とする、磁気デイスク基板用
アルミニウム合金板の製造方法。
2. Magnesium (Mg): 3.0-5.
0 wt%, zinc (Zn): 0.10 to 0.30 wt%, copper (Cu): 0.05 to 0.20 wt%, and iron (Fe): 0.01 to 0.10 wt%, The content of silicon as an impurity is limited to silicon (Si): 0.05 wt% or less, and further, titanium (Ti): 0.001 to 0.03 wt.%, Chromium (Cr): 0.05 to 0 .15 wt% and zirconium (Zr): 0.05 to 0.15 wt% of an aluminum alloy containing at least one kind and a balance of aluminum (Al) and other unavoidable impurities. The ingot was subjected to a homogenizing treatment in a temperature range of 500 to 560 ° C. for a time in a range of 4 to 24 hours, followed by hot rolling and cold rolling, and then prepared in this manner. Al Relative bromide alloy plate, temperature of intermediate annealing 400-560
An aluminum alloy for a magnetic disk substrate, which is characterized in that it is heated in a range of ° C, kept for a time of more than 0 to 30 sec, then cooled, and further subjected to final cold rolling at a rolling rate of 30 to 70%. Method of manufacturing a plate.
JP15166194A 1994-06-09 1994-06-09 Production of aluminum alloy sheet for magnetic disk substrate Pending JPH07331397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15166194A JPH07331397A (en) 1994-06-09 1994-06-09 Production of aluminum alloy sheet for magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15166194A JPH07331397A (en) 1994-06-09 1994-06-09 Production of aluminum alloy sheet for magnetic disk substrate

Publications (1)

Publication Number Publication Date
JPH07331397A true JPH07331397A (en) 1995-12-19

Family

ID=15523464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15166194A Pending JPH07331397A (en) 1994-06-09 1994-06-09 Production of aluminum alloy sheet for magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPH07331397A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235640A (en) * 1996-02-28 1997-09-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet for magnetic disk substrate and its production
JP2006152403A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2006152404A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
CN109563572A (en) * 2016-08-01 2019-04-02 株式会社Uacj Magnetic disc substrate aluminium alloy plate and its manufacturing method, disk
CN110273115A (en) * 2019-06-26 2019-09-24 天津忠旺铝业有限公司 A kind of annealing process for eliminating 5182 aluminium alloy yield point elongations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235640A (en) * 1996-02-28 1997-09-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet for magnetic disk substrate and its production
JP2006152403A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2006152404A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
CN109563572A (en) * 2016-08-01 2019-04-02 株式会社Uacj Magnetic disc substrate aluminium alloy plate and its manufacturing method, disk
CN109563572B (en) * 2016-08-01 2021-03-23 株式会社Uacj Aluminum alloy plate for magnetic disk substrate, method for producing same, and magnetic disk
CN110273115A (en) * 2019-06-26 2019-09-24 天津忠旺铝业有限公司 A kind of annealing process for eliminating 5182 aluminium alloy yield point elongations

Similar Documents

Publication Publication Date Title
JP5762612B1 (en) Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and manufacturing method of magnetic disk
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP6427267B2 (en) Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP6998305B2 (en) Aluminum alloy plate for magnetic disk substrate and its manufacturing method, and magnetic disk
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
JP2020029595A (en) Aluminum alloy blank for magnetic disk and manufacturing method therefor, magnetic disk using aluminum alloy blank for magnetic disk and manufacturing method therefor
US20090007994A1 (en) Aluminum Alloy Sheet and Method for Manufacturing the Same
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JPS6318041A (en) Manufacture of aluminum foil
JPH06145927A (en) Production of al-mg alloy rolled sheet for magnetic disk
JPH02205651A (en) Aluminum alloy for magnetic disk base
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JPH11315338A (en) Aluminum alloy for magnetic disk, excellent in zincate treatment property
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
WO2023167219A1 (en) Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk
JPH04341535A (en) Aluminum alloy substrate for high density coating type magnetic disk
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JPH01298134A (en) Aluminum alloy plate for disk having excellent grindability and plating characteristics and its manufacture
JPH0288741A (en) Stock for high recording density disk and its manufacture
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JP2023032363A (en) Method for producing aluminum alloy ingot for magnetic disk, method for producing aluminum alloy plate for magnetic disk using the aluminum alloy ingot, method for producing aluminum alloy substrate for magnetic disk using the aluminum alloy plate, and magnetic disk using the aluminum alloy substrate
JPH0499143A (en) Aluminum alloy for magnetic disk base plate having good ni-p plating property