JPH11315338A - Aluminum alloy for magnetic disk, excellent in zincate treatment property - Google Patents
Aluminum alloy for magnetic disk, excellent in zincate treatment propertyInfo
- Publication number
- JPH11315338A JPH11315338A JP12434398A JP12434398A JPH11315338A JP H11315338 A JPH11315338 A JP H11315338A JP 12434398 A JP12434398 A JP 12434398A JP 12434398 A JP12434398 A JP 12434398A JP H11315338 A JPH11315338 A JP H11315338A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- less
- magnetic disk
- zincate
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ジンケート処理性
に優れた磁気ディスク用アルミニウム合金、詳しくは磁
気ディスク基板にNi−Pめっきを施す前のジンケート
処理性に優れた磁気ディスク用アルミニウム合金に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for a magnetic disk excellent in zincate processing, and more particularly to an aluminum alloy for a magnetic disk excellent in zincate processing before a magnetic disk substrate is subjected to Ni-P plating.
【0002】[0002]
【従来の技術】コンピュータのハードディスクなどに使
用される磁気ディスクは、アルミニウム合金基板の表面
を精密に研磨したのち、ジンケート処理およびNi−P
めっきなどのめっき処理を施し、さらにめっき面を超精
密研磨により仕上げ、磁気体をスパッタリングすること
により製造される。2. Description of the Related Art A magnetic disk used for a hard disk or the like of a computer is manufactured by precisely polishing the surface of an aluminum alloy substrate, and then performing zincate treatment and Ni-P.
It is manufactured by applying a plating process such as plating, finishing the plated surface by ultra-precision polishing, and sputtering a magnetic body.
【0003】このような磁気ディスク用アルミニウム合
金基板に要求される特性は、精密研磨または切削後の
表面精度が非常に良好で研磨などにおける加工性が良好
なこと、アルミニウム合金基板全体の平坦度が良好で
あること、めっき処理性およびジンケート処理性が良
好で、めっき後に欠陥やムラが生じないこと、磁気体
の欠陥の原因となる突起や穴が少なく且つ小さいこと、
軽量、非磁性体で、基板作製時の加工、使用中の高速
回転に耐える強度を有することなどである。The characteristics required of such an aluminum alloy substrate for a magnetic disk are that the surface precision after precision polishing or cutting is very good, the workability in polishing or the like is good, and the flatness of the entire aluminum alloy substrate is high. Good, good plating processability and zincate processability, no defects and unevenness after plating, few and small protrusions and holes that cause defects of the magnetic body,
It is a lightweight, non-magnetic material that has the strength to withstand processing during substrate fabrication and high-speed rotation during use.
【0004】上記の特性を満足する磁気ディスク用アル
ミニウム合金として、従来4%程度のMgを含有するJ
ISA5086合金、5086合金にCu、Znを添加
してめっき性を改善したアルミニウム合金が使用され、
実用上かなりの評価を受けている。As an aluminum alloy for a magnetic disk which satisfies the above-mentioned characteristics, a conventional alloy containing about 4% of Mg is used.
ISA 5086 alloy, aluminum alloy with improved plating properties by adding Cu and Zn to 5086 alloy is used,
Has received considerable praise in practical use.
【0005】しかしながら、磁気ディスクの高密度化に
よって、基板の欠陥や平坦度に対する要求は一層厳しく
なり、従来のアルミニウム合金ではその要求を満足させ
ることが次第に難しくなってきており、その要求を満た
すために、従来合金を改良する試みが多く行われてい
る。例えば、Cu、Znを添加するとともにAl−Fe
を主成分とする金属間化合物、Mg−Siを主成分とす
る金属間化合物のサイズ、量を規制して、めっき処理後
の欠陥が少なく、平滑なめっき面が得られるアルミニウ
ム合金基板が提案されている。(特開平2−11183
9号公報)However, as the density of the magnetic disk increases, requirements for defects and flatness of the substrate become more severe, and it becomes increasingly difficult to satisfy the requirements with conventional aluminum alloys. Many attempts have been made to improve conventional alloys. For example, while adding Cu and Zn, Al-Fe
An aluminum alloy substrate has been proposed which regulates the size and amount of an intermetallic compound containing as a main component, or an intermetallic compound containing Mg-Si as a main component, and has few defects after plating and can obtain a smooth plated surface. ing. (JP-A-2-11183
No. 9)
【0006】0.05%以下とごく微量のCuを添加
し、Znを0.1〜1.5%に規制し、これらを共存さ
せることにより、めっき表面の均一性と無欠陥性を図っ
たアルミニウム合金基板も提案され(特開平2−153
094号公報)、めっき付着性の向上、めっき面でのノ
ジュールやマイクロピットの減少を目的として、Cuを
積極的に添加し、金属間化合物の大きさを5μm以下に
限定したディスク用アルミニウム合金も提案されてい
る。(特開平2−159340号公報)[0006] The addition of a very small amount of Cu of 0.05% or less, the Zn content is regulated to 0.1 to 1.5%, and the coexistence of these elements ensures uniformity and defect-free plating surface. An aluminum alloy substrate has also been proposed (JP-A-2-153).
No. 094), for the purpose of improving plating adhesion and reducing nodules and micropits on the plating surface, aluminum alloys for disks in which Cu is positively added and the size of the intermetallic compound is limited to 5 μm or less are also available. Proposed. (JP-A-2-159340)
【0007】さらに、優れた平面性が得られ、且つめっ
き処理後の表面欠陥をなくすことを目的として、Al−
Mg合金に、Zn:0.10〜0.30%、Cu:0.
05〜0.20%およびFe:0.01〜0.10%を
必須成分として含有させ、製造工程中の中間焼鈍に急速
加熱、急速冷却を適用して磁気ディスク基板用アルミニ
ウム合金板を製造することも提案されている。(特開平
7−331397号公報)Further, in order to obtain excellent flatness and eliminate surface defects after plating, Al-
Mg: 0.10 to 0.30%, Cu: 0.
An aluminum alloy sheet for a magnetic disk substrate is manufactured by containing 0.05 to 0.20% and Fe: 0.01 to 0.10% as essential components, and applying rapid heating and rapid cooling to intermediate annealing during the manufacturing process. It has also been suggested. (JP-A-7-331397)
【0008】磁気ディスク基板の製造においては、めっ
き処理前に、アルミニウム基板とめっき層との密着性を
高めるためにジンケート処理が行われる。ジンケート処
理が不均一であると、その後のめっき層にムラが生じる
ため、ジンケートを均一に仕上げることがきわめて重要
となる。上記従来のアルミニウム合金基板においては、
ジンケート処理で発生するわずかなムラでも、それがめ
っき研磨後のムラ(不均一)につながることが多く、製
品の品質、歩留り低下の原因となる。In the manufacture of a magnetic disk substrate, a zincate treatment is performed before the plating treatment in order to increase the adhesion between the aluminum substrate and the plating layer. If the zincate treatment is non-uniform, unevenness occurs in the subsequent plating layer, and it is extremely important to finish the zincate uniformly. In the above conventional aluminum alloy substrate,
Even the slight unevenness generated by the zincate treatment often leads to unevenness (non-uniformity) after plating polishing, which causes a reduction in product quality and yield.
【0009】[0009]
【発明が解決しようとする課題】本発明は、磁気ディス
ク基板にNi−Pめっきを施す前のジンケート処理性を
さらに高めるために、上記従来の磁気ディスク基板用ア
ルミニウム合金をベースとして、ジンケート処理性と磁
気ディスク用アルミニウム合金基板の組成との関連性を
多角的な実験により追求した結果としてなされたもので
あり、その目的は、ジンケート処理においてムラを発生
することがなく、めっき処理後、きわめて良好な表面性
状を得ることができるジンケート処理性に優れた磁気デ
ィスク用アルミニウム合金を提供することにある。SUMMARY OF THE INVENTION The present invention is based on the above-mentioned conventional aluminum alloy for magnetic disk substrates. And the composition of the aluminum alloy substrate for magnetic disks was pursued through various experiments, and the purpose was not to cause unevenness in the zincate treatment, and to be very good after plating. An object of the present invention is to provide an aluminum alloy for a magnetic disk which is excellent in zincate treatment property and can obtain various surface properties.
【0010】[0010]
【課題を解決するための手段】上記の課題を解決するた
めの本発明によるジンケート処理性に優れた磁気ディス
ク用アルミニウム合金は、Al−Mg合金に、微量のC
uを添加し、且つ添加量を特定の範囲に正確に制御し、
さらに特定量のZn、Feを共存させることを基本とす
る。The aluminum alloy for a magnetic disk excellent in zincate treatment according to the present invention for solving the above-mentioned problems is obtained by adding a trace amount of C to an Al-Mg alloy.
u, and precisely controlling the amount of addition to a specific range,
Further, it is basically based on coexistence of specific amounts of Zn and Fe.
【0011】すなわち、本発明の磁気ディスク用アルミ
ニウム合金は、Cu:0.031%以上0.050%未
満、Mg:2.5〜5.5%、Zn:0.05%を越え
0.7%以下、Fe:0.007%以上0.05%未満
を含有し、不純物としてのSiを0.05%以下、Ti
を0.01%以下、Bを0.005%以下に制限し、残
部Alおよび不純物からなることを第1の特徴とする。That is, in the aluminum alloy for a magnetic disk of the present invention, Cu: 0.031% or more and less than 0.050%, Mg: 2.5-5.5%, Zn: more than 0.05% and 0.7% or more. %, Fe: 0.007% or more and less than 0.05%, Si as an impurity is 0.05% or less, Ti
Is limited to 0.01% or less, B is limited to 0.005% or less, and the first feature is that the balance consists of Al and impurities.
【0012】また、上記の成分に、さらにMn:0.1
%以下、Cr:0.1%以下、V:0.2%以下のうち
の1種以上を含有させること、さらにBe:1〜100
ppmを含有させることを第2、第3の特徴とし、Cu
含有量とZn含有量とが、0.85%≧Zn(%)+5
Cu(%)≧0.27%の関係にあることを第4の特徴
とする。Further, Mn: 0.1 is added to the above components.
% Or less, Cr: 0.1% or less, V: 0.2% or less, and Be: 1 to 100
ppm as the second and third features.
0.85% ≧ Zn (%) + 5
A fourth characteristic is that Cu (%) ≧ 0.27%.
【0013】さらに、上記の組成を有するアルミニウム
合金であって、該アルミニウム合金のマトリックス中に
存在するSi−O系非金属化合物の粒径が5μm以下で
あることを第5の特徴とする。A fifth feature of the present invention is an aluminum alloy having the above composition, wherein the particle diameter of the Si—O-based nonmetallic compound present in the matrix of the aluminum alloy is 5 μm or less.
【0014】[0014]
【発明の実施の形態】本発明による磁気ディスク用アル
ミニウム合金の成分およびその限定理由について述べる
と、Cuは、ジンケート皮膜の不均一性を改善するよう
機能する成分であり、Cuを含有させることにより、ジ
ンケートの結晶が微細且つ均一に生成する。好ましい含
有量は0.031%以上0.050%未満で、0.03
1%未満では、ジンケート皮膜が緻密になり難く改善効
果が小さい。0.050%を越えて含有すると、素材の
エッチング速度が大きくなり、ジンケートムラが生じ易
くなる。また素材の耐食性が低下する。BEST MODE FOR CARRYING OUT THE INVENTION The components of the aluminum alloy for a magnetic disk according to the present invention and the reasons for limiting the same are described below. Cu is a component that functions to improve the non-uniformity of a zincate film. , Zincate crystals are finely and uniformly formed. The preferred content is 0.031% or more and less than 0.050%, and 0.03% or less.
If it is less than 1%, the zincate film is difficult to be dense, and the improvement effect is small. When the content exceeds 0.050%, the etching rate of the material is increased, and zinc oxide is likely to occur. Also, the corrosion resistance of the material is reduced.
【0015】Mgは、基板自体の強度を得るために必要
な元素であり、好ましい含有量は、2.5〜5.5%の
範囲である。2.5%未満では研削性が劣化し、また加
工および使用時に強度が不足する。5.5%を越える
と、熱間加工性が低下するとともに、Mg−Si系化合
物が生成して、めっき欠陥が生じ易くなる。強度上から
は3.5%以上が好ましく、Mg−Si系化合物の生成
を抑制する点では5%以下が好ましい。[0015] Mg is an element necessary for obtaining the strength of the substrate itself, and its preferable content is in the range of 2.5 to 5.5%. If it is less than 2.5%, the grindability deteriorates and the strength is insufficient during processing and use. If it exceeds 5.5%, hot workability is reduced, and an Mg—Si-based compound is generated, which tends to cause plating defects. From the viewpoint of strength, it is preferably 3.5% or more, and is preferably 5% or less from the viewpoint of suppressing the formation of Mg-Si-based compounds.
【0016】Znは、Cuと共存させることによりジン
ケート皮膜の不均一さを改善するよう作用する。Znの
好ましい含有範囲は、0.05%を越え0.70%以下
であり、0.05%以下ではその効果が小さく、0.7
0%を越えると、素材のエッチング速度が大きくなっ
て、ジンケートムラが生じ易くなり、素材自体の耐食性
が劣化する。Znのさらに好ましい含有量は0.1〜
0.5%の範囲である。Zn acts to improve the unevenness of the zincate film by coexisting with Cu. The preferable range of Zn content is more than 0.05% and 0.70% or less.
If it exceeds 0%, the etching rate of the material increases, so that zinc oxide is likely to occur, and the corrosion resistance of the material itself deteriorates. The more preferable content of Zn is 0.1 to
The range is 0.5%.
【0017】本発明においては、ZnとCuとの共存に
よりジンケート皮膜の均一性が向上するが、この作用は
Cuのほうがより大きいこと、また耐食性の低下に対し
てもCuの影響が大きいことを考慮し、耐食性を損なう
ことなくジンケート処理性をさらに効果的に改善し、緻
密で均質なジンケート皮膜を得るためには、Cu含有量
とZn含有量の関係を、0.85%≧Zn(%)+5C
u(%)≧0.27%とすることが好ましい。In the present invention, the uniformity of the zincate film is improved by the coexistence of Zn and Cu. However, this effect is due to the fact that Cu has a greater effect and that Cu has a greater effect on the reduction of corrosion resistance. Considering the above, in order to further effectively improve the zincate treatment property without deteriorating the corrosion resistance and obtain a dense and homogeneous zincate film, the relationship between the Cu content and the Zn content must be 0.85% ≧ Zn (% ) + 5C
It is preferable that u (%) ≧ 0.27%.
【0018】特定量のFeを共存させることにより研削
性が高められ、ジンケート処理の均質性が向上する。好
ましい含有量は、0.007%以上0.05%未満の範
囲であり、0.007%未満ではその効果が十分でな
く、0.05%以上含有すると、粗大なAl−Fe系、
Al−Fe−Si系の化合物が生成して、めっき欠陥が
生じ易くなる。Feのさらに好ましい含有範囲は0.0
1〜0.5%である。By coexisting a specific amount of Fe, the grindability is improved and the homogeneity of the zincate treatment is improved. The preferred content is in the range of 0.007% or more and less than 0.05%, and if the content is less than 0.007%, the effect is not sufficient.
Al-Fe-Si-based compounds are generated, and plating defects are likely to occur. The more preferable content range of Fe is 0.0
1 to 0.5%.
【0019】Mn、Cr、Vは、これらの元素の1種以
上を添加することにより、結晶粒を均一且つ微細にし、
研削性を向上させる。好ましい含有量は、Mn:0.1
%以下、Cr:0.1%以下、V:0.2%以下の範囲
であり、上限を越えて添加すると、粗大な金属間化合物
が増加して、めっき欠陥が生じ易くなる。Mn, Cr and V are made to have uniform and fine crystal grains by adding one or more of these elements.
Improve grindability. The preferred content is Mn: 0.1
% Or less, Cr: 0.1% or less, V: 0.2% or less, and if added in excess of the upper limit, coarse intermetallic compounds increase and plating defects are likely to occur.
【0020】Beは溶湯の酸化を防止して、Mgの含有
量を厳密に管理するのに役立つ。好ましい含有量は10
0ppm以下であり、100ppmを越えて含有させて
も、効果が飽和し、それ以上の顕著な改善効果が得られ
ない。Be serves to prevent oxidation of the molten metal and to strictly control the Mg content. The preferred content is 10
The content is 0 ppm or less, and even if the content exceeds 100 ppm, the effect is saturated and no further remarkable improvement effect can be obtained.
【0021】本発明においては、アルミニウム合金中の
不純物、とくにSi、Ti、Bを厳密に制限することが
重要である。Siが0.05%を越えると粗大なMg−
Si系化合物が生成して、めっき欠陥が生じ易くなるか
ら、Siは0.05%以下、さらに好ましくは0.03
%以下に制限する。In the present invention, it is important to strictly limit impurities in the aluminum alloy, in particular, Si, Ti and B. If the Si content exceeds 0.05%, coarse Mg-
Since a Si-based compound is generated and plating defects are likely to occur, Si is 0.05% or less, more preferably 0.03% or less.
%.
【0022】Ti、Bは、通常、アルミニウム合金の鋳
造組織を微細化するために添加される元素であり、スク
ラップを使用すると不純物として混入することがある。
Tiが0.01%、Bが0.005%を越えると、粗大
な金属間化合物が増加して、めっき欠陥を生じ易くなる
から、Tiは0.01%以下、Bは0.005%以下に
制限する。なお、その他の不純物として、Zr、Ni、
Pbなどは、0.02%未満であれば本発明のアルミニ
ウム合金の特性に影響を与えることはない。Ti and B are elements usually added for refining the cast structure of an aluminum alloy, and may be mixed as impurities when scrap is used.
If the content of Ti exceeds 0.01% and the content of B exceeds 0.005%, coarse intermetallic compounds increase and plating defects easily occur, so that Ti is 0.01% or less and B is 0.005% or less. Restrict to In addition, as other impurities, Zr, Ni,
If Pb or the like is less than 0.02%, it does not affect the properties of the aluminum alloy of the present invention.
【0023】Al−Mg系合金を、常法に従って溶解、
鋳造する場合、炉壁材や離型材の混入に起因して、素材
中にSi−O系非金属化合物が含有され易く、磁気ディ
スク基板として適用する際、めっき処理後にピットや膨
れなどの表面欠陥を生じる原因となる。素材中にSi−
O系非金属化合物が含まれないことが最も好ましいが、
素材マトリックス中にSi−O系非金属化合物が存在す
る場合には、その粒径(長径と短径の平均)を5μm以
下にすることが必要である。An Al—Mg alloy is melted according to a conventional method.
In the case of casting, Si-O-based nonmetallic compounds are easily contained in the material due to the mixing of the furnace wall material and the release material, and when applied as a magnetic disk substrate, surface defects such as pits and blisters after plating are applied. May cause. Si- in the material
Most preferably, no O-based nonmetallic compound is included,
When a Si-O-based nonmetallic compound is present in the material matrix, it is necessary that the particle size (average of the major axis and the minor axis) be 5 μm or less.
【0024】上記のSi−O系非金属化合物の制御は、
合金中の成分調整、とくにMg含有量の管理、不純物と
してのSi量の制限、鋳塊の均質化処理条件の調整によ
り行われる。特定組成範囲のアルミニウム合金を適用
し、鋳塊の均質化処理を、窒素ガスや不活性ガスを富化
した空気よりも低い酸素濃度雰囲気中において、調整さ
れた条件で実施することにより、Si−O系非金属化合
物が還元され、微細化される。The control of the above-mentioned Si-O type nonmetallic compound is as follows.
The adjustment is performed by adjusting the components in the alloy, in particular, controlling the Mg content, limiting the amount of Si as an impurity, and adjusting the conditions for homogenizing the ingot. By applying an aluminum alloy having a specific composition range and performing a homogenization treatment of the ingot under an adjusted condition in an atmosphere having an oxygen concentration lower than that of air enriched with nitrogen gas or inert gas, Si- The O-based nonmetal compound is reduced and miniaturized.
【0025】[0025]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成を有するアルミニウム合金をDC鋳造に
より造塊し、鋳肌部の表面切削を行った後、520℃で
6時間の鋳塊均質化処理を実施した。ついで、450℃
の温度で熱間圧延を開始して4mm厚さまで熱間圧延
し、冷間圧延を経て、厚さ0.8mmの板材とした。Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An aluminum alloy having the composition shown in Table 1 was ingot-formed by DC casting, the surface of the casting surface was cut, and then an ingot homogenization treatment was performed at 520 ° C. for 6 hours. Then 450 ° C
Hot rolling was started at this temperature, hot-rolled to a thickness of 4 mm, and cold-rolled to obtain a sheet material having a thickness of 0.8 mm.
【0026】この板材から、外径96mm、内径24m
mのドーナツ形状の磁気ディスク素材を打ち抜いて、3
50℃で1時間の焼鈍後、砥石研削を行って表面を仕上
げた。これらの磁気ディスク素材を、市販の溶剤により
脱脂、エッチング処理、デスマット処理し、2回のジン
ケート処理後にNi−Pめっきを施し、さらに、仕上げ
研磨により鏡面仕上げを行った。From this plate material, an outer diameter of 96 mm and an inner diameter of 24 m
punch out a donut-shaped magnetic disk material
After annealing at 50 ° C. for 1 hour, grinding was performed to finish the surface. These magnetic disk materials were degreased, etched, and desmutted with a commercially available solvent, Ni-P plated after two zincate treatments, and mirror-finished by finish polishing.
【0027】上記の工程を経て作製された磁気ディスク
基板について、研削性(研削のし易さ)を相対評価し、
目視によりジンケート皮膜の状況、めっき・最終研磨後
の表面状況を観察して、これらを相対評価した。また、
最終研磨後の微少欠陥数を測定した。これらの結果を、
素材の硬さとともに表2に示す。With respect to the magnetic disk substrate manufactured through the above steps, the grindability (easiness of grinding) was relatively evaluated.
The condition of the zincate film and the surface condition after plating and final polishing were visually observed, and these were relatively evaluated. Also,
The number of minute defects after the final polishing was measured. These results
Table 2 shows the hardness of the material.
【0028】表2にみられるように、本発明に従う試験
材No.1〜5は、めっき・最終研磨後にムラを生じる
ことはなく、研磨後の欠陥もほとんど認められない。
(合格レベルの欠陥数は2個/面)なお、試験材No.
3について、ジンケート処理時にわずかなムラが発生し
たが、最終研磨後にはムラを生じることがなかった。As shown in Table 2, the test material No. In Nos. 1 to 5, unevenness does not occur after plating and final polishing, and defects after polishing are hardly observed.
(The number of defects at the pass level is 2 / surface).
For No. 3, slight unevenness occurred during the zincate treatment, but no unevenness occurred after the final polishing.
【0029】[0029]
【表1】 《表注》Be量はppm[Table 1] << Table Note >> Be content is ppm
【0030】[0030]
【表2】 《表注》研削性:○(良好) ジンケート皮膜状況:○(ムラ無し) △(僅かなムラ有り) 最終研磨後の表面状況:○(ムラ無し)[Table 2] << Table Note >> Grindability: ○ (good) Zincate film condition: ○ (no unevenness) △ (slight unevenness) Surface condition after final polishing: ○ (no unevenness)
【0031】比較例1 表3に示す組成を有するアルミニウム合金をDC鋳造に
より造塊し、実施例1と同じ工程で処理して、厚さ0.
8mmの板材とし、実施例1と同様に、ドーナツ形状に
打ち抜いて、脱脂、エッチング処理、デスマット処理、
2回のジンケート処理、Ni−Pめっきを行い、仕上げ
研磨により鏡面仕上げした。なお、表3において、本発
明の条件を外れたものには下線を付した。COMPARATIVE EXAMPLE 1 An aluminum alloy having the composition shown in Table 3 was ingoted by DC casting, processed in the same steps as in Example 1, and had a thickness of 0.1 mm.
8 mm plate material, punched into a donut shape as in Example 1, degreasing, etching, desmutting,
Two zincate treatments and Ni-P plating were performed, and mirror polishing was performed by finish polishing. In Table 3, those outside the conditions of the present invention are underlined.
【0032】上記の工程を経て作製された磁気ディスク
基板について、実施例1と同様、研削性(研削のし易
さ)を相対評価し、目視によりジンケート皮膜の状況、
めっき・最終研磨後の表面状況を観察して、これらを相
対評価した。また、最終研磨後の微少欠陥数を測定し
た。これらの結果を、素材の硬さとともに表4に示す。With respect to the magnetic disk substrate manufactured through the above steps, the grindability (easiness of grinding) was relatively evaluated in the same manner as in Example 1, and the condition of the zincate film was visually observed.
By observing the surface condition after plating and final polishing, these were relatively evaluated. Further, the number of minute defects after the final polishing was measured. Table 4 shows these results together with the hardness of the material.
【0033】[0033]
【表3】 [Table 3]
【0034】[0034]
【表4】 《表注》研削性:○(良好)△(ややわるい)×(わるい) ジンケート皮膜状況:○(ムラ無し)△(僅かなムラ有り)×(ムラ有り) 最終研磨後の表面状況:○(ムラ無し)△(僅かなムラ有り)×(ムラ有り)[Table 4] << Table Note >> Grindability: ○ (good) △ (slightly bad) × (poor) Zincate film condition: ○ (no unevenness) △ (slight unevenness) × (with unevenness) Surface condition after final polishing: ○ ( (No unevenness) △ (slight unevenness) x (unevenness)
【0035】試験材No.8はFe量が多く、試験材N
o.6、11、13、16および17は、それぞれ不純
物のSi、Mn、Cr、TiとBおよびVの含有量が多
いため、粗大な金属間化合物の生成に起因して、めっき
後に多くの微少欠陥が発生した。試験材No.7はFe
含有量が少なく、No.9、10はCuの含有量が適切
でなく、試験材No.14、15はZn含有量が適切で
ないため、いずれもジンケート処理においてムラが発生
し、最終研磨後もこのムラが残っている。なお、最終研
磨後にムラが生じたものについては、欠陥検査を行わな
かった。Test material No. No. 8 has a large amount of Fe, and the test material N
o. 6, 11, 13, 16 and 17 each have a large content of impurities Si, Mn, Cr, Ti and B and V, so that many fine defects occur after plating due to the formation of coarse intermetallic compounds. There has occurred. Test material No. 7 is Fe
The content is low. Test materials Nos. 9 and 10 did not have an appropriate Cu content. In Nos. 14 and 15, since the Zn content was not appropriate, unevenness occurred in the zincate treatment, and the unevenness remained after the final polishing. Note that no defect inspection was performed on the sample having unevenness after the final polishing.
【0036】試験材No.7は、Feの含有量が少ない
ため研削性に問題があり、試験材No.12は、Mg量
が少ないため、強度が不十分であり、研削性もわるい。Test material No. Test material No. 7 had a problem in grindability due to low Fe content. No. 12 has insufficient strength and poor grindability because the amount of Mg is small.
【0037】実施例2、比較例2 表1のNo.4の組成を有するアルミニウム合金をDC
鋳造により造塊し、鋳塊の表面切削を行った後、常法に
従って、520℃で6時間の鋳塊均質化処理を実施し
た。ついで、450℃の温度で熱間圧延を開始して4m
m厚さまで熱間圧延し、冷間圧延を経て、厚さ0.8m
mの板材とした。(試験材No.18)Example 2, Comparative Example 2 Aluminum alloy having composition of 4
After ingot casting was performed and the surface of the ingot was cut, ingot homogenization treatment was performed at 520 ° C. for 6 hours according to a conventional method. Then, hot rolling was started at a temperature of 450 ° C.
m, hot-rolled to a thickness of 0.8m
m plate material. (Test material No. 18)
【0038】表1のNo.4の組成を有するアルミニウ
ム合金をDC鋳造により造塊し、鋳塊の表面切削を行っ
た後、窒素ガス富化雰囲気中で、520℃で8時間の鋳
塊均質化処理を実施した。ついで、480℃の温度で熱
間圧延を開始して4mm厚さまで熱間圧延し、冷間圧延
を経て、厚さ0.8mmの板材とした。(試験材No.
19)No. 1 in Table 1. An aluminum alloy having the composition of No. 4 was ingot-formed by DC casting, the surface of the ingot was cut, and then the ingot was homogenized at 520 ° C. for 8 hours in a nitrogen gas-rich atmosphere. Then, hot rolling was started at a temperature of 480 ° C., hot-rolled to a thickness of 4 mm, and cold-rolled to obtain a 0.8 mm-thick plate. (Test material No.
19)
【0039】これらの板材から、外径96mm、内径2
4mmのドーナツ形状の磁気ディスク素材を打ち抜い
て、350℃で1時間の焼鈍後、砥石研削を行って表面
を仕上げた。これらの磁気ディスク素材を、市販の溶剤
により脱脂、エッチング処理、デスマット処理し、2回
のジンケート処理後にNi−Pめっきを施し、さらに、
仕上げ研磨により鏡面仕上げを行った。From these plates, an outer diameter of 96 mm and an inner diameter of 2 mm
A 4 mm doughnut-shaped magnetic disk material was punched out, annealed at 350 ° C. for 1 hour, and then ground with a grindstone to finish the surface. These magnetic disk materials are degreased, etched, and desmutted with a commercially available solvent, and subjected to Ni-P plating after two zincate treatments.
Mirror finishing was performed by finish polishing.
【0040】上記の工程を経て作製された磁気ディスク
基板について、基板マトリックス中のSi−O系非金属
化合物の粒径(長径と短径との平均)を測定し、目視に
よりジンケート皮膜の状況、めっき・最終研磨後の表面
状況を観察して、これらを相対評価した。また、最終研
磨後の微少欠陥数を測定した。これらの結果を表5に示
す。With respect to the magnetic disk substrate manufactured through the above steps, the particle size (average of the major axis and the minor axis) of the Si—O-based nonmetal compound in the substrate matrix was measured, and the condition of the zincate film was visually observed. By observing the surface condition after plating and final polishing, these were relatively evaluated. Further, the number of minute defects after the final polishing was measured. Table 5 shows the results.
【0041】[0041]
【表5】 [Table 5]
【0042】[0042]
【発明の効果】以上のとおり、本発明によれば、ジンケ
ート処理後にムラを生じることがなく、めっき・最終研
磨後、ムラが無く均質な表面性状を得ることができ、高
密度基板用として十分に適用することを可能とする磁気
ディスク基板用アルミニウム合金が提供される。As described above, according to the present invention, no unevenness occurs after zincate treatment, and after plating and final polishing, uniform surface properties can be obtained without unevenness, which is sufficient for high-density substrates. The present invention provides an aluminum alloy for a magnetic disk substrate which can be applied to a magnetic disk.
Claims (5)
じ)以上0.050%未満、Mg:2.5〜5.5%、
Zn:0.05%を越え0.7%以下、Fe:0.00
7%以上0.05%未満を含有し、不純物としてのSi
を0.05%以下、Tiを0.01%以下、Bを0.0
05%以下に制限し、残部Alおよび不純物からなるこ
とを特徴とするジンケート処理性に優れた磁気ディスク
用アルミニウム合金。1. Cu: 0.031% (% by weight, the same applies hereinafter) to less than 0.050%, Mg: 2.5 to 5.5%,
Zn: more than 0.05% and 0.7% or less, Fe: 0.00
Containing 7% or more and less than 0.05%, Si as an impurity
0.05% or less, Ti 0.01% or less, B 0.0%
An aluminum alloy for a magnetic disk excellent in zincate treatment, characterized in that the content is limited to not more than 05% and the balance is Al and impurities.
ず、以下同じ)、Cr:0.1%以下、V:0.2%以
下のうちの1種以上を含有することを特徴とする請求項
1記載のめっき処理性に優れた磁気ディスク用アルミニ
ウム合金。2. Must contain at least one of Mn: 0.1% or less (excluding 0%, the same applies hereinafter), Cr: 0.1% or less, and V: 0.2% or less. The aluminum alloy for a magnetic disk according to claim 1, which is excellent in plating property.
ることを特徴とする請求項1または請求項2記載のジン
ケート処理性に優れた磁気ディスク用アルミニウム合
金。3. The aluminum alloy for a magnetic disk excellent in zincate treatment according to claim 1, further comprising 1-100 ppm of Be.
%≧Zn(%)+5Cu(%)≧0.27%の関係にあ
ることを特徴とする請求項1〜3のいずれかに記載のジ
ンケート処理性に優れた磁気ディスク用アルミニウム合
金。4. The Cu content and the Zn content are 0.85
The aluminum alloy for a magnetic disk excellent in zincate treatment according to any one of claims 1 to 3, wherein a relation of% ≧ Zn (%) + 5Cu (%) ≧ 0.27% is satisfied.
ム合金であって、該アルミニウム合金のマトリックス中
にSi−O系非金属化合物が存在しないか、またはマト
リックス中に存在するSi−O系非金属化合物の粒径
(長径と短径の平均、以下同じ)が5μm以下であるこ
とを特徴とするジンケート処理性に優れた磁気ディスク
用アルミニウム合金。5. An aluminum alloy having the composition according to claim 1, wherein the matrix of the aluminum alloy contains no Si—O-based non-metallic compound or the aluminum alloy has a Si—O-based non-metallic compound present in the matrix. An aluminum alloy for a magnetic disk having excellent zincate treatment properties, wherein the metal compound has a particle diameter (average of a major axis and a minor axis, hereinafter the same) of 5 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12434398A JPH11315338A (en) | 1998-05-07 | 1998-05-07 | Aluminum alloy for magnetic disk, excellent in zincate treatment property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12434398A JPH11315338A (en) | 1998-05-07 | 1998-05-07 | Aluminum alloy for magnetic disk, excellent in zincate treatment property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11315338A true JPH11315338A (en) | 1999-11-16 |
Family
ID=14883020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12434398A Pending JPH11315338A (en) | 1998-05-07 | 1998-05-07 | Aluminum alloy for magnetic disk, excellent in zincate treatment property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11315338A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5762612B1 (en) * | 2014-09-27 | 2015-08-12 | 株式会社Uacj | Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and manufacturing method of magnetic disk |
JP2015196867A (en) * | 2014-03-31 | 2015-11-09 | 株式会社神戸製鋼所 | Aluminum alloy sheet |
WO2016190277A1 (en) * | 2015-05-28 | 2016-12-01 | 株式会社Uacj | Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs |
WO2017018451A1 (en) * | 2015-07-28 | 2017-02-02 | 株式会社Uacj | Magnetic disc aluminum alloy substrate and manufacturing method therefor |
CN107835863A (en) * | 2015-07-28 | 2018-03-23 | 株式会社Uacj | Aluminium alloy base plate for magnetic disk and its manufacture method |
JP2019167602A (en) * | 2018-03-26 | 2019-10-03 | 株式会社Uacj | Aluminum alloy sheet for magnetic disc and its production method, and, magnetic disc using aluminum alloy sheet for magnetic disc |
CN110527878A (en) * | 2019-09-23 | 2019-12-03 | 东莞市灿煜金属制品有限公司 | A kind of manufacturing method of laptop dedicated aluminium alloy |
-
1998
- 1998-05-07 JP JP12434398A patent/JPH11315338A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015196867A (en) * | 2014-03-31 | 2015-11-09 | 株式会社神戸製鋼所 | Aluminum alloy sheet |
JP5762612B1 (en) * | 2014-09-27 | 2015-08-12 | 株式会社Uacj | Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and manufacturing method of magnetic disk |
US9613648B2 (en) | 2014-09-27 | 2017-04-04 | Uacj Corporation | Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc |
WO2016190277A1 (en) * | 2015-05-28 | 2016-12-01 | 株式会社Uacj | Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs |
JPWO2016190277A1 (en) * | 2015-05-28 | 2017-11-16 | 株式会社Uacj | Aluminum alloy substrate for magnetic disk, manufacturing method thereof, and magnetic disk using the aluminum alloy substrate for magnetic disk |
CN107532245A (en) * | 2015-05-28 | 2018-01-02 | 株式会社Uacj | Aluminium alloy base plate for magnetic disk and its manufacture method and the disk for having used the aluminium alloy base plate for magnetic disk |
CN107532245B (en) * | 2015-05-28 | 2019-07-16 | 株式会社Uacj | Aluminium alloy base plate for magnetic disk and its manufacturing method and the disk for having used the aluminium alloy base plate for magnetic disk |
US10755738B2 (en) | 2015-05-28 | 2020-08-25 | Uacj Corporation | Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs |
WO2017018451A1 (en) * | 2015-07-28 | 2017-02-02 | 株式会社Uacj | Magnetic disc aluminum alloy substrate and manufacturing method therefor |
CN107835863A (en) * | 2015-07-28 | 2018-03-23 | 株式会社Uacj | Aluminium alloy base plate for magnetic disk and its manufacture method |
JP2019167602A (en) * | 2018-03-26 | 2019-10-03 | 株式会社Uacj | Aluminum alloy sheet for magnetic disc and its production method, and, magnetic disc using aluminum alloy sheet for magnetic disc |
CN110527878A (en) * | 2019-09-23 | 2019-12-03 | 东莞市灿煜金属制品有限公司 | A kind of manufacturing method of laptop dedicated aluminium alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109563572B (en) | Aluminum alloy plate for magnetic disk substrate, method for producing same, and magnetic disk | |
WO2016047138A1 (en) | Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc | |
WO2016190277A1 (en) | Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs | |
JP2020029595A (en) | Aluminum alloy blank for magnetic disk and manufacturing method therefor, magnetic disk using aluminum alloy blank for magnetic disk and manufacturing method therefor | |
WO2018092547A1 (en) | Aluminum alloy substrate for magnetic disc and method of manufacture therefor | |
JPH11315338A (en) | Aluminum alloy for magnetic disk, excellent in zincate treatment property | |
JPH0545659B2 (en) | ||
JPH06145927A (en) | Production of al-mg alloy rolled sheet for magnetic disk | |
JPH02205651A (en) | Aluminum alloy for magnetic disk base | |
JP2023071471A (en) | Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk | |
JPH02111839A (en) | Aluminum alloy sheet for disk having superior plating suitability and its production | |
JPH07195150A (en) | Method for casting aluminum alloy for hdd | |
JPS6327420B2 (en) | ||
JPH02159340A (en) | Aluminum alloy sheet for disk having excellent plating characteristics | |
JPS634050A (en) | Manufacture of aluminum-alloy substrate for magnetic disk | |
JPH07331397A (en) | Production of aluminum alloy sheet for magnetic disk substrate | |
JP2002275568A (en) | Aluminum alloy for magnetic disk and substrate for magnetic disk | |
JPH04341535A (en) | Aluminum alloy substrate for high density coating type magnetic disk | |
WO2017018451A1 (en) | Magnetic disc aluminum alloy substrate and manufacturing method therefor | |
JP7474356B2 (en) | Aluminum alloy disk blank for magnetic disk and magnetic disk | |
JPH01312054A (en) | Aluminum alloy for magnetic disk and its production | |
WO2021206097A1 (en) | Aluminum alloy substrate for magnetic disk, and magnetic disk using same | |
JPS627829A (en) | Aluminum alloy for magnetic disk substrate | |
US20230111915A1 (en) | Aluminum alloy substrate for magnetic disks, and magnetic disk using said aluminum alloy substrate for magnetic disks | |
JP2017166017A (en) | Aluminum alloy substrate for magnetic disc |