JPH04341535A - Aluminum alloy substrate for high density coating type magnetic disk - Google Patents

Aluminum alloy substrate for high density coating type magnetic disk

Info

Publication number
JPH04341535A
JPH04341535A JP14266891A JP14266891A JPH04341535A JP H04341535 A JPH04341535 A JP H04341535A JP 14266891 A JP14266891 A JP 14266891A JP 14266891 A JP14266891 A JP 14266891A JP H04341535 A JPH04341535 A JP H04341535A
Authority
JP
Japan
Prior art keywords
magnetic disk
aluminum alloy
compounds
less
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14266891A
Other languages
Japanese (ja)
Inventor
Seiichi Hirano
平野 清一
Teruo Uno
宇野 照生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP14266891A priority Critical patent/JPH04341535A/en
Publication of JPH04341535A publication Critical patent/JPH04341535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aluminum alloy suitable for a substrate for high density coating type magnetic disk. CONSTITUTION:The aluminum alloy substrate for high density coating type magnetic disk characterized by having a composition consisting of 3.0-5.5% Mg, 0.05-0.5% Mn, 0.1-0.030% Si, 0.01-0.045% Fe, and the balance Al with inevitable impurities and satisfying 5X(Si%)<=(Mn%) and also having a structure where the size of an Mg-Si compound, the size of an Al-Fe-Mn-Si compound, and crystalline grain size are regulated to <=3mum, <=10mum, and <=40mum, respectively, can be obtained. Accordingly, pitting defect can be reduced when the substrate is ground as magnetic disk and, as a result, the coating type magnetic disk can be made high density.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気ディスク用アルミ
ニウム合金基板に関し、特に高密度コーティング型磁気
ディスク用アルミニウム合金基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy substrate for magnetic disks, and more particularly to a high-density coated aluminum alloy substrate for magnetic disks.

【0002】0002

【従来の技術】現在磁気ディスクに使用されているアル
ミニウム合金基板は、 (1)クロメート処理したアルミニウム基板(2)アル
マイトしたアルミニウム基板(3)NiPをめっきした
アルミニウム基板の3種類がある。この他、セラミック
基板の開発も行われている。このうち今日では、クロメ
ート処理したアルミニウム基板を使用したコーティング
型磁気ディスクが最も多く生産されている。
2. Description of the Related Art There are three types of aluminum alloy substrates currently used in magnetic disks: (1) chromate-treated aluminum substrates, (2) anodized aluminum substrates, and (3) NiP-plated aluminum substrates. In addition, ceramic substrates are also being developed. Of these, coated magnetic disks using chromate-treated aluminum substrates are most commonly produced today.

【0003】従来より磁気ディスクの素材としては、次
に示す特性が要求され、JIS−A5086系のAl−
Mg−Mn−Cr合金基板が使用されている。 (1)精密研磨あるいは切削後の表面精度が良好なこと
。 (2)研磨後はもちろんのことそれに続く化学処理工程
においても磁性体薄膜の欠陥の原因となる基板表面の突
起や孔ができにくく、またたとえできたとしても小さい
こと。 (3)ある程度の強度を有し、基板製作時の機械加工や
使用時の高速回転にも耐えること。 (4)軽量、非磁性であり、ある程度の耐食性を有する
こと。 (5)媒体塗布後の加熱により、変形しないこと。 さらに高密度化の進行に従い、コーティング磁気ディス
クではコア幅が十数μm程度のものが作られるようにな
った。これはコーティング磁気ディスクとしては限界に
近い非常に高性能のものと考えられる。
Conventionally, materials for magnetic disks have been required to have the following properties, and JIS-A5086 series Al-
A Mg-Mn-Cr alloy substrate is used. (1) Good surface accuracy after precision polishing or cutting. (2) Not only after polishing but also during the subsequent chemical treatment process, protrusions and holes on the substrate surface that cause defects in the magnetic thin film are difficult to form, and even if they are formed, they are small. (3) It has a certain degree of strength and can withstand machining during board production and high-speed rotation during use. (4) It should be lightweight, non-magnetic, and have a certain degree of corrosion resistance. (5) It should not be deformed by heating after applying the medium. Furthermore, with the progress of higher density, coated magnetic disks with core widths of about 10-odd micrometers have come to be manufactured. This is considered to be extremely high performance, close to the limit for coated magnetic disks.

【0004】一般にコーティング型磁気ディスク基板は
、溶解・鋳造→均質化処理→面削→熱間圧延→中間焼鈍
→冷間圧延→打抜→加圧焼鈍→鏡面仕上げ→表面を活性
化する前処理→クロメート処理→媒体塗布の工程により
製造される。このうち、鏡面仕上げ時及び表面を活性化
する前処理、クロメート処理等の化学処理時に磁気記録
エラーとなる欠陥を作らないことが重要である。前述の
高密度のコーティング型磁気ディスクに対しては、コア
幅十数μm程度ということからアルミニウム合金基板中
の3〜4μm程度の大きさの粒子がもとで形成される欠
陥が問題となる。
[0004] In general, coated magnetic disk substrates are prepared by melting/casting → homogenization → facing → hot rolling → intermediate annealing → cold rolling → punching → pressure annealing → mirror finishing → pretreatment to activate the surface. Manufactured through the steps of → chromate treatment → media coating. Among these, it is important not to create defects that will cause magnetic recording errors during mirror finishing, pretreatment for activating the surface, and chemical treatment such as chromate treatment. For the above-mentioned high-density coated magnetic disk, since the core width is about 10-odd micrometers, defects caused by particles of about 3 to 4 micrometers in size in the aluminum alloy substrate become a problem.

【0005】このような粒子(コンパウンド)は具体的
には、鋳造時に混入する非金属介在物と金属間化合物の
2種類がある。前者は鋳造に関してフィルターを強化す
るなどの設備上の対策により改善されるが、後者の金属
間化合物は不純物であるSiやFeにより生成される。
[0005] Specifically, there are two types of such particles (compounds): nonmetallic inclusions mixed in during casting and intermetallic compounds. The former can be improved by taking equipment measures such as strengthening filters for casting, but the latter intermetallic compounds are generated by impurities such as Si and Fe.

【0006】また、JIS−A5086合金を改良した
ものとしてMn,Cr,Fe,Si,Ti含有量を極力
微量に制限したAl−Mg系合金基板が提案されている
(特公昭63−48940号公報)。さらにSi含有量
をきびしく規定したものも提案されている(特開平2−
88741号公報)。
[0006] Furthermore, as an improved JIS-A5086 alloy, an Al-Mg alloy substrate has been proposed in which the contents of Mn, Cr, Fe, Si, and Ti are limited to as small as possible (Japanese Patent Publication No. 48940/1983). ). Furthermore, a method in which the Si content is strictly specified has been proposed (Unexamined Japanese Patent Application Publication No. 2002-2012-
88741).

【0007】[0007]

【発明が解決しようとする課題】従来から磁気ディスク
に使用されている5086合金は、Al−Mg−Mn−
Cr合金である。従って、不純物のSi,Feにより形
成される化合物は、大別して、Mg−Si系およびAl
−Fe−Mn−Si系の2種類である。
[Problems to be Solved by the Invention] The 5086 alloy conventionally used for magnetic disks is Al-Mg-Mn-
It is a Cr alloy. Therefore, compounds formed by the impurities Si and Fe can be roughly divided into Mg-Si type and Al
-Fe-Mn-Si type.

【0008】そこで高密度化に対応するために、Si,
Fe量の少ない高純度アルミニウム合金材を使用し、こ
れらの金属間化合物を極めて少なくすることで対処して
きた。さらに、特公昭63−48940号公報に示され
るように、5086合金の添加元素であるMnは、微量
のFeの存在により鋳造時に容易にAl−Mn−Fe系
の晶出化合物を形成するため、Mnを0.01%以下と
し、かつ不純物量としての規制も厳しく対処されてきた
。このため、特公昭63−48940号公報に示される
材料を、高密度コーティング型磁気ディスク基板として
適用するには、Siを0.010%以下、Feを0.0
10%以下とする必要があり、99.99%以上の高純
度のアルミニウム地金しか使用できない、という問題が
あった。
[0008] Therefore, in order to cope with higher density, Si,
This problem has been solved by using a high-purity aluminum alloy material with a small amount of Fe and by minimizing the amount of these intermetallic compounds. Furthermore, as shown in Japanese Patent Publication No. 63-48940, Mn, which is an additive element of 5086 alloy, easily forms Al-Mn-Fe-based crystallized compounds during casting due to the presence of a small amount of Fe. Strict regulations have been implemented to limit Mn to 0.01% or less and to limit the amount of impurities. Therefore, in order to apply the material shown in Japanese Patent Publication No. 63-48940 as a high-density coating type magnetic disk substrate, Si should be 0.010% or less and Fe should be 0.0% or less.
There was a problem in that it had to be 10% or less, and only aluminum ingots with a purity of 99.99% or more could be used.

【0009】そこで本発明の目的は、Si,Fe量の少
ない高純度アルミニウム合金材を使用しないで安価な高
密度コーティング型磁気ディスク用アルミニウム合金基
板を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an inexpensive aluminum alloy substrate for a high-density coating type magnetic disk without using a high-purity aluminum alloy material containing small amounts of Si and Fe.

【0010】0010

【課題を解決するための手段】このような経過のなかで
本発明者らは、鏡面仕上後の金属間化合物の性質を種々
調査した結果、Mg−Si系化合物はマトリックスから
容易に脱落し、窪み孔欠陥を形成するが、Al−Mn−
Fe系化合物は脱落しにくく、窪み孔欠陥を形成しない
ことを見いだした。そこで、従来の技術とは逆に地金の
Si含有量に見合った量のMn[即ち5×(Si%)≦
(Mn%)]を積極的に含有させることで、Siを無害
なAl−Fe−Mn−Si系の化合物として吸収し、そ
の結果有害なMg−Si系化合物の大きさを小さく、晶
出量を減少させることを見いだし、本発明を完成するに
至った。
[Means for Solving the Problems] In the course of this process, the present inventors conducted various investigations into the properties of intermetallic compounds after mirror finishing, and found that Mg-Si compounds easily fall off from the matrix; Al-Mn-
It has been found that Fe-based compounds are difficult to fall off and do not form pit defects. Therefore, contrary to the conventional technology, the amount of Mn commensurate with the Si content of the base metal [i.e., 5×(Si%)≦
(Mn%)], Si is absorbed as a harmless Al-Fe-Mn-Si compound, thereby reducing the size of harmful Mg-Si compounds and reducing the amount of crystallization. The present invention has been completed based on the discovery that this can reduce the

【0011】すなわち、本発明の要旨は、Al−Mg合
金にSi含有量に見合ったMnを含有させ、かつMn含
有量を0.05〜0.5%とすることにより、Siを0
.030%まで、Feを0.045%まで含有すること
を可能とし、しかも磁気ディスク基板の板面において有
害なMg−Si系化合物を3μm以下、Al−Fe−M
n−Si系化合物を10μm以下、かつ結晶粒径を40
μm以下とした高密度コーティング型磁気ディスク用ア
ルミニウム合金基板である。
That is, the gist of the present invention is to reduce Si to 0 by making an Al-Mg alloy contain Mn commensurate with the Si content and by controlling the Mn content to 0.05 to 0.5%.
.. It is possible to contain Fe up to 0.030% and Fe up to 0.045%, and to eliminate harmful Mg-Si compounds to a thickness of 3 μm or less on the surface of the magnetic disk substrate, Al-Fe-M
The n-Si compound is 10 μm or less and the crystal grain size is 40 μm or less.
This is a high-density coated aluminum alloy substrate for magnetic disks with a thickness of μm or less.

【0012】0012

【作用】本発明の構成と作用を説明する。 ■Mg〔3.0〜5.5%〕 Mgは、基板の強度を高めるために必要であり、O材(
焼鈍材)における強度が250MPa以上を得るために
は、少なくとも3%以上含有する必要がある。しかし、
5.5%を超えると熱間加工性が悪くなり、また地金に
含有されるSiと反応してMg−Si系化合物を生成す
るので好ましくない。
[Operation] The structure and operation of the present invention will be explained. ■Mg [3.0-5.5%] Mg is necessary to increase the strength of the substrate, and is
In order to obtain a strength of 250 MPa or more in the annealed material, it is necessary to contain at least 3% or more. but,
If it exceeds 5.5%, hot workability deteriorates and it reacts with Si contained in the base metal to form an Mg-Si compound, which is not preferable.

【0013】■Mn〔0.05〜0.5%〕Mnは、従
来Al−Mn系化合物を形成するので、磁気ディスク基
板材には忌避されていた。しかし小量のMnの含有は、
鋳造時Fe,Siとの結合を促進することによりAl−
Fe−Mn−Si系化合物を生成し、Al−Mg系合金
に生じ易く、しかも磁気ディスクに極めて有害なMg−
Si系の晶出物の生成を抑制させることを見いだした。 また、Fe,Siと結合した残りのMnは、均質化処理
時にAl−Mn系の微細化合物として析出し、基板の結
晶粒微細化を促進し、強度を高めると共に磁気ディスク
基板の表面性状(表面粗さ)を良好にする。従って、M
nの添加量は、主に地金のSi含有量とのかねあいで決
めるべきであるが、この効果は含有量として0.05%
未満では結晶粒微細化効果が不十分であり、5×(Si
%)未満のMn含有量ではSiの無害化効果が不十分で
あり、0.50%を超えると生成する晶出物が大きくな
り好ましくない。
■Mn [0.05-0.5%] Mn has conventionally been avoided in magnetic disk substrate materials because it forms Al--Mn compounds. However, the inclusion of a small amount of Mn
By promoting the bonding with Fe and Si during casting, Al-
Mg-, which generates Fe-Mn-Si-based compounds, tends to occur in Al-Mg-based alloys, and is extremely harmful to magnetic disks.
It has been found that the formation of Si-based crystallized substances can be suppressed. In addition, the remaining Mn combined with Fe and Si precipitates as an Al-Mn-based fine compound during the homogenization process, which promotes crystal grain refinement of the substrate, increases strength, and improves the surface quality of the magnetic disk substrate (surface roughness). Therefore, M
The amount of n added should be determined mainly based on the Si content of the base metal, but this effect can be seen at a content of 0.05%.
If it is less than 5×(Si
If the Mn content is less than 0.50%, the effect of detoxifying Si will be insufficient, and if it exceeds 0.50%, the crystallized product will become large, which is not preferable.

【0014】■Si〔0.010〜0.030%〕Si
は、Al−Mg系合金では、鋳造時にMg−Si系の晶
出化合物を生成させ、磁気ディスク製作中の研磨により
崩れたり、またそれに続く化学処理のエッチングによっ
て溶解・脱落するので、窪み孔が生じ、磁気ディスクの
性能を低下させるので、厳しく制御しなければならない
。しかし、前述したように少量のMnを含有させること
によって、鋳造時にFe,Siと結合し、Al−Fe−
Mn−Si系化合物を生成させ、Mg−Si系の晶出化
合物の生成を抑制させることができる。従って、Siは
少ない方が好ましいが、Mnを0.5%含有したとして
も0.03%を超えるとMg−Si系化合物が生成する
ので、Siは0.03%以下とする必要がある。また、
0.010%未満とすると極めてコスト高となり実用的
ではない。
■Si [0.010-0.030%]Si
In Al-Mg alloys, Mg-Si crystallized compounds are generated during casting, which crumble during polishing during magnetic disk manufacturing, and dissolve and fall off during subsequent chemical etching. This must be strictly controlled, as it degrades the performance of the magnetic disk. However, as mentioned above, by containing a small amount of Mn, it combines with Fe and Si during casting, resulting in Al-Fe-
It is possible to generate Mn-Si compounds and suppress the generation of Mg-Si crystallized compounds. Therefore, it is preferable to have less Si, but even if Mn is contained in an amount of 0.5%, if it exceeds 0.03%, Mg-Si compounds will be produced, so the Si content must be 0.03% or less. Also,
When it is less than 0.010%, the cost becomes extremely high and it is not practical.

【0015】■Fe〔0.010〜0.045%〕Al
−Fe−Mn−Si系化合物は磁気ディスク基板の製造
時の研磨、化学処理時に脱落することがないので、それ
ほどの厳しさはないが、やはり粗大な化合物、例えば1
0μmを超えると化合物は、研磨時にスクラッチきずを
作りやすく、また化学処理時の不安定要因による脱落の
危険性があるので、Fe含有量を0.045%以下とし
て晶出物の大きさを微細化する必要がある。また、0.
010%未満とすると、Siと同様極めてコスト高とな
り実用的ではない。
■Fe[0.010~0.045%]Al
-Fe-Mn-Si compounds do not fall off during polishing or chemical treatment during the manufacture of magnetic disk substrates, so the severity is not as severe, but coarse compounds such as 1
If it exceeds 0 μm, the compound will easily create scratches during polishing, and there is a risk of falling off due to unstable factors during chemical processing. It is necessary to Also, 0.
If it is less than 0.010%, the cost will be extremely high, similar to Si, and it will not be practical.

【0016】■Cr,Zr,V各〔0.05〜0.20
%〕 Cr,Zr,Vは、鋳造時に化合物が晶出しないので、
窪み孔欠陥を発生させることなく、結晶粒をより微細化
し、強度向上とエッチング後の表面性状の改善に効果が
ある。しかしながら、0.05%未満ではこの効果がな
く、0.20%より多くなると鋳造時に粗大な金属間化
合物を形成し、磁気ディスク基板として使用不可能とな
る。
■Cr, Zr, V each [0.05 to 0.20
%] Cr, Zr, and V do not crystallize compounds during casting, so
It is effective in making crystal grains finer and improving strength and surface quality after etching without causing pit defects. However, if it is less than 0.05%, it will not have this effect, and if it is more than 0.20%, a coarse intermetallic compound will be formed during casting, making it impossible to use it as a magnetic disk substrate.

【0017】■Mg−Si系化合物〔≦3μm〕Mg−
Si系化合物は、アルミニウム原料の地金から混入する
Siと、本発明に使用するアルミニウム合金の主成分で
あるMgと結合して生成するもので、少ないほど好まし
い。これは磁気ディスク製作中の研磨時に崩れたり、ま
たそれに続く化学処理時のエッチングによって溶解・脱
落するので窪み孔が生じ、磁気ディスクの性能を低下さ
せる。このため、たとえこれが含有されたとしても大き
さを細かくし、窪み孔を小さくする必要から、その大き
さを3μm以下とする必要がある。
■Mg-Si compound [≦3 μm] Mg-
The Si-based compound is produced by combining Si mixed from the base metal of the aluminum raw material with Mg, which is the main component of the aluminum alloy used in the present invention, and the smaller the amount, the better. This crumbles during polishing during the manufacturing of the magnetic disk, or dissolves and falls off during etching during the subsequent chemical treatment, resulting in depressions and deteriorating the performance of the magnetic disk. For this reason, even if this is contained, it is necessary to make the size fine and to make the depressions smaller, so the size needs to be 3 μm or less.

【0018】■Al−Fe−Mn−Si系化合物〔≦1
0μm〕 Al−Fe−Mn−Si系化合物は、アルミニウム原料
の地金から混入するFeとAlとが結合し、Mnおよび
Siが共存すると、これを取り込んだ化合物として晶出
する。また、均質化処理時にも一部形成する。しかし、
Mg−Si化合物のように研磨、化学処理時に脱落する
ことがないので、それほどの厳しさはないが、やはり粗
大な化合物になると研磨時にスクラッチきずを作りやす
く、また化学処理時の不安定要因による脱落の危険性か
ら、その大きさを10μm以下に抑えることが好ましい
。10μm以下にするには前述したようにFe含有量を
0.045%以下にすることによって達成される。
■Al-Fe-Mn-Si compound [≦1
0 μm] In an Al-Fe-Mn-Si-based compound, Fe mixed from the base metal of the aluminum raw material is combined with Al, and when Mn and Si coexist, it crystallizes as a compound incorporating them. It is also partially formed during the homogenization process. but,
Unlike Mg-Si compounds, it does not fall off during polishing or chemical processing, so it is not as severe. Due to the risk of falling off, it is preferable to suppress the size to 10 μm or less. The thickness of 10 μm or less can be achieved by reducing the Fe content to 0.045% or less, as described above.

【0019】■結晶粒〔≦40μm〕 結晶粒は、材料の強度を確保する効果があるが、磁気デ
ィスクの場合結晶粒が粗いと表面性状が悪くなり、40
μmを超えると好ましくない。結晶粒が40μm以下の
材料を得るには、鋳造時に固溶したMnが少なくとも0
.05%以上必要である。
■Crystal grains [≦40 μm] Crystal grains have the effect of ensuring the strength of the material, but in the case of magnetic disks, if the crystal grains are coarse, the surface quality will deteriorate,
If it exceeds μm, it is not preferable. In order to obtain a material with crystal grains of 40 μm or less, Mn dissolved in solid solution during casting must be at least 0.
.. 0.05% or more is required.

【0020】[0020]

【実施例】本発明の実施例を説明する。表1に示す組成
のアルミニウム合金を厚さ450mmの鋳塊に連続鋳造
し、520℃で8時間均質化処理した後、鋳肌近傍の偏
析層を切削し、450℃に加熱後熱間圧延により(熱間
加工度98%)厚さ6mmの板とした。その後、冷間加
工により(冷間加工度67%)厚さ2mmの板とし、ド
ーナツ状に打ち抜きの後、360℃で1時間加圧焼鈍し
O材のアルミニウム合金基板とした。
[Example] An example of the present invention will be explained. An aluminum alloy having the composition shown in Table 1 was continuously cast into an ingot with a thickness of 450 mm, homogenized at 520°C for 8 hours, the segregation layer near the casting surface was cut off, heated to 450°C, and then hot rolled. (Hot working degree: 98%) A plate with a thickness of 6 mm was prepared. Thereafter, a plate with a thickness of 2 mm was formed by cold working (degree of cold working: 67%), punched into a donut shape, and then pressure annealed at 360° C. for 1 hour to obtain an aluminum alloy substrate of O material.

【0021】[0021]

【表1】[Table 1]

【0022】磁気ディスクで磁気記録エラーが発生する
のは致命的な欠陥であるといわれている。これを事前に
予測するため、Mg−Si系化合物とAl−Fe−Mn
−Si系化合物の形状・分布及び結晶粒径の大きさを測
定し、Mg−Si系化合物の大きさが3μm以下、Al
−Fe−Mn−Si系化合物の大きさが10μm以下、
結晶粒径の大きさが40μm以下となる材料を本発明と
した。また、磁気ディスクとして回転させたとき変形に
よる「ふれ」を少なくする材料として、耐力が118M
Pa以上得られる材料を本発明とした。
It is said that the occurrence of a magnetic recording error in a magnetic disk is a fatal defect. In order to predict this in advance, Mg-Si compounds and Al-Fe-Mn
- The shape and distribution of the Si-based compound and the size of the crystal grain size were measured, and the size of the Mg-Si-based compound was 3 μm or less, and the size of the Al
-The size of the Fe-Mn-Si compound is 10 μm or less,
The material of the present invention has a crystal grain size of 40 μm or less. In addition, the material has a yield strength of 118M, which reduces "wobble" due to deformation when rotating as a magnetic disk.
The present invention is a material that can obtain Pa or more.

【0023】化合物分布はO材板材を5mm角に切削し
、樹脂埋めの後、エメリー研磨、バフ研磨により表層か
ら約100μmの深さの位置が露出するように仕上げた
。 表層から100μmの位置は、鏡面仕上げ後の位置、つ
まり磁気ディスクとしての使用面に相当する。バフ研磨
の際、研磨剤の成分により、Mg−Si系化合物とAl
−Fe−Mn−Si系化合物の着色の程度に差が出るた
め、これを利用してイメージアナライザーにより両者を
それぞれ円相当径として測定した。測定は顕微鏡倍率を
400倍とし、総測定面積を1mm2とした。これらの
結果を表2に示した。
[0023] For the compound distribution, an O material plate was cut into 5 mm square pieces, filled with resin, and finished by emery polishing and buff polishing so that a position at a depth of about 100 μm from the surface layer was exposed. The position 100 μm from the surface layer corresponds to the position after mirror finishing, that is, the surface used as a magnetic disk. During buffing, depending on the composition of the polishing agent, Mg-Si compounds and Al
Since there is a difference in the degree of coloring of the -Fe-Mn-Si based compounds, both were measured as equivalent circle diameters using an image analyzer. The measurement was performed using a microscope with a magnification of 400 times and a total measurement area of 1 mm2. These results are shown in Table 2.

【0024】[0024]

【表2】[Table 2]

【0025】従来材のNo.1は、磁気ディスクとして
の性能は非常に良好であるが、99.99%ベースの高
純度アルミニウム地金を使用しなければならないので、
コスト高となり好ましくない。
Conventional material No. 1 has very good performance as a magnetic disk, but it requires the use of 99.99% high-purity aluminum base metal.
This is not preferable due to high cost.

【0026】本発明材No.2〜13は、いずれも本発
明の成分範囲であり、化合物分布はMg−Si系化合物
は3μm以下、Al−Fe−Mn−Si系化合物は10
μm以下であり、結晶粒径は40μm以下、耐力118
MPa以上が得られ、磁気ディスクの基板として満足す
るものである。
Invention material No. 2 to 13 are all within the component range of the present invention, and the compound distribution is 3 μm or less for Mg-Si compounds and 10 μm for Al-Fe-Mn-Si compounds.
µm or less, crystal grain size is 40 µm or less, yield strength 118
MPa or more can be obtained, which is satisfactory as a substrate for a magnetic disk.

【0027】これに対し比較材No.14はFe含有量
が0.048%と高く、No.15はSi含有量が0.
034%,Fe含有量が0.055%と高く、10μm
以上のAl−Fe−Mn−Si系化合物が存在し、磁気
ディスク基板鏡面研磨時にスクラッチきずを発生させる
危険性がある。また3〜5μm以上のMg−Si系化合
物が9個存在するため、研磨時や各種化学処理時に穴を
形成するので好ましくない。
On the other hand, comparative material No. No. 14 has a high Fe content of 0.048%. No. 15 has a Si content of 0.
034%, high Fe content of 0.055%, 10 μm
The presence of the above Al-Fe-Mn-Si compounds poses a risk of generating scratches during mirror polishing of the magnetic disk substrate. Further, since there are nine Mg-Si compounds having a diameter of 3 to 5 μm or more, holes are formed during polishing or various chemical treatments, which is not preferable.

【0028】No.16はSi含有量が0.035%と
高く、3μm以上のMg−Si系化合物が9個存在し好
ましくない。
[0028]No. No. 16 has a high Si content of 0.035%, and there are nine Mg-Si compounds with a diameter of 3 μm or more, which is not preferable.

【0029】No.17はMn含有量が0.64%と高
く、10μm以上のAl−Fe−Mn−Si系化合物が
12個存在し、好ましくない。
[0029]No. No. 17 has a high Mn content of 0.64%, and there are 12 Al-Fe-Mn-Si compounds with a diameter of 10 μm or more, which is not preferable.

【0030】No.18はMg含有量が5.94%と高
く、熱間加工度50%のところで大きな割れが検出され
たため、試験を中止した。
[0030]No. Test No. 18 had a high Mg content of 5.94%, and large cracks were detected at a degree of hot working of 50%, so the test was discontinued.

【0031】No.19はCr含有量が0.49%,N
o.20はZr含有量が0.30%およびV含有量が0
.25%とそれぞれ高く、鋳造時に巨大な金属間化合物
が生成したため、試験を中止した。
[0031]No. 19 has a Cr content of 0.49%, N
o. 20 has a Zr content of 0.30% and a V content of 0.
.. The test was discontinued because a huge intermetallic compound was generated during casting, which was as high as 25%.

【0032】No.21はMnの含有量が0.02%と
少なく、3μm以上のMg−Si系化合物が存在し、結
晶粒径も45μmと大きくなり好ましくない。
[0032]No. No. 21 has a low Mn content of 0.02%, contains Mg-Si compounds with a diameter of 3 μm or more, and has a large crystal grain size of 45 μm, which is not preferable.

【0033】No.22はMg含有量が2.68%と少
なく、耐力が64MPaと低く、好ましくない。
[0033]No. No. 22 has a low Mg content of 2.68% and a low yield strength of 64 MPa, which is not preferable.

【0034】[0034]

【発明の効果】本発明は、以上説明したように、磁気デ
ィスク用基板としてMgを3〜5.5%含有するアルミ
ニウム合金にMnを0.05〜0.5%含有させて、S
i含有量に見合ったMn含有量とし、金属間化合物の大
きさ及び分布を制御することにより、磁気ディスクとし
て研磨したとき、窪み孔欠陥を軽減させ、コーティング
型磁気ディスクの高密度化を可能としたものであり、産
業上極めて有用である。
Effects of the Invention As explained above, the present invention provides an aluminum alloy containing 0.05 to 0.5% of Mn to an aluminum alloy containing 3 to 5.5% of Mg as a substrate for a magnetic disk.
By adjusting the Mn content to match the i content and controlling the size and distribution of the intermetallic compound, it is possible to reduce pitting defects when polished as a magnetic disk, making it possible to increase the density of coated magnetic disks. It is extremely useful industrially.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Mg:3.0〜5.5%,Mn:0.
05〜0.5%,Si:0.010〜0.030%,F
e:0.010〜0.045%を含有し、かつ5×(S
i%)≦(Mn%)を満足し、残部Alおよび不可避的
不純物からなる組成を有するアルミニウム合金よりなり
、Mg−Si系化合物の大きさが3μm以下、Al−F
e−Mn−Si系化合物の大きさが10μm以下、かつ
結晶粒径が40μm以下であることを特徴とする高密度
コーティング型磁気ディスク用アルミニウム合金基板。
[Claim 1] Mg: 3.0 to 5.5%, Mn: 0.
05-0.5%, Si: 0.010-0.030%, F
e: 0.010 to 0.045%, and 5×(S
i%)≦(Mn%), the balance is Al and unavoidable impurities, the size of the Mg-Si compound is 3 μm or less, and the Al-F
An aluminum alloy substrate for a high-density coated magnetic disk, characterized in that the size of the e-Mn-Si-based compound is 10 μm or less and the crystal grain size is 40 μm or less.
【請求項2】  さらにCr:0.05〜0.20%,
Zr:0.05〜0.20%,V:0.05〜0.20
%のうち1種以上を含有した請求項1記載の高密度コー
ティング型磁気ディスク用アルミニウム合金基板。
Claim 2: Further Cr: 0.05 to 0.20%,
Zr: 0.05-0.20%, V: 0.05-0.20
The aluminum alloy substrate for a high-density coated magnetic disk according to claim 1, containing one or more of the following.
JP14266891A 1991-05-20 1991-05-20 Aluminum alloy substrate for high density coating type magnetic disk Pending JPH04341535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14266891A JPH04341535A (en) 1991-05-20 1991-05-20 Aluminum alloy substrate for high density coating type magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14266891A JPH04341535A (en) 1991-05-20 1991-05-20 Aluminum alloy substrate for high density coating type magnetic disk

Publications (1)

Publication Number Publication Date
JPH04341535A true JPH04341535A (en) 1992-11-27

Family

ID=15320721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14266891A Pending JPH04341535A (en) 1991-05-20 1991-05-20 Aluminum alloy substrate for high density coating type magnetic disk

Country Status (1)

Country Link
JP (1) JPH04341535A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152404A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
JP5815153B1 (en) * 2015-07-02 2015-11-17 株式会社神戸製鋼所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP6492218B1 (en) * 2018-07-25 2019-03-27 株式会社Uacj Aluminum alloy plate for magnetic disk, method of manufacturing the same, and magnetic disk using this aluminum alloy plate for magnetic disk
CN111164228A (en) * 2017-09-28 2020-05-15 株式会社Uacj Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396254A (en) * 1986-10-14 1988-04-27 Sumitomo Light Metal Ind Ltd Production of al alloy substrate for coated magnetic disk
JPH0288741A (en) * 1988-09-27 1990-03-28 Kobe Steel Ltd Stock for high recording density disk and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396254A (en) * 1986-10-14 1988-04-27 Sumitomo Light Metal Ind Ltd Production of al alloy substrate for coated magnetic disk
JPH0288741A (en) * 1988-09-27 1990-03-28 Kobe Steel Ltd Stock for high recording density disk and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152404A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
JP5815153B1 (en) * 2015-07-02 2015-11-17 株式会社神戸製鋼所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
CN111164228A (en) * 2017-09-28 2020-05-15 株式会社Uacj Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP6492218B1 (en) * 2018-07-25 2019-03-27 株式会社Uacj Aluminum alloy plate for magnetic disk, method of manufacturing the same, and magnetic disk using this aluminum alloy plate for magnetic disk
WO2020022380A1 (en) * 2018-07-25 2020-01-30 株式会社Uacj Aluminum alloy sheet for magnetic disk and production method therefor, and magnetic disk using said aluminum alloy sheet for magnetic disk
CN112470221A (en) * 2018-07-25 2021-03-09 株式会社Uacj Aluminum alloy plate for magnetic disk, method for producing same, and magnetic disk using same
US11361791B2 (en) 2018-07-25 2022-06-14 Uacj Corporation Aluminum alloy sheet for magnetic disk and production method therefor, and magnetic disk using said aluminum alloy sheet for magnetic disk

Similar Documents

Publication Publication Date Title
US4431461A (en) Method for producing Al-base alloy substrates for magnetic recording media
WO2016190277A1 (en) Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs
JPH04341535A (en) Aluminum alloy substrate for high density coating type magnetic disk
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPH11315338A (en) Aluminum alloy for magnetic disk, excellent in zincate treatment property
JPH01225739A (en) Aluminum alloy for magnetic disk substrate
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
JPS6327420B2 (en)
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JPH04272150A (en) Aluminum alloy for magnetic disk excellent in grindability
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JPH0499143A (en) Aluminum alloy for magnetic disk base plate having good ni-p plating property
JPS627829A (en) Aluminum alloy for magnetic disk substrate
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JPH0752030A (en) Anodic oxidation surface treated base and polishing method therefor
JPH02282452A (en) Production of aluminum alloy substrate for magnetic disk
JPH09263870A (en) Aluminum alloy for magnetic disk substrate, and magnetic disk substrate
JPH04341536A (en) Aluminum alloy substrate for high density alumite sputter type magnetic disk
JPS62230947A (en) Aluminum alloy for magnetic disk
JP2002194470A (en) Aluminum alloy disk substrate
JPH02159339A (en) Aluminum alloy for magnetic disk base having excellent specular finishing properties
JPH07310135A (en) Aluminum alloy for magnetic disk substrate
JPS6396254A (en) Production of al alloy substrate for coated magnetic disk